Mixed-type reverse order laws for generalized inverses in rings with involution

By DIJANA MOSIĆ (Niš) and DRAGAN S. DJORDJEVIĆ (Niš)

Abstract

We investigate mixed-type reverse order laws for the Moore-Penrose inverse in rings with involution. We extend some well-known results to more general settings, and also prove some new results.

1. Introduction

Many authors have studied the equivalent conditions for the reverse order law $(a b)^{\dagger}=b^{\dagger} a^{\dagger}$ to hold in setting of matrices, operators, C^{*}-algebras or rings [2], [9], [3], [5], [8], [10], [12], [16], [17]. This formula cannot trivially be extended to the other generalized inverses of the product $a b$. Since the reverse order law $(a b)^{\dagger}=b^{\dagger} a^{\dagger}$ does not always holds, it is not easy to simplify various expressions that involve the Moore-Penrose inverse of a product. In addition to $(a b)^{\dagger}=b^{\dagger} a^{\dagger}$, $(a b)^{\dagger}$ may be expressed as $(a b)^{\dagger}=b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger},(a b)^{\dagger}=b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*},(a b)^{\dagger}=$ $b^{\dagger} a^{\dagger}-b^{\dagger}\left[\left(1-b b^{\dagger}\right)\left(1-a^{\dagger} a\right)\right]^{\dagger} a^{\dagger}$, etc. These equalities are called mixed-type reverse order laws for the Moore-Penrose inverse of a product and some of them are in fact equivalent (see [4], [12], [14]). In this paper we study necessary and sufficient conditions for mixed-type reverse order laws of the form: $(a b)^{\dagger}=\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger}$, $(a b)^{\dagger}=b^{\dagger}\left(a b b^{\dagger}\right)^{\dagger},(a b)^{\dagger}=b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger},(a b)^{\dagger}=\left(a^{*} a b\right)^{\dagger} a^{*},(a b)^{\dagger}=b^{*}\left(a b b^{*}\right)^{\dagger}$ and $(a b)^{\dagger}=b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*}$ in rings with involution.

Let \mathcal{R} be an associative ring with the unit 1 . An involution $a \mapsto a^{*}$ in a ring
\mathcal{R} is an anti-isomorphism of degree 2 , that is,

$$
\left(a^{*}\right)^{*}=a, \quad(a+b)^{*}=a^{*}+b^{*}, \quad(a b)^{*}=b^{*} a^{*}
$$

An element $a \in \mathcal{R}$ is selfadjoint if $a^{*}=a$.
The Moore-Penrose inverse (or MP-inverse) of $a \in \mathcal{R}$ is the element $b \in \mathcal{R}$, such that the following equations hold [13]:
(1) $a b a=a$,
(2) $b a b=b$,
(3) $(a b)^{*}=a b$,
(4) $(b a)^{*}=b a$.

There is at most one b such that above conditions hold (see [13]), and such b is denoted by a^{\dagger}. The set of all Moore-Penrose invertible elements of \mathcal{R} will be denoted by \mathcal{R}^{\dagger}. If a is invertible, then a^{\dagger} coincides with the ordinary inverse of a.

If $\delta \subset\{1,2,3,4\}$ and b satisfies the equations (i) for all $i \in \delta$, then b is an δ-inverse of a. The set of all δ-inverse of a is denote by $a\{\delta\}$. Notice that $a\{1,2,3,4\}=\left\{a^{\dagger}\right\}$. If $a\{1\} \neq \emptyset$, then a is regular.

Now, we state the following useful result.
Theorem 1.1 ([6], [11]). For any $a \in \mathcal{R}^{\dagger}$, the following is satisfied:
(a) $\left(a^{\dagger}\right)^{\dagger}=a$;
(b) $\left(a^{*}\right)^{\dagger}=\left(a^{\dagger}\right)^{*}$;
(c) $\left(a^{*} a\right)^{\dagger}=a^{\dagger}\left(a^{\dagger}\right)^{*}$;
(d) $\left(a a^{*}\right)^{\dagger}=\left(a^{\dagger}\right)^{*} a^{\dagger}$;
(e) $a^{*}=a^{\dagger} a a^{*}=a^{*} a a^{\dagger}$;
(f) $a^{\dagger}=\left(a^{*} a\right)^{\dagger} a^{*}=a^{*}\left(a a^{*}\right)^{\dagger}$;
(g) $\left(a^{*}\right)^{\dagger}=a\left(a^{*} a\right)^{\dagger}=\left(a a^{*}\right)^{\dagger} a$.

The following result is well-known for complex matrices [1] and linear bounded Hilbert space operators [18], and it is equally true in rings with involution.

