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On a conjecture about repdigits in k-generalized
Fibonacci sequences

By JHON J. BRAVO (Popayán) and FLORIAN LUCA (Morelia)

Abstract. The k-generalized Fibonacci sequence (F
(k)
n )n resembles the Fibonacci

sequence in that it starts with 0, . . . , 0, 1 (a total of k terms) and each term afterwards

is the sum of the k preceding terms. F. Luca [4] in 2000 and recently D. Marques [5]

proved that 55 and 44 are the largest numbers with only one distinct digit (so called

repdigits) in the sequences (F
(2)
n )n and (F

(3)
n )n, respectively. Further, Marques conjec-

tured that there are no repdigits having at least 2 digits in a k-generalized Fibonacci

sequence for any k > 3. In the present paper, we confirm this conjecture.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 =

Fn+1 +Fn for all n ≥ 0. In 2000, F. Luca [4] proved that F10 = 55 is the largest

number with only one distinct digit (called repdigit) in the Fibonacci sequence.

The Tribonacci sequence (Tn)n≥−1 is like the sequence of Fibonacci numbers

except that it starts as T−1 = 0, T0 = 0, T1 = 1 and each term afterwards is the

sum of the preceding three terms.

Recently, D. Marques [5] looked for repdigits in the Tribonacci sequence

and proved that T8 = 44 is the largest such. Given an integer k ≥ 2, we
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look at the similar problem for the terms of the k-generalized Fibonacci sequ-

ence (F
(k)
n )n≥−(k−2) given by

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k for all n ≥ 2, (1)

with the initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

Clearly, for k = 2 we have F
(2)
n = Fn, our familiar Fibonacci numbers, while

for k = 3, we have F
(3)
n = Tn, the Tribonacci numbers.

Below we present the values of these numbers for the first few values of k

and n ≥ 1.

k Name First non-zero terms

2 Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

3 Tribonacci 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, . . .

4 Tetranacci 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, . . .

5 Pentanacci 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, . . .

6 Hexanacci 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, . . .

7 Heptanacci 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, . . .

8 Octanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, . . .

9 Nonanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, . . .

10 Decanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, . . .

The following conjecture was formulated in [5].

Conjecture 1. The only solutions of the Diophantine equation

F (k)
n = a ·

(
10` − 1

9

)
(2)

in positive integers n, k, a, ` with k ≥ 2, 1 ≤ a ≤ 9 and ` ≥ 2, are

(n, k, a, `) ∈ {(10, 2, 5, 2), (8, 3, 4, 2)}.
Here, we confirm Conjecture 1. We record the result as follows.

Theorem 1. Conjecture 1 holds.

Our method is roughly as follows. We use lower bounds for linear forms in

logarithms of algebraic numbers to bound n and ` polynomially in terms of k.

When k is small, the theory of continued fractions suffices to lower such bounds

and complete the calculations. When k is large, we use the fact that the dominant

root of the k-generalized Fibonacci sequence is exponentially close to 2, so we can

replace this root by 2 in our calculations with linear forms in logarithms and end

up with an absolute bound for k; hence, an absolute bound for all k, ` and n,

which we then reduce using again standard facts concerning continued fractions.
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2. Preliminary inequalities

It is known that the characteristic polynomial of the k-generalized Fibonacci

numbers (F
(k)
n )n, namely

ψk(x) = xk − xk−1 − · · · − x− 1,

is irreducible over Q[x] and has just one root outside the unit circle. Throughout

this paper, α := α(k) denotes that single root, which is located between 2(1−2−k)

and 2 (see [7]). To simplify notation, in general we omit the dependence on k

of α.

The following “Binet-like” formula for F
(k)
n appears in Dresden [2]:

F (k)
n =

k∑

i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1
i , (3)

where α = α1, . . . , αk are the roots of ψk(x). It was proved in [2] that the

contribution of the roots which are inside the unit circle to the formula (3) is very

small, namely that the approximation

∣∣∣∣F (k)
n − α− 1

2 + (k + 1)(α− 2)
αn−1

∣∣∣∣ <
1

2
holds for all n ≥ 2− k. (4)

We will use the estimate (4) later.

