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Mixed-type reverse order laws for generalized inverses
in rings with involution

By DIJANA MOSIĆ (Nǐs) and DRAGAN S. DJORDJEVIĆ (Nǐs)

Abstract. We investigate mixed-type reverse order laws for the Moore–Penrose

inverse in rings with involution. We extend some well-known results to more general

settings, and also prove some new results.

1. Introduction

Many authors have studied the equivalent conditions for the reverse order

law (ab)† = b†a† to hold in setting of matrices, operators, C∗-algebras or rings

[2], [9], [3], [5], [8], [10], [12], [16], [17]. This formula cannot trivially be extended

to the other generalized inverses of the product ab. Since the reverse order law

(ab)† = b†a† does not always holds, it is not easy to simplify various expressions

that involve the Moore–Penrose inverse of a product. In addition to (ab)† = b†a†,
(ab)† may be expressed as (ab)† = b†(a†abb†)†a†, (ab)† = b∗(a∗abb∗)†a∗, (ab)† =

b†a†−b†[(1−bb†)(1−a†a)]†a†, etc. These equalities are called mixed-type reverse

order laws for the Moore–Penrose inverse of a product and some of them are in

fact equivalent (see [4], [12], [14]). In this paper we study necessary and sufficient

conditions for mixed-type reverse order laws of the form: (ab)† = (a†ab)†a†,
(ab)† = b†(abb†)†, (ab)† = b†(a†abb†)†a†, (ab)† = (a∗ab)†a∗, (ab)† = b∗(abb∗)† and
(ab)† = b∗(a∗abb∗)†a∗ in rings with involution.

Let R be an associative ring with the unit 1. An involution a 7→ a∗ in a ring
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R is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R is selfadjoint if a∗ = a.

The Moore–Penrose inverse (or MP-inverse) of a ∈ R is the element b ∈ R,

such that the following equations hold [13]:

(1) aba = a, (2) bab = b, (3) (ab)∗ = ab, (4) (ba)∗ = ba.

There is at most one b such that above conditions hold (see [13]), and such b is

denoted by a†. The set of all Moore–Penrose invertible elements of R will be

denoted by R†. If a is invertible, then a† coincides with the ordinary inverse of a.

If δ ⊂ {1, 2, 3, 4} and b satisfies the equations (i) for all i ∈ δ, then b is

an δ-inverse of a. The set of all δ-inverse of a is denote by a{δ}. Notice that

a{1, 2, 3, 4} = {a†}. If a{1} 6= ∅, then a is regular.

Now, we state the following useful result.

Theorem 1.1 ([6], [11]). For any a ∈ R†, the following is satisfied:

(a) (a†)† = a;

(b) (a∗)† = (a†)∗;

(c) (a∗a)† = a†(a†)∗;

(d) (aa∗)† = (a†)∗a†;

(e) a∗ = a†aa∗ = a∗aa†;

(f) a† = (a∗a)†a∗ = a∗(aa∗)†;

(g) (a∗)† = a(a∗a)† = (aa∗)†a.

The following result is well-known for complex matrices [1] and linear boun-

ded Hilbert space operators [18], and it is equally true in rings with involution.

Lemma 1.1. If a, b ∈ R such that a is regular, then

(a) b ∈ a{1, 3} ⇐⇒ a∗ab = a∗;

(b) b ∈ a{1, 4} ⇐⇒ baa∗ = a∗.

Proof. (a) Let b ∈ a{1, 3}, then we get a∗ab = a∗(ab)∗ = (aba)∗ = a∗.
Conversely, the equality a∗ab = a∗ implies

(ab)∗ = b∗a∗ = b∗a∗ab = (ab)∗abis selfadjoint

and

aba = (ab)∗a = (a∗ab)∗ = (a∗)∗ = a.

Hence, b ∈ a{1, 3}.
Similarly, we can verify the second statement. ¤
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The reverse-order law (ab)† = b†(a†abb†)†a† was first studied by Galperin

and Waksman [7]. A Hilbert space version of their result was given by Isu-

mino [9]. Many results concerning the reverse order law (ab)† = b†(a†abb†)†a† for

complex matrices appeared in Tian’s papers [14] and [15], where the author used

mostly properties of the rank of a complex matrices. In [12], a set of equivalent

conditions for this reverse order rule for the Moore–Penrose inverse in the setting

of C∗-algebra is studied.

Xiong and Qin [18] investigated the following mixed-type reverse order laws

for the Moore–Penrose inverse of a product of Hilbert space operators: (ab)† =

(a†ab)†a†, (ab)† = b†(abb†)†, (ab)† = b†(a†abb†)†a†. They used the technique of

block operator matrices. We extend results from [18] to more general settings.