Lemma 1.1. If $a, b \in \mathcal{R}$ such that a is regular, then
(a) $b \in a\{1,3\} \Longleftrightarrow a^{*} a b=a^{*}$;
(b) $b \in a\{1,4\} \Longleftrightarrow b a a^{*}=a^{*}$.

Proof. (a) Let $b \in a\{1,3\}$, then we get $a^{*} a b=a^{*}(a b)^{*}=(a b a)^{*}=a^{*}$.
Conversely, the equality $a^{*} a b=a^{*}$ implies

$$
(a b)^{*}=b^{*} a^{*}=b^{*} a^{*} a b=(a b)^{*} a b \text { is selfadjoint }
$$

and

$$
a b a=(a b)^{*} a=\left(a^{*} a b\right)^{*}=\left(a^{*}\right)^{*}=a .
$$

Hence, $b \in a\{1,3\}$.
Similarly, we can verify the second statement.

The reverse-order law $(a b)^{\dagger}=b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}$ was first studied by Galperin and Waksman [7]. A Hilbert space version of their result was given by Isumino [9]. Many results concerning the reverse order law $(a b)^{\dagger}=b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}$ for complex matrices appeared in TiAN's papers [14] and [15], where the author used mostly properties of the rank of a complex matrices. In [12], a set of equivalent conditions for this reverse order rule for the Moore-Penrose inverse in the setting of C^{*}-algebra is studied.

Xiong and Qin [18] investigated the following mixed-type reverse order laws for the Moore-Penrose inverse of a product of Hilbert space operators: $(a b)^{\dagger}=$ $\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger},(a b)^{\dagger}=b^{\dagger}\left(a b b^{\dagger}\right)^{\dagger},(a b)^{\dagger}=b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}$. They used the technique of block operator matrices. We extend results from [18] to more general settings.

This paper is organized as follows. In Section 2, we extend the results from [18] to settings of rings with involution without the hypothesis corresponding to $R\left(A^{*} A B\right) \subseteq R(B)$. In Section 3, we consider the following mixedtype reverse order laws for the Moore-Penrose inverse in rings with involution: $(a b)^{\dagger}=\left(a^{*} a b\right)^{\dagger} a^{*},(a b)^{\dagger}=b^{*}\left(a b b^{*}\right)^{\dagger}$ and $(a b)^{\dagger}=b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*}$. In this paper we apply a purely algebraic technique.

2. Reverse order laws $\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger}=(a b)^{\dagger}, b^{\dagger}\left(a b b^{\dagger}\right)^{\dagger}=(a b)^{\dagger}$ and $b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}=(a b)^{\dagger}$

In this section, we consider necessary and sufficient conditions for reverse order laws $\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger}=(a b)^{\dagger}, b^{\dagger}\left(a b b^{\dagger}\right)^{\dagger}=(a b)^{\dagger}$ and $b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}=(a b)^{\dagger}$ to be satisfied in rings with involution. The results in [18] for linear bounded Hilbert space operators are generalized, since we do not use any e hypothesis corresponding to the condition $R\left(A^{*} A B\right) \subseteq R(B)$ from [18].

Theorem 2.1. If $a, b, a^{\dagger} a b \in \mathcal{R}^{\dagger}$, then the following statements are equivalent:
(1) $a^{*} a b \mathcal{R} \subseteq a^{\dagger} a b \mathcal{R}$;
(2) $\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger} \in(a b)\{1,3\}$;
$\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger}=(a b)^{\dagger}$
$\left(a^{\dagger} a b\right)\{1,3\} \cdot a\{1,3\} \subseteq(a b)\{1,3\}$.
Proof. $(2) \Longrightarrow(1)$: Since $\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger} \in(a b)\{1,3\}$, then $a b=a b\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger} a b$ and

$$
a b\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger}=\left(a b\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger}\right)^{*}=\left(a a^{\dagger} a b\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger}\right)^{*}=\left(a^{\dagger}\right)^{*} a^{\dagger} a b\left(a^{\dagger} a b\right)^{\dagger} a^{*}
$$

which gives

$$
\begin{aligned}
a^{*} a b & =a^{*}\left(a b\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger}\right) a b=a^{*}\left(a^{\dagger}\right)^{*} a^{\dagger} a b\left(a^{\dagger} a b\right)^{\dagger} a^{*} a b \\
& =a^{\dagger} a a^{\dagger} a b\left(a^{\dagger} a b\right)^{\dagger} a^{*} a b=a^{\dagger} a b\left(a^{\dagger} a b\right)^{\dagger} a^{*} a b .
\end{aligned}
$$