For the Fibonacci sequence (namely, the case k = 2), it is well-known that

αn−2 < Fn < αn−1 holds for all n ≥ 3. (5)

Here, the value of α is the golden section. The next result shows that the above

inequality (5) holds for the k-generalized Fibonacci sequence as well.

Lemma 1. The inequality

αn−2 ≤ F (k)
n ≤ αn−1, (6)

holds for all n ≥ 1.

Proof. We may assume that k ≥ 3, since for k = 2 this is inequality (5).

We prove the lemma by induction on n. We first prove that inequality (6) holds

for the first k non-zero terms of the k-generalized Fibonacci sequence. Indeed, it

is clear that the result is true for n = 1 because α > 1, so we only need to show

that

αi ≤ F
(k)
i+2 = 2i ≤ αi+1, for 0 ≤ i ≤ k − 2.
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The left-hand side of the above inequality holds because α < 2 while the right-

hand side of it holds for i = 0 because α > 1, so it suffices to prove that

2 < α(i+1)/i holds for 1 ≤ i ≤ k − 2. (7)

Since the function i 7→ (i + 1)/i is decreasing for i ≥ 1, it suffices to prove that

inequality (7) holds when i = k − 2. Since 2(1 − 2−k) < α, it follows that it is

enough to prove that 2 < 21+1/(k−2)(1− 2−k)(k−1)/(k−2), which is equivalent to

− log 2

k − 1
< log(1− 2−k).

Since log 2 > 1/2 and log(1 − x) > −2x holds for all x ∈ (0, 1/2), it suffices to

show that

− 1

2(k − 1)
≤ −2−k+1,

which is equivalent to 2k−2 ≥ k − 1, which clearly holds for all k ≥ 2. Thus, we

have proved that inequality (6) holds for the first k non-zero terms of (F
(k)
n )n.

Now, suppose that (6) holds for all terms F
(k)
m with m ≤ n − 1 for some

n > k. It then follows from (1) that

αn−3 + αn−4 + · · ·+ αn−k−2 ≤ F (k)
n ≤ αn−2 + αn−3 + · · ·+ αn−k−1,

therefore

αn−k−2(αk−1 + αk−2 + · · ·+ 1) ≤ F (k)
n ≤ αn−k−1(αk−1 + αk−2 + · · ·+ 1),

which combined with the fact that αk = αk−1 + αk−2 + · · ·+ 1 gives the desired

result. Thus, inequality (6) holds for all positive integers n. ¤

To conclude this section of preliminary inequalities, assume throughout that

equation (2) holds. Since 10`−1 < F
(k)
n < 10`, we have `−1 < logF

(k)
n / log 10 < `,

so

` =

⌊
logF

(k)
n

log 10

⌋
+ 1.

Moreover, from Lemma 1, we obtain

(n− 2)
logα

log 10
< ` < (n− 1)

logα

log 10
+ 1, (8)

which is an estimate on ` in terms of n. We shall have some use for it later.
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3. An inequality for n in terms of k

From now on, we assume that k ≥ 3. Observe that for k ≥ 6, the first k − 4

terms which have at least 2 digits in the k-generalized Fibonacci sequence are

powers of two, namely F
(k)
6 = 16, F

(k)
7 = 32, . . . , F

(k)
k+1 = 2k−1. These numbers

are not repdigits. Indeed, since (10`− 1)/9 is odd for all ` ≥ 2, it follows that the

exponent of 2 in a(10` − 1)/9 is the same as the exponent of 2 in a, in particular

it does not exceed 3. This shows that powers of 2 with at least two digits are not

repdigits. Hence, n > k + 1 when k ≥ 6, and the same is true for k = 3, 4 and 5

also.