This paper is organized as follows. In Section 2, we extend the results

from [18] to settings of rings with involution without the hypothesis corres-

ponding to R(A∗AB) ⊆ R(B). In Section 3, we consider the following mixed-

type reverse order laws for the Moore–Penrose inverse in rings with involution:

(ab)† = (a∗ab)†a∗, (ab)† = b∗(abb∗)† and (ab)† = b∗(a∗abb∗)†a∗. In this paper we

apply a purely algebraic technique.

2. Reverse order laws (a†ab)†a† = (ab)†, b†(abb†)† = (ab)†

and b†(a†abb†)†a† = (ab)†

In this section, we consider necessary and sufficient conditions for reverse

order laws (a†ab)†a† = (ab)†, b†(abb†)† = (ab)† and b†(a†abb†)†a† = (ab)† to be

satisfied in rings with involution. The results in [18] for linear bounded Hilbert

space operators are generalized, since we do not use any e hypothesis correspond-

ing to the condition R(A∗AB) ⊆ R(B) from [18].

Theorem 2.1. If a, b, a†ab ∈ R†, then the following statements are equiva-

lent:

(1) a∗abR ⊆ a†abR;

(2) (a†ab)†a† ∈ (ab){1, 3};
(3) (a†ab)†a† = (ab)†;

(4) (a†ab){1, 3} · a{1, 3} ⊆ (ab){1, 3}.
Proof. (2) =⇒ (1): Since (a†ab)†a† ∈ (ab){1, 3}, then ab = ab(a†ab)†a†ab

and

ab(a†ab)†a† = (ab(a†ab)†a†)∗ = (aa†ab(a†ab)†a†)∗ = (a†)∗a†ab(a†ab)†a∗,
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which gives
a∗ab = a∗(ab(a†ab)†a†)ab = a∗(a†)∗a†ab(a†ab)†a∗ab

= a†aa†ab(a†ab)†a∗ab = a†ab(a†ab)†a∗ab.

Therefore, a∗abR = a†ab(a†ab)†a∗abR ⊆ a†abR.

(1) =⇒ (4): The assumption a∗abR ⊆ a†abR implies that a∗ab = a†abx, for
some x ∈ R. Now, for any (a†ab)(1,3) ∈ (a†ab){1, 3} and a(1,3) ∈ a{1, 3},

a∗ab = a†abx = a†ab(a†ab)(1,3)(a†abx) = a†ab(a†ab)(1,3)a∗ab. (1)

Applying the involution to (1), we obtain

b∗a∗a = b∗a∗aa†ab(a†ab)(1,3) = b∗a∗ab(a†ab)(1,3). (2)

Multiplying the equality (2) by a(1,3) from the right side, we get

b∗a∗ = b∗a∗ab(a†ab)(1,3)a(1,3), (3)

by a∗aa(1,3) = a∗(aa(1,3))∗ = (aa(1,3)a)∗ = a∗. From the equality (3) and

Lemma 1.1, we deduce that (a†ab)(1,3)a(1,3) ∈ (ab){1, 3}, for any (a†ab)(1,3) ∈
(a†ab){1, 3} and a(1,3) ∈ a{1, 3}. So, (a†ab){1, 3} · a{1, 3} ⊆ (ab){1, 3}.

(4) =⇒ (2): Obviously, because (a†ab)† ∈ (a†ab){1, 3} and a† ∈ a{1, 3}.
(2) ⇐⇒ (3): It is easy to check this equivalence. ¤

Using Lemma 1.1(b), we can prove the following theorem in the same way

as Theorem 2.1.

Theorem 2.2. If a, b, abb† ∈ R†, then the following statements are equiva-

lent:

(1) bb∗a∗R ⊆ bb†a∗R;

(2) b†(abb†)† ∈ (ab){1, 4};
(3) b†(abb†)† = (ab)†;

(4) b{1, 4} · (abb†){1, 4} ⊆ (ab){1, 4}.
In the following result, we consider some equivalent conditions for mixed-type

reverse order law (ab)† = b†(a†abb†)†a† to hold.