Therefore, $a^{*} a b \mathcal{R}=a^{\dagger} a b\left(a^{\dagger} a b\right)^{\dagger} a^{*} a b \mathcal{R} \subseteq a^{\dagger} a b \mathcal{R}$.
$(1) \Longrightarrow(4)$: The assumption $a^{*} a b \mathcal{R} \subseteq a^{\dagger} a b \mathcal{R}$ implies that $a^{*} a b=a^{\dagger} a b x$, for some $x \in \mathcal{R}$. Now, for any $\left(a^{\dagger} a b\right)^{(1,3)} \in\left(a^{\dagger} a b\right)\{1,3\}$ and $a^{(1,3)} \in a\{1,3\}$,

$$
\begin{equation*}
a^{*} a b=a^{\dagger} a b x=a^{\dagger} a b\left(a^{\dagger} a b\right)^{(1,3)}\left(a^{\dagger} a b x\right)=a^{\dagger} a b\left(a^{\dagger} a b\right)^{(1,3)} a^{*} a b . \tag{1}
\end{equation*}
$$

Applying the involution to (1), we obtain

$$
\begin{equation*}
b^{*} a^{*} a=b^{*} a^{*} a a^{\dagger} a b\left(a^{\dagger} a b\right)^{(1,3)}=b^{*} a^{*} a b\left(a^{\dagger} a b\right)^{(1,3)} . \tag{2}
\end{equation*}
$$

Multiplying the equality (2) by $a^{(1,3)}$ from the right side, we get

$$
\begin{equation*}
b^{*} a^{*}=b^{*} a^{*} a b\left(a^{\dagger} a b\right)^{(1,3)} a^{(1,3)}, \tag{3}
\end{equation*}
$$

by $a^{*} a a^{(1,3)}=a^{*}\left(a a^{(1,3)}\right)^{*}=\left(a a^{(1,3)} a\right)^{*}=a^{*}$. From the equality (3) and Lemma 1.1, we deduce that $\left(a^{\dagger} a b\right)^{(1,3)} a^{(1,3)} \in(a b)\{1,3\}$, for any $\left(a^{\dagger} a b\right)^{(1,3)} \in$ $\left(a^{\dagger} a b\right)\{1,3\}$ and $a^{(1,3)} \in a\{1,3\}$. So, $\left(a^{\dagger} a b\right)\{1,3\} \cdot a\{1,3\} \subseteq(a b)\{1,3\}$.
$(4) \Longrightarrow(2)$: Obviously, because $\left(a^{\dagger} a b\right)^{\dagger} \in\left(a^{\dagger} a b\right)\{1,3\}$ and $a^{\dagger} \in a\{1,3\}$.
$(2) \Longleftrightarrow(3)$: It is easy to check this equivalence.
Using Lemma 1.1(b), we can prove the following theorem in the same way as Theorem 2.1.

Theorem 2.2. If $a, b, a b b^{\dagger} \in \mathcal{R}^{\dagger}$, then the following statements are equivalent:
(1) $b b^{*} a^{*} \mathcal{R} \subseteq b b^{\dagger} a^{*} \mathcal{R}$;
(2) $b^{\dagger}\left(a b b^{\dagger}\right)^{\dagger} \in(a b)\{1,4\}$;
(3) $b^{\dagger}\left(a b b^{\dagger}\right)^{\dagger}=(a b)^{\dagger}$;
(4) $b\{1,4\} \cdot\left(a b b^{\dagger}\right)\{1,4\} \subseteq(a b)\{1,4\}$.

In the following result, we consider some equivalent conditions for mixed-type reverse order law $(a b)^{\dagger}=b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}$ to hold.

Theorem 2.3. If $a, b, a^{\dagger} a b b^{\dagger} \in \mathcal{R}^{\dagger}$, then the following statements are equivalent:
(1) $a^{*} a b \mathcal{R} \subseteq a^{\dagger} a b \mathcal{R}$ and $b b^{*} a^{*} \mathcal{R} \subseteq b b^{\dagger} a^{*} \mathcal{R}$;
(2) $b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger} \in(a b)\{1,3,4\}$;
(3) $b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}=(a b)^{\dagger}$;
(4) $b\{1,3\} \cdot\left(a^{\dagger} a b b^{\dagger}\right)\{1,3\} \cdot a\{1,3\} \subseteq(a b)\{1,3\}$ and $b\{1,4\} \cdot\left(a^{\dagger} a b b^{\dagger}\right)\{1,4\}$. $a\{1,4\} \subseteq(a b)\{1,4\}$.
Proof. $(2) \Longrightarrow(1)$: The condition $b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger} \in(a b)\{3\}$ gives

$$
\begin{aligned}
a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger} & =\left(a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}\right)^{*}=\left(a a^{\dagger} a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}\right)^{*} \\
& =\left(a^{\dagger}\right)^{*} a^{\dagger} a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{*}
\end{aligned}
$$