Using now (2) and (4), we get that

∣∣∣∣
a10`

9
− α− 1

2 + (k + 1)(α− 2)
αn−1

∣∣∣∣ <
1

2
+

a

9
≤ 3

2
. (9)

Dividing both sides of the above inequality by the second term of the left-hand

side, which is positive because α > 1 and 2k > k + 1, so

2 > (k + 1)(2− (2− 2−k+1)) > (k + 1)(2− α),

we obtain
∣∣∣∣10` · α−(n−1) · a

9

(
2 + (k + 1)(α− 2)

α− 1

)
− 1

∣∣∣∣ <
6

αn−1
, (10)

where we used the facts 2+(k+1)(α−2) < 2 and 1/(α−1) < 2, which are easily

seen.

In order to prove Theorem 1, we shall use twice the following result of Mat-

veev (see [6] or Theorem 9.4 in [1]).

Lemma 2. Assume that γ1, . . . , γt are positive numbers in a real algebraic

number field K of degree D, b1, . . . , bt are rational integers, and

Λ := γb1
1 · · · γbt

t − 1,

is not zero. Then

|Λ| > exp
(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At

)
, (11)

where

B ≥ max{|b1|, . . . , |bt|},
and

Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.
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In the above, for an algebraic number η we write h(η) for its logarithmic

height, given by

h(η) :=
1

d

(
log a0 +

d∑

i=1

log
(
max{|η(i)|, 1}

))
,

with d being the degree of η over Q and

f(X) := a0

d∏

i=1

(X − η(i)) ∈ Z[X] (12)

being the minimal primitive polynomial over the integers having positive leading

coefficient a0 and η as a root.

In a first application of Matveev’s result Lemma 2, we take t := 3 and

γ1 := 10, γ2 := α, γ3 :=
a

9

(
2 + (k + 1)(α− 2)

α− 1

)
.

We also take b1 := `, b2 := −(n− 1) and b3 := 1. Hence,

Λ := γb1
1 · γb2

2 · γb3
3 − 1. (13)

The absolute value of Λ appears in the left-hand side of inequality (10). To see

that Λ 6= 0, observe that imposing that Λ = 0 we get

a

9
10` =

α− 1

2 + (k + 1)(α− 2)
αn−1.

Conjugating the above relation by some automorphism of the Galois group of the

decomposition field of ψk(x) over Q and then taking absolute values, we get that

for any i > 1, we have

a

9
10` =

∣∣∣∣
αi − 1

2 + (k + 1)(αi − 2)
αn−1
i

∣∣∣∣ . (14)

But the last equality above is not possible for i ≥ 2 because

|2 + (k + 1)(αi − 2)| ≥ (k + 1)|αi − 2| − 2 ≥ k − 1 ≥ 2 and |αi − 1| < 2, (15)

because |αi| < 1. Hence, we get that the right-hand side of (14) is at most 1,

whereas its left-hand side is ≥ 100/9, which is a contradiction. Thus, Λ 6= 0.
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The algebraic number field containing γ1, γ2, γ3 is K := Q(α), so we can take

D := k. Since h(γ1) = log 10 = 2.302585 . . . , we can take A1 := 2.31k > kh(γ1).

Further, since h(γ2) = (logα)/k < (log 2)/k = (0.693147 . . .)/k, we can take

A2 := 0.7.

We now need to estimate h(γ3). Observe that

h(γ3) ≤ log 9 + h

(
2 + (k + 1)(α− 2)

α− 1

)
= log 9 + h

(
α− 1

2 + (k + 1)(α− 2)

)
. (16)

Put

fk(x) =

k∏

i=1

(
x− αi − 1

2 + (k + 1)(αi − 2)

)
∈ Q[x].

Then the leading coefficient a0 of the minimal polynomial of

α− 1

2 + (k + 1)(α− 2)

over the integers (see definition (12)) divides
∏k

i=1(2 + (k + 1)(αi − 2)). But,

∣∣∣∣∣
k∏

i=1

(2 + (k + 1)(αi − 2))

∣∣∣∣∣ = (k + 1)k

∣∣∣∣∣
k∏

i=1

(
2− 2

k + 1
− αi

)∣∣∣∣∣

= (k + 1)k
∣∣∣∣ψk

(
2− 2

k + 1

)∣∣∣∣ .
Since

|ψk(y)| < max{yk, 1 + y + · · ·+ yk−1} < 2k for all 0 < y < 2,

it follows that

a0 ≤ (k + 1)k
∣∣∣∣ψk

(
2− 2

k + 1

)∣∣∣∣ < 2k (k + 1)k.

Hence,

h

(
α− 1

2 + (k + 1)(α− 2)

)
=

1

k

(
log a0 +

k∑

i=1

logmax

{∣∣∣∣
αi − 1

2 + (k + 1)(αi − 2)

∣∣∣∣ , 1
})

<
1

k
(k log 2 + k log(k + 1)) = log(k + 1) + log 2,

where we used the facts
∣∣∣∣

αi − 1

2 + (k + 1)(αi − 2)

∣∣∣∣ < 1 for all i > 1 and

∣∣∣∣
α− 1

2 + (k + 1)(α− 2)

∣∣∣∣ < 1,



630 Jhon J. Bravo and Florian Luca

which hold because |2 + (k + 1)(αi − 2)| ≥ 2 for i = 2, . . . , k (see (15)), and

2+ (k+1)(α− 2) ≥ 1, which is a straightforward exercise to check using the fact

that 2(1− 2−k) < α < 2 and k ≥ 3. Thus, from (16), we get that

h(γ3) < log(k + 1) + log 18.

So, we can take A3 := k log(k+1)+3k, because log 18 = 2.89037 . . . . By recalling

(8), we deduce ` < n, so we can take B := n− 1. Applying inequality (11) to get

a lower bound for |Λ| and comparing this with inequality (10), we get

exp (−C1(k)× (1 + log(n− 1)) (2.31k) (0.7) (k log(k + 1) + 3k)) <
6

αn−1
,

where C1(k) := 1.4× 306 × 34.5 × k2 × (1 + log k) < 1.5× 1011 k2 (1 + log k).

Taking logarithms in the above inequality, we have that

(n− 1) logα− log 6 < 2.43× 1011 k4 (1 + log k) (1 + log(n− 1)) (log(k + 1) + 3),

which leads to

n− 1 < 8× 1012 k4 log2 k log(n− 1),

where we used the facts 1+log k ≤ 2 log k for all k ≥ 3, 1+log(n−1) ≤ 2 log(n−1)

for all n ≥ 4, log(k + 1) + 3 ≤ 4 log k for all k ≥ 3 and 1/ logα < 2.

Thus,
n− 1

log(n− 1)
< 8× 1012 k4 log2 k. (17)

Since the function x 7→ x/ log x is increasing for all x > e, it is easy to check that

the inequality
x

log x
< A yields x < 2A logA,

whenever A ≥ 3. Thus, taking A := 8× 1012 k4 log2 k, inequality (17) yields

n− 1 < 2 (8× 1012 k4 log2 k) log(8× 1012 k4 log2 k)

< (1.6× 1013k4 log2 k) (30 + 4 log k + 2 log log k)

< 5.12× 1014k4 log3 k.

In the last chain of inequalities, we have used that 30+4 log k+2 log log k < 32 log k

holds for all k ≥ 3. Now, inserting the above upper bound for n− 1 in the upper

bound for ` from inequality (8), we get that ` < 2× 1014 k4 log3 k, where we used

the fact that logα/ log 10 < log 2/ log 10 < 1/3. Let us record this calculation for

future use.

Lemma 3. If (n, k, a, `) is a solution in positive integers of equation (2) with

k ≥ 3, then n > k + 1 and both inequalities

n < 6× 1014 k4 log3 k and ` < 2× 1014 k4 log3 k

hold.
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4. The case of small k

We next treat the cases when k ∈ [3, 250]. After finding an upper bound

on n the next step is to reduce it. To do this, we use several times the following

lemma, which is a variation of a result of Dujella and Pethő from [3].