Using this equality and the hypothesis $b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger} \in(a b)\{1\}$, we have

$$
\begin{aligned}
a^{*} a b & =a^{*}\left(a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}\right) a b=a^{*}\left(a^{\dagger}\right)^{*} a^{\dagger} a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{*} a b \\
& =a^{\dagger} a a^{\dagger} a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{*} a b=a^{\dagger} a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{*} a b,
\end{aligned}
$$

which yields $a^{*} a b \mathcal{R} \subseteq a^{\dagger} a b \mathcal{R}$.
Similarly, we can prove that $b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger} \in(a b)\{1,4\}$ implies $b b^{*} a^{*} \mathcal{R} \subseteq$ $b b^{\dagger} a^{*} \mathcal{R}$.
(1) $\Longrightarrow(4):$ From $a^{*} a b \mathcal{R} \subseteq a^{\dagger} a b \mathcal{R}$, by $b \mathcal{R}=b b^{\dagger} \mathcal{R}$, we get $a^{*} a b b^{\dagger} \mathcal{R} \subseteq$ $a^{\dagger} a b b^{\dagger} \mathcal{R}$. Thus, $a^{*} a b b^{\dagger}=a^{\dagger} a b b^{\dagger} x$, for some $x \in \mathcal{R}$. Then, for any $\left(a^{\dagger} a b b^{\dagger}\right)^{(1,3)} \in$ $\left(a^{\dagger} a b b^{\dagger}\right)\{1,3\}, a^{(1,3)} \in a\{1,3\}$ and $b^{(1,3)} \in b\{1,3\}$, we obtain

$$
\begin{equation*}
a^{*} a b b^{\dagger}=a^{\dagger} a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{(1,3)}\left(a^{\dagger} a b b^{\dagger} x\right)=a^{\dagger} a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{(1,3)} a^{*} a b b^{\dagger} \tag{4}
\end{equation*}
$$

If we apply the involution to (4), we see that

$$
\begin{equation*}
b b^{\dagger} a^{*} a=b b^{\dagger} a^{*} a a^{\dagger} a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{(1,3)}=b b^{\dagger} a^{*} a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{(1,3)} . \tag{5}
\end{equation*}
$$

Multiplying the equality (5) from the left side by b^{*} and from the right side by $a^{(1,3)}$, it follows

$$
b^{*} a^{*}=b^{*} a^{*} a b b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{(1,3)} a^{(1,3)}
$$

Notice that this equality and

$$
\begin{equation*}
b b^{(1,3)}=\left(b b^{(1,3)}\right)^{*}=\left(b b^{\dagger} b b^{(1,3)}\right)^{*}=b b^{(1,3)} b b^{\dagger}=b b^{\dagger} \tag{6}
\end{equation*}
$$

imply

$$
\begin{equation*}
b^{*} a^{*}=b^{*} a^{*} a b b^{(1,3)}\left(a^{\dagger} a b b^{\dagger}\right)^{(1,3)} a^{(1,3)} \tag{7}
\end{equation*}
$$

By (7) and Lemma 1.1, we observe that $b^{(1,3)}\left(a^{\dagger} a b b^{\dagger}\right)^{(1,3)} a^{(1,3)} \in(a b)\{1,3\}$, for any $\left(a^{\dagger} a b b^{\dagger}\right)^{(1,3)} \in\left(a^{\dagger} a b b^{\dagger}\right)\{1,3\}, a^{(1,3)} \in a\{1,3\}$ and $b^{(1,3)} \in b\{1,3\}$. Hence, $b\{1,3\} \cdot\left(a^{\dagger} a b b^{\dagger}\right)\{1,3\} \cdot a\{1,3\} \subseteq(a b)\{1,3\}$.

In the similar way, we can show that $b b^{*} a^{*} \mathcal{R} \subseteq b b^{\dagger} a^{*} \mathcal{R}$ gives $b^{*} a^{*}=$ $b^{(1,4)}\left(a^{\dagger} a b b^{\dagger}\right)^{(1,4)} a^{(1,4)} a b b^{*} a^{*}$, for any $\left(a^{\dagger} a b b^{\dagger}\right)^{(1,4)} \in\left(a^{\dagger} a b b^{\dagger}\right)\{1,4\}, a^{(1,4)} \in a\{1,4\}$ and $b^{(1,4)} \in b\{1,4\}$, i.e. $b\{1,4\} \cdot\left(a^{\dagger} a b b^{\dagger}\right)\{1,4\} \cdot a\{1,4\} \subseteq(a b)\{1,4\}$.
$(4) \Longrightarrow(2) \Longleftrightarrow(3)$: Obviously.