Lemma 4. Let M be a positive integer, let p/q be a convergent of the

continued fraction of the irrational γ such that q > 6M , and let A,B, µ be some

real numbers with A > 0 and B > 1. Let ε := ‖µq‖−M‖γq‖, where ‖ · ‖ denotes

the distance from the nearest integer. If ε > 0, then there is no solution to the

inequality

0 < mγ − n+ µ < AB−k,

in positive integers m,n and k with

m ≤ M and k ≥ log(Aq/ε)

logB
.

Proof. The proof is completely analogous to that of Lemma 5 in [3]. We

omit the details. ¤

In order to apply Lemma 4, we let

z := ` log 10− (n− 1) logα+ log µa, (18)

where µa := γ3. Then ez − 1 = Λ, where Λ is given by (13). Therefore, (10) can

be rewritten as

|ez − 1| < 6

αn−1
. (19)

Note that z 6= 0 since Λ 6= 0. Thus, we distinguish the following cases. If z > 0,

then ez − 1 > 0, so from (19) we obtain

0 < z <
6

αn−1
,

where we used the fact that x ≤ ex − 1 for all x ∈ R. Replacing z in the above

inequality by its formula (18) and dividing both sides of the resulting inequality

by logα, we get

0 < `

(
log 10

logα

)
− n+

(
1 +

logµa

logα

)
< 12 · α−(n−1), (20)

where we have used again the fact that 1/ logα < 2. With

γ̂k :=
log 10

logα
, µ̂a := 1 +

logµa

logα
, A := 12, and B := α,
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the above inequality (20) yields

0 < `γ̂k − n+ µ̂a < AB−(n−1). (21)

It is clear that γ̂k is an irrational number because α > 1 is a unit in OK, the
ring of integers of K. So α and 10 are multiplicatively independent.

For each k ∈ [3, 250], we find a good approximation of α and a conver-

gent pk/qk of the continued fraction of γ̂k such that qk > 6Mk, where Mk :=⌊
2× 1014 k4 log3 k

⌋
, which is an upper bound on ` from Lemma 3. After doing

this, we use Lemma 4 on (21) in order to reduce our bound on n. Indeed, a com-

puter search with Mathematica revealed that if k ∈ [3, 250], then the maximum

value of log(Aqk/εk)/ logB, where εk = ‖µ̂aqk‖−Mk‖γ̂kqk‖, is 251.095. . . , which,
according to Lemma 4, is an upper bound on n − 1. Hence, we deduce that the

possible solutions (n, k, a, `) of the equation (2) for which k is in the range [3, 250]

and z > 0 all have n ∈ [2, 252].

Next we treat the case z < 0. It is a straightforward exercise to check that

6/αn−1 < 1/2 for all k ≥ 3 and all n ≥ 6. Then, from (19), we have that

|ez − 1| < 1/2 and therefore e|z| < 2.

Since z < 0, we have

0 < |z| ≤ e|z| − 1 = e|z||ez − 1| < 12

αn−1
.

In a similar way as in the case when z > 0, we obtain

0 < (n− 1)γ̂k − `+ µ̂a < AB−(n−1), (22)where now

γ̂k :=
logα

log 10
, µ̂a := − logµa

log 10
, A := 6 and B := α.

Here, we take Mk =
⌊
6× 1014 k4 log3 k

⌋
, which is an upper bound on n− 1

by Lemma 3, and, as we have explained before, we apply Lemma 4 to inequality

(22) for each k ∈ [3, 250]. In this case, with the help of Mathematica, we find

that the maximum value of log(Aqk/εk)/ logB is 251.817. . . . Thus, the possible

solutions (n, k, a, `) of the equation (2) with k in the range [3, 250] and z < 0 all

have n ∈ [2, 252].

Finally, we use Mathematica to display the values F
(k)
n (mod 1010) for

1 ≤ n ≤ 260, 3 ≤ k ≤ 250, and check that the only one solution of the equa-

tion (2) in this range is (n, k, a, `) = (8, 3, 4, 2), namely F
(3)
8 = T8 = 44. This

completes the analysis in the case k ∈ [3, 250].
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5. An absolute upper bound on k

From now on, we assume that k > 250. For such k we have

n < 6× 1014 k4 log3 k < 2k/2.

Let λ > 0 be such that α + λ = 2. Since α is located between 2(1− 2−k) and 2,

we get that λ < 2− 2(1− 2−k) = 1/2k−1, i.e., λ ∈ (0, 1/2k−1). Besides,

αn−1 = (2− λ)n−1 = 2n−1

(
1− λ

2

)n−1

= 2n−1e(n−1) log(1−λ/2) ≥ 2n−1e−λ(n−1),

where we used the fact that log(1− x) ≥ −2x for all x < 1/2. But we also have

that e−x ≥ 1− x for all x ∈ R, so, αn−1 ≥ 2n−1(1− λ(n− 1)).

Moreover, λ(n− 1) < (n− 1)/2k−1 < 2k/2/2k−1 = 2/2k/2. Hence,

αn−1 > 2n−1(1− 2/2k/2).

It then follows that the following inequalities hold

2n−1 − 2n

2k/2
< αn−1 < 2n−1,

or ∣∣αn−1 − 2n−1
∣∣ < 2n

2k/2
. (23)

We now consider the function

f(x) =
x− 1

2 + (k + 1)(x− 2)
for x > 2(1− 2−k).

Using the Mean–Value Theorem, we get that there exists some β ∈ (α, 2) such

that f(α) = f(2) + (α− 2)f ′(β). Thus,

|f(α)− f(2)| = |α− 2‖f ′(β)| < 2k

2k
, (24)

where we used the facts that

|α− 2| < 1

2k−1
and f ′(β) =

1− k

(2 + (k + 1)(β − 2))2
,

together with 2 + (k + 1)(β − 2) ≥ 1. If we write

αn−1 = 2n−1 + δ and f(α) = f(2) + η,
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then inequalities (23) and (24) yield

|δ| < 2n

2k/2
and |η| < 2k

2k
.

Besides, since f(2) = 1/2, we have

f(α)αn−1 = 2n−2 +
δ

2
+ 2n−1η + η δ.

So, from (9) and the above equality, we get

∣∣∣∣2n−2 − a 10`

9

∣∣∣∣ =
∣∣∣∣
(
f(α)αn−1 − a 10`

9

)
− δ

2
− 2n−1η − η δ

∣∣∣∣

<
3

2
+

2n−1

2k/2
+

2nk

2k
+

2n+1k

23k/2
.

Factoring out 2n−2 in the right-hand side of the above inequality and taking into

account that 3/2n−1 < 1/2k/2 (because n > k + 1 by Lemma 3), 4k/2k < 1/2k/2

and 8k/23k/2 < 1/2k/2 all valid for k > 250, we get that

∣∣∣∣2n−2 − a 10`

9

∣∣∣∣ < 5 · 2
n−2

2k/2
.

Consequently, ∣∣∣1− a

9
· 10` · 2−(n−2)

∣∣∣ < 5

2k/2
. (25)

We now set

Λ1 :=
a

9
· 10` · 2−(n−2) − 1. (26)

The fact that Λ1 is nonzero follows from the fact that ` ≥ 2, by looking at

the exponent of 5 in the factorization of Λ1 + 1. We lower bound the left-hand

side of inequality (25) using again Matveev’s result Lemma 2. We take t := 3,

γ1 := a/9, γ2 := 10 and γ3 := 2. We also take the exponents b1 := 1, b2 := `

and b3 := −(n − 2). In this application of Matveev’s result, we take D := 1,

A1 := log 9, A2 := log 10 and A3 := log 2. Also, we can take B := n. We thus get

that

exp (−C2 (1 + log n) (log 9) (log 10) (log 2)) <
5

2k/2
,

where C2 := 1.4× 306 × 34.5.

Taking logarithms in the above inequality, we have that

k

2
log 2− log 5 < 5.1× 1011 (1 + log n).
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This leads to

k <
5.1× 1011

log 2
· 2 (1 + log n) +

2 log 5

log 2

< 2.21× 1012 logn+ 4.65

< 2.3× 1012 logn.