3. Reverse order laws $\left(a^{*} a b\right)^{\dagger} a^{*}=(a b)^{\dagger}, b^{*}\left(a b b^{*}\right)^{\dagger}=(a b)^{\dagger}$ and $b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*}=(a b)^{\dagger}$

In this section, we give the equivalent conditions related to reverse order laws $\left(a^{*} a b\right)^{\dagger} a^{*}=(a b)^{\dagger}, b^{*}\left(a b b^{*}\right)^{\dagger}=(a b)^{\dagger}$ and $b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*}=(a b)^{\dagger}$ in settings of rings with involution.

Theorem 3.1. If $a, b, a^{*} a b \in \mathcal{R}^{\dagger}$, then the following statements are equivalent:
(1) $a^{\dagger} a b \mathcal{R} \subseteq a^{*} a b \mathcal{R}$;
(2) $\left(a^{*} a b\right)^{\dagger} a^{*} \in(a b)\{1,3\}$;
(3) $\left(a^{*} a b\right)^{\dagger} a^{*}=(a b)^{\dagger}$;
(4) $\left(a^{*} a b\right)\{1,3\} \cdot\left(a^{\dagger}\right)^{*}\{1,3\} \subseteq(a b)\{1,3\}$.

Proof. $(2) \Longrightarrow(1)$: Using the assumption $\left(a^{*} a b\right)^{\dagger} a^{*} \in(a b)\{1,3\}$, we have

$$
\begin{aligned}
a b\left(a^{*} a b\right)^{\dagger} a^{*} & =\left(a b\left(a^{*} a b\right)^{\dagger} a^{*}\right)^{*}=\left(a a^{\dagger} a b\left(a^{*} a b\right)^{\dagger} a^{*}\right)^{*} \\
& =\left(\left(a^{\dagger}\right)^{*} a^{*} a b\left(a^{*} a b\right)^{\dagger} a^{*}\right)^{*}=a a^{*} a b\left(a^{*} a b\right)^{\dagger} a^{\dagger}
\end{aligned}
$$

and

$$
a^{\dagger} a b=a^{\dagger}\left(a b\left(a^{*} a b\right)^{\dagger} a^{*}\right) a b=a^{\dagger} a a^{*} a b\left(a^{*} a b\right)^{\dagger} a^{\dagger} a b=a^{*} a b\left(a^{*} a b\right)^{\dagger} a^{\dagger} a b
$$

Thus, the condition (1) is satisfied.
$(1) \Longrightarrow(4)$: First, by the inclusion $a^{\dagger} a b \mathcal{R} \subseteq a^{*} a b \mathcal{R}$, we conclude that $a^{\dagger} a b=$ $a^{*} a b y$, for some $y \in \mathcal{R}$. Further, for any $\left(a^{*} a b\right)^{(1,3)} \in\left(a^{*} a b\right)\{1,3\}$ and $a^{\prime} \in$ $\left(a^{\dagger}\right)^{*}\{1,3\}$, we get

$$
\begin{equation*}
a^{\dagger} a b=a^{*} a b y=a^{*} a b\left(a^{*} a b\right)^{(1,3)}\left(a^{*} a b y\right)=a^{*} a b\left(a^{*} a b\right)^{(1,3)} a^{\dagger} a b . \tag{8}
\end{equation*}
$$

When we apply the involution to (8), we observe that

$$
\begin{equation*}
b^{*} a^{\dagger} a=b^{*} a^{\dagger} a a^{*} a b\left(a^{*} a b\right)^{(1,3)}=b^{*} a^{*} a b\left(a^{*} a b\right)^{(1,3)} . \tag{9}
\end{equation*}
$$

Since $a^{\prime} \in\left(a^{\dagger}\right)^{*}\{1,3\}$, by the equality (6) and Theorem 1.1,

$$
\begin{equation*}
a^{\dagger} a a^{\prime}=a^{*}\left[\left(a^{\dagger}\right)^{*} a^{\prime}\right]=a^{*}\left(a^{\dagger}\right)^{*}\left[\left(a^{\dagger}\right)^{*}\right]^{\dagger}=a^{\dagger} a a^{*}=a^{*} . \tag{10}
\end{equation*}
$$

If we multiply the equality (9) from the right side by a^{\prime} and use (10), we obtain

$$
b^{*} a^{*}=b^{*} a^{*} a b\left(a^{*} a b\right)^{(1,3)} a^{\prime},
$$

which implies, by Lemma 1.1, $\left(a^{*} a b\right)^{(1,3)} a^{\prime} \in(a b)\{1,3\}$, for any $\left(a^{*} a b\right)^{(1,3)} \in$ $\left(a^{*} a b\right)\{1,3\}$ and $a^{\prime} \in\left(a^{\dagger}\right)^{*}\{1,3\}$, that is, the condition (4) holds.
$(4) \Longrightarrow(2)$: By Theorem 1.1, $a^{*}=\left[\left(\left(a^{\dagger}\right)^{\dagger}\right]^{*}=\left[\left(\left(a^{\dagger}\right)^{*}\right]^{\dagger} \in\left(a^{\dagger}\right)^{*}\{1,3\}\right.\right.$ and this implication follows.
$(2) \Longleftrightarrow(3)$: Obviously.
In the same manner as in the proof of Theorem 3.1, we can verify the following results.