In the above, we used the inequalities 2 (1 + log n) < 3 log n (valid for all n ≥ 8)

and 2.21 × 1012 log n + 4.65 < 2.3 × 1012 logn (valid for all n ≥ 2). But, recall

that by Lemma 3 we have n < 6× 1014 k4 log3 k. Thus,

k < 2.3× 1012 log(6× 1014 k4 log3 k)

< 2.3× 1012 (35 + 7 log k)

< 3.22× 1013 log k,

where we used the fact that the inequality 35 + 7 log k < 14 log k holds for all

k ≥ 149. Mathematica gives k < 2 × 1015. Actually, the upper bound on k is

smaller than the one shown here, but we decided to work with this bound for

simplicity. By Lemma 3 once again, we obtain n < 5×1080 and ` < 2×1080. We

record our conclusion as follows.

Lemma 5. If (n, k, a, `) is a solution in positive integers of equation (2) with

k > 250, then all inequalities

n < 5× 1080, k < 2× 1015 and ` < 2× 1080

hold.

6. Reducing the bound on k

6.1. The case a 6= 9. We now want to reduce our bound on k by using again

Lemma 4. Let z := ` log 10 − (n − 2) log 2 + log(a/9). Thus ez − 1 = Λ1, where

Λ1 is given by (26). So, from estimate (25), we deduce that

|ez − 1| < 5

2k/2
. (27)

In what follows, we distinguish again two cases. First, if Λ1 < 0, then z < 0;

besides, |ez − 1| < 1/2 implies that e|z| < 2. Hence, from (27), we have

0 < |z| ≤ e|z| − 1 = e|z||ez − 1| < 10

2k/2
.
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Replacing z by its expression in the above inequality, we get

0 < (n− 2)γ − `+ µ̂a < AB−k, (28)

where

γ :=
log 2

log 10
, µ̂a := − log(a/9)

log 10
, A := 5 and B := 21/2.

Clearly, γ is an irrational number. Let pn/qn be the nth convergent of the

continued fraction of γ. In order to reduce the bound on k, we take M := 5×1080,

which is an upper bound on n from Lemma 5. Now, we want to find a convergent

of γ whose denominator is greater than 6M = 3× 1081.

A quick inspection using Mathematica reveals that our desired convergent is

p167/q167. Moreover, we get

M ‖q167γ‖ = 0.02688 . . . < 0.027.

The minimal value of ‖q167µ̂a‖ computed for a ∈ {1, 2, 3, 4, 5, 6, 7, 8} is > 0.128

and occurs when a = 7. Thus, we can take ε := ‖q167µ̂a‖ −M ‖q167γ‖ > 0.128−
0.027 = 0.101.

It then follows from Lemma 4 that there is no solution of the inequality in

(28) (and therefore for the equation (2)) with

k ≥
⌊
log(Aq167/ε)

logB

⌋
+ 1 = 557 and a ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

Thus, k ≤ 556 and then Lemma 3 tells us that n < 2× 1028.

With this new upper bound for n we repeated the process, i.e., we applied

again Lemma 4 with M := 2× 1028. Now, our desired convergent is p64/q64. We

also get

M ‖q64γ‖ = 0.001434 . . . < 0.0015.

We computed the values of ‖q64µ̂a‖ for a ∈ {1, 2, 3, 4, 5, 6, 7, 8} and we found that

the minimal value of ‖q64µ̂a‖ is > 0.0479 and it occurs when a = 6. Thus, we can

now take ε := ‖q64µ̂a‖ −M ‖q64γ‖ > 0.0479− 0.0015 = 0.0464.

It follows from Lemma 4 that there is no solution of the inequality in (28)

for

k ≥
⌊
log(Aq64/ε)

logB

⌋
+ 1 = 212 and a ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

Therefore, k ≤ 211, which is a case already treated.

In the same way, if Λ1 > 0, we then have z > 0. It follows from (27) that

0 < z ≤ ez − 1 <
5

2k/2
.
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Thus,

0 < `γ − n+ µ̂a < AB−k, (29)

with

γ :=
log 10

log 2
, µ̂a := 2 +

log(a/9)

log 2
, A := 8 and B := 21/2.