Theorem 3.2. If $a, b, a b b^{*} \in \mathcal{R}^{\dagger}$, then the following statements are equivalent:
(1) $b b^{\dagger} a^{*} \mathcal{R} \subseteq b b^{*} a^{*} \mathcal{R}$;
(2) $b^{*}\left(a b b^{*}\right)^{\dagger} \in(a b)\{1,4\}$;
(3) $b^{*}\left(a b b^{*}\right)^{\dagger}=(a b)^{\dagger}$;
(4) $\left(b^{\dagger}\right)^{*}\{1,4\} \cdot\left(a b b^{*}\right)\{1,4\} \subseteq(a b)\{1,4\}$.

Necessary and sufficient conditions related to the reverse order law $(a b)^{\dagger}=$ $b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*}$ are studied in the next result.

Theorem 3.3. If $a, b, a^{*} a b b^{*} \in \mathcal{R}^{\dagger}$, then the following statements are equivalent:
(1) $a^{\dagger} a b \mathcal{R} \subseteq a^{*} a b \mathcal{R}$ and $b b^{\dagger} a^{*} \mathcal{R} \subseteq b b^{*} a^{*} \mathcal{R}$;
(2) $b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*} \in(a b)\{1,3,4\}$;
(3) $b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*}=(a b)^{\dagger}$;
(4) $\left(b^{\dagger}\right)^{*}\{1,3\} \cdot\left(a^{*} a b b^{*}\right)\{1,3\} \cdot\left(a^{\dagger}\right)^{*}\{1,3\} \subseteq(a b)\{1,3\}$ and $\left(b^{\dagger}\right)^{*}\{1,4\} \cdot\left(a^{*} a b b^{*}\right)\{1,4\} \cdot\left(a^{\dagger}\right)^{*}\{1,4\} \subseteq(a b)\{1,4\}$.

Proof. $(2) \Longrightarrow(1)$: From $b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*} \in(a b)\{3\}$,

$$
\begin{aligned}
a b b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*} & =\left(a b b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*}\right)^{*}=\left(\left(a^{\dagger}\right)^{*} a^{*} a b b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*}\right)^{*} \\
& =a a^{*} a b b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{\dagger} .
\end{aligned}
$$

Now, by $b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*} \in(a b)\{1\}$,

$$
\begin{aligned}
a^{\dagger} a b & =a^{\dagger}\left(a b b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*}\right) a b=a^{\dagger} a a^{*} a b b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{\dagger} a b \\
& =a^{*} a b b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{\dagger} a b
\end{aligned}
$$

implying $a^{\dagger} a b \mathcal{R} \subseteq a^{*} a b \mathcal{R}$.
Analogously, we can prove the implication $b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*} \in(a b)\{1,4\} \Longrightarrow$ $b b^{\dagger} a^{*} \mathcal{R} \subseteq b b^{*} a^{*} \mathcal{R}$.
(1) \Longrightarrow (4): If $a^{\dagger} a b \mathcal{R} \subseteq a^{*} a b \mathcal{R}$, by $b \mathcal{R}=b b^{*} \mathcal{R}$, we see $a^{\dagger} a b b^{*} \mathcal{R} \subseteq a^{*} a b b^{*} \mathcal{R}$ and $a^{\dagger} a b b^{*}=a^{*} a b b^{*} y$, for some $y \in \mathcal{R}$. For any $\left(a^{*} a b\right)^{(1,3)} \in\left(a^{*} a b\right)\{1,3\}$, $a^{\prime} \in\left(a^{\dagger}\right)^{*}\{1,3\}$ and $b^{\prime} \in\left(b^{\dagger}\right)^{*}\{1,3\}$, then

$$
\begin{equation*}
a^{\dagger} a b b^{*}=a^{*} a b b^{*}\left(a^{*} a b b^{*}\right)^{(1,3)}\left(a^{*} a b b^{*} y\right)=a^{*} a b b^{*}\left(a^{*} a b b^{*}\right)^{(1,3)} a^{\dagger} a b b^{*} . \tag{11}
\end{equation*}
$$

Applying the involution to (11), it follows

$$
\begin{equation*}
b b^{*} a^{\dagger} a=b b^{*} a^{\dagger} a a^{*} a b b^{*}\left(a^{*} a b b^{*}\right)^{(1,3)}=b b^{*} a^{*} a b b^{*}\left(a^{*} a b b^{*}\right)^{(1,3)} . \tag{12}
\end{equation*}
$$

From the condition $b^{\prime} \in\left(b^{\dagger}\right)^{*}\{1,3\}$ and the equality (10), we obtain

$$
b b^{\prime}=b\left(b^{\dagger} b b^{\prime}\right)=b b^{*} .
$$

Now, multiplying (12) from the left side by b^{\dagger} and from the right side by a^{\prime}, we get, by (10) and the last equality,

$$
b^{*} a^{*}=b^{*} a^{*} a b b^{\prime}\left(a^{*} a b b^{*}\right)^{(1,3)} a^{\prime} .
$$

Thus, by Lemma 1.1, $b^{\prime}\left(a^{*} a b b^{*}\right)^{(1,3)} a^{\prime} \in(a b)\{1,3\}$, for any $\left(a^{*} a b\right)^{(1,3)} \in\left(a^{*} a b\right)\{1,3\}$, $a^{\prime} \in\left(a^{\dagger}\right)^{*}\{1,3\}$ and $b^{\prime} \in\left(b^{\dagger}\right)^{*}\{1,3\}$, which is equivalent to $\left(b^{\dagger}\right)^{*}\{1,3\} \cdot\left(a^{*} a b b^{*}\right)\{1,3\}$. $\left(a^{\dagger}\right)^{*}\{1,3\} \subseteq(a b)\{1,3\}$.

Similarly, we show that $b b^{\dagger} a^{*} \mathcal{R} \subseteq b b^{*} a^{*} \mathcal{R}$ gives $\left(b^{\dagger}\right)^{*}\{1,4\} \cdot\left(a^{*} a b b^{*}\right)\{1,4\}$. $\left(a^{\dagger}\right)^{*}\{1,4\} \subseteq(a b)\{1,4\}$.
$(4) \Longrightarrow(2) \Longleftrightarrow(3)$: These parts can be check easy.
If we state in the proved results the elements $a^{*},\left(a^{\dagger}\right)^{*}, a^{\dagger}, b^{*},\left(b^{\dagger}\right)^{*}$ or b^{\dagger} instead a or b, we obtain various mixed-type reverse order laws for the MoorePenrose inverses in rings with involution.

By the results presenting in Section 2 and Section 3, we can get the following consequence.

Corollary 3.1. If $a, b, a b, a^{\dagger} a b, a b b^{\dagger}, a^{\dagger} a b b^{\dagger}, a^{*} a b, a b b^{*}, a^{*} a b b^{*} \in \mathcal{R}^{\dagger}$. Then the following statements are equivalent:
(1) $(a b)^{\dagger}=b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger}$;
(2) $(a b)^{\dagger}=\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger}=b^{\dagger}\left(a b b^{\dagger}\right)^{\dagger}$;
(3) $(a b)^{\dagger}=b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*}$;
(4) $(a b)^{\dagger}=\left(a^{*} a b\right)^{\dagger} a^{*}=b^{*}\left(a b b^{*}\right)^{\dagger}$;
(5) $a^{*} a b \mathcal{R} \subseteq a^{\dagger} a b \mathcal{R}$ and $b b^{*} a^{*} \mathcal{R} \subseteq b b^{\dagger} a^{*} \mathcal{R}$;
(6) $b^{\dagger}\left(a^{\dagger} a b b^{\dagger}\right)^{\dagger} a^{\dagger} \in(a b)\{1,3,4\}$;
(7) $b\{1,3\} \cdot\left(a^{\dagger} a b b^{\dagger}\right)\{1,3\} \cdot a\{1,3\} \subseteq(a b)\{1,3\}$ and $b\{1,4\} \cdot\left(a^{\dagger} a b b^{\dagger}\right)\{1,4\} \cdot$ $a\{1,4\} \subseteq(a b)\{1,4\} ;$
(8) $\left(a^{\dagger} a b\right)^{\dagger} a^{\dagger} \in(a b)\{1,3\}$ and $b^{\dagger}\left(a b b^{\dagger}\right)^{\dagger} \in(a b)\{1,4\}$;
(9) $\left(a^{\dagger} a b\right)\{1,3\} \cdot a\{1,3\} \subseteq(a b)\{1,3\}$ and $b\{1,4\} \cdot\left(a b b^{\dagger}\right)\{1,4\} \subseteq(a b)\{1,4\}$;
(10) $a^{\dagger} a b \mathcal{R} \subseteq a^{*} a b \mathcal{R}$ and $b b^{\dagger} a^{*} \mathcal{R} \subseteq b b^{*} a^{*} \mathcal{R}$;
(11) $b^{*}\left(a^{*} a b b^{*}\right)^{\dagger} a^{*} \in(a b)\{1,3,4\}$;
(12) $\left(b^{\dagger}\right)^{*}\{1,3\} \cdot\left(a^{*} a b b^{*}\right)\{1,3\} \cdot\left(a^{\dagger}\right)^{*}\{1,3\} \subseteq(a b)\{1,3\}$ and
$\left(b^{\dagger}\right)^{*}\{1,4\} \cdot\left(a^{*} a b b^{*}\right)\{1,4\} \cdot\left(a^{\dagger}\right)^{*}\{1,4\} \subseteq(a b)\{1,4\} ;$
(13) $\left(a^{*} a b\right)^{\dagger} a^{*} \in(a b)\{1,3\}$ and $b^{*}\left(a b b^{*}\right)^{\dagger} \in(a b)\{1,4\}$;
(14) $\left(a^{*} a b\right)\{1,3\} \cdot\left(a^{\dagger}\right)^{*}\{1,3\} \subseteq(a b)\{1,3\}$ and $\left(b^{\dagger}\right)^{*}\{1,4\} \cdot\left(a b b^{*}\right)\{1,4\} \subseteq(a b)\{1,4\}$.