In order to use Lemma 4, we take M := 2 × 1080, which is an upper bound

on ` by Lemma 5, so 6M = 1.2× 1081. Here, the convergent is p166/q166. Hence,

M ‖q166γ‖ = 0.03572 . . . < 0.036.

The minimal value of ‖q166µ̂a‖ computed for a ∈ {1, 2, 3, 4, 5, 6, 7, 8} is > 0.128

and occurs when a = 7. Thus, we can take ε := 0.128− 0.036 = 0.092.

In view of Lemma 4, we deduce that there is no solution of the inequality in

(29) (and therefore for the equation (2)) for

k ≥
⌊
log(Aq166/ε)

logB

⌋
+ 1 = 555 and a ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

Thus, k ≤ 554 and then from Lemma 3 we get ` < 5× 1027.

As before we may apply Lemma 4 with M := 5 × 1027. Now, our desired

convergent is p63/q63. Here, we find

M ‖q63γ‖ = 0.0011910 . . . < 0.0012.

The minimal value of ‖q63µ̂a‖ computed for a ∈ {1, 2, 3, 4, 5, 6, 7, 8} is > 0.0479

and occurs when a = 3. Thus, we take ε := 0.0479− 0.0012 = 0.0467.

Finally, Lemma 4 tells us that there is no solution of the inequality in (29)

for

k ≥
⌊
log(Aq63/ε)

logB

⌋
+ 1 = 210 and a ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

Hence, k ≤ 209, which is a case already treated.

6.2. The case a = 9. We cannot study this case as before because µ̂9 is always

an integer. For this reason, we need to treat this case differently.

Again we distinguish two cases. When Λ1 < 0, then µ̂9 = 0, so from (28),

we get

0 < (n− 2)γ − ` < 5 · 2−k/2, where γ :=
log 2

log 10
. (30)

Let [a0, a1, a2, a3, a4, . . .] = [0, 3, 3, 9, 2, 2, . . .] be the continued fraction of γ, and

recall that we denoted by pk/qk its kth convergent. Recall also that n−2 < 5×1080

by Lemma 5.
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We have q162 = 4.36 . . .× 1079 < 5× 1080, q163 = 7.55 . . .× 1080 > 5× 1080.

Furthermore, aM := max{ai : i = 0, 1, . . . , 163} = a136 = 5393. From the known

properties of continued fractions, we obtain that

|(n− 2)γ − `| > 1

(aM + 2)(n− 2)
. (31)

Comparing estimates (30) and (31), we get right away that

2k/2 < 26975(n− 2) < 1.7× 1019 k4 log3 k,

where we used the fact that n < 6 × 1014 k4 log3 k from Lemma 3. Taking

logarithms in the above inequality, we have that

k <
2 · log(1.7× 1019)

log 2
+

8 log k

log 2
+

6 log(log k)

log 2
< 128 + 21 log k,

implying that k ≤ 243, which is a case already treated.

If on the other hand we have that Λ1 > 0, then, from (29), we get

0 < `γ − (n− 2) < 8 · 2−k/2, where γ :=
log 10

log 2
.

Clearly, the present γ is the reciprocal of the previous one, so the continued

fraction of it is the same up to a shift of 1. Hence, aM = a135 = 5393, and

1

(aM + 2)`
< |`γ − (n− 2)| < 8 · 2−k/2.

After some algebra and taking into account that ` < 2 × 1014 k4 log3 k from

Lemma 3, we finally get k ≤ 241, which is also a case already treated.

Hence, we confirm that there are no other solutions (n, k, a, `) to equation

(2) than those mentioned in Conjecture 1. Therefore, Theorem 1 is proved.
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On a conjecture about repdigits in k-generalized Fibonacci sequences 639

References

[1] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to expo-
nential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. 163
(2006), 969–1018.

[2] G. P. Dresden, A simplified Binet formula for k-generalized Fibonacci numbers, Preprint
(2011), arXiv:0905.0304v2.
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