Proof. The equivalences of conditions (1)-(4) follow as in [12, Theorem 2.6] for elements of C^{*}-algebras. The rest follows from these equivalences and theorems in Section 2 and Section 3.

References

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd ed., Springer, New York, 2003.
[2] R. H. Bouldin, The pseudo-inverse of a product, SIAM J. Appl. Math. 25 (1973), 489-495.
[3] D. S. Djordjević, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl. 29 (4) (2007), 1242-1246.
[4] N.Č. Dinčıć, D. S. Djordjević and D. Mosić, Mixed-type reverse order law and its equivalencies, Studia Math. 204 (2011), 123-136.
[5] D. S. Djordjević and N.Č. Dinčić, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (1) (2010), 252-261.
[6] D. S. Djordjević and V. Rakočević, Lectures on generalized inverses, Faculty of Sciences and Mathematics, University of Niš, 2008.
[7] A. M. Galperin and Z. Waksman, On pseudo-inverses of operator products, Linear Algebra Appl. 33 (1980), 123-131.
[8] T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev. 8 (1966), 518-521.
[9] S. Izumino, The product of operators with closed range and an extension of the reverse order law, Tohoku Math. J. 34 (1982), 43-52.
[10] J. J. Koliha, D. S. Djordjević and D. Cvetković, Moore-Penrose inverse in rings with involution, Linear Algebra Appl. 426 (2007), 371-381.
[11] D. Mosić and D.S. Djordjević, Moore-Penrose-invertible normal and Hermitian elements in rings, Linear Algebra Appl. 431 (5-7) (2009), 732-745.
[12] D. Mosić and D. S. Djordjević, Reverse order law for the Moore-Penrose inverse in C^{*}-algebras, Electron. J. Linear Algebra 22 (2011), 92-111.
[13] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
[14] Y. Tian, The reverse-order law $(A B)^{\dagger}=B^{\dagger}\left(A^{\dagger} A B B^{\dagger}\right)^{\dagger} A^{\dagger}$ and its equivalent equalities, J. Math. Kyoto. Univ. 45 (4) (2005), 841-850.
[15] Y. Tian, On mixed-type reverse-order laws for Moore-Penrose inverse of a matrix product, Int. J. Math. Math. Sci. 58 (2004), 3103-3116.
[16] Y. Tian, Using rank formulas to characterize equalities for Moore-Penrose inverses of matrix product, Appl. Math. Comput. 147 (2004), 581-600.
[17] Y. Tian, The equivalence between $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ and other mixed-type reverse-order laws, Internat. J. Math. Edu. Sci. Technol. 37(3) (2006), 331-339.
[18] Z. Xiong and Y. Qin, Mixed-type reverse-order laws for the generalized inverses of an operator product, Arab. J. Sci. Eng. 36 (2011), 475-486.

DIJANA MOSIĆ
UNIVERSITY OF NIŠ
faculty of sciences
AND MATHEMATICS
P.O. BOX 224, 18000 NIŠ

SERBIA
E-mail: dijana@pmf.ni.ac.rs
DRAGAN S. DJORDJEVIĆ
UNIVERSITY OF NIŠ
FACULTY OF SCIENCES
AND MATHEMATICS
P.O. BOX 224, 18000 NIŠ

SERBIA
E-mail: dragan@pmf.ni.ac.rs