Theorem 2.3. If a, b, a†abb† ∈ R†, then the following statements are equi-

valent:

(1) a∗abR ⊆ a†abR and bb∗a∗R ⊆ bb†a∗R;
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(2) b†(a†abb†)†a† ∈ (ab){1, 3, 4};
(3) b†(a†abb†)†a† = (ab)†;

(4) b{1, 3} · (a†abb†){1, 3} · a{1, 3} ⊆ (ab){1, 3} and b{1, 4} · (a†abb†){1, 4} ·
a{1, 4} ⊆ (ab){1, 4}.
Proof. (2) =⇒ (1): The condition b†(a†abb†)†a† ∈ (ab){3} gives

abb†(a†abb†)†a† = (abb†(a†abb†)†a†)∗ = (aa†abb†(a†abb†)†a†)∗

= (a†)∗a†abb†(a†abb†)†a∗.

Using this equality and the hypothesis b†(a†abb†)†a† ∈ (ab){1}, we have

a∗ab = a∗(abb†(a†abb†)†a†)ab = a∗(a†)∗a†abb†(a†abb†)†a∗ab

= a†aa†abb†(a†abb†)†a∗ab = a†abb†(a†abb†)†a∗ab,

which yields a∗abR ⊆ a†abR.

Similarly, we can prove that b†(a†abb†)†a† ∈ (ab){1, 4} implies bb∗a∗R ⊆
bb†a∗R.

(1) =⇒ (4): From a∗abR ⊆ a†abR, by bR = bb†R, we get a∗abb†R ⊆
a†abb†R. Thus, a∗abb† = a†abb†x, for some x ∈ R. Then, for any (a†abb†)(1,3) ∈
(a†abb†){1, 3}, a(1,3) ∈ a{1, 3} and b(1,3) ∈ b{1, 3}, we obtain

a∗abb† = a†abb†(a†abb†)(1,3)(a†abb†x) = a†abb†(a†abb†)(1,3)a∗abb†. (4)

If we apply the involution to (4), we see that

bb†a∗a = bb†a∗aa†abb†(a†abb†)(1,3) = bb†a∗abb†(a†abb†)(1,3). (5)

Multiplying the equality (5) from the left side by b∗ and from the right side by

a(1,3), it follows

b∗a∗ = b∗a∗abb†(a†abb†)(1,3)a(1,3).

Notice that this equality and

bb(1,3) = (bb(1,3))∗ = (bb†bb(1,3))∗ = bb(1,3)bb† = bb† (6)

imply

b∗a∗ = b∗a∗abb(1,3)(a†abb†)(1,3)a(1,3). (7)

By (7) and Lemma 1.1, we observe that b(1,3)(a†abb†)(1,3)a(1,3) ∈ (ab){1, 3}, for
any (a†abb†)(1,3) ∈ (a†abb†){1, 3}, a(1,3) ∈ a{1, 3} and b(1,3) ∈ b{1, 3}. Hence,

b{1, 3} · (a†abb†){1, 3} · a{1, 3} ⊆ (ab){1, 3}.
In the similar way, we can show that bb∗a∗R ⊆ bb†a∗R gives b∗a∗ =

b(1,4)(a†abb†)(1,4)a(1,4)abb∗a∗, for any (a†abb†)(1,4) ∈ (a†abb†){1, 4}, a(1,4) ∈ a{1, 4}
and b(1,4) ∈ b{1, 4}, i.e. b{1, 4} · (a†abb†){1, 4} · a{1, 4} ⊆ (ab){1, 4}.

(4) =⇒ (2) ⇐⇒ (3): Obviously. ¤
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3. Reverse order laws (a∗ab)†a∗ = (ab)†, b∗(abb∗)† = (ab)†

and b∗(a∗abb∗)†a∗ = (ab)†

In this section, we give the equivalent conditions related to reverse order laws

(a∗ab)†a∗ = (ab)†, b∗(abb∗)† = (ab)† and b∗(a∗abb∗)†a∗ = (ab)† in settings of rings

with involution.

Theorem 3.1. If a, b, a∗ab ∈ R†, then the following statements are equiva-

lent:

(1) a†abR ⊆ a∗abR;

(2) (a∗ab)†a∗ ∈ (ab){1, 3};
(3) (a∗ab)†a∗ = (ab)†;

(4) (a∗ab){1, 3} · (a†)∗{1, 3} ⊆ (ab){1, 3}.
Proof. (2) =⇒ (1): Using the assumption (a∗ab)†a∗ ∈ (ab){1, 3}, we have

ab(a∗ab)†a∗ = (ab(a∗ab)†a∗)∗ = (aa†ab(a∗ab)†a∗)∗

= ((a†)∗a∗ab(a∗ab)†a∗)∗ = aa∗ab(a∗ab)†a†,
and

a†ab = a†(ab(a∗ab)†a∗)ab = a†aa∗ab(a∗ab)†a†ab = a∗ab(a∗ab)†a†ab.

Thus, the condition (1) is satisfied.

(1) =⇒ (4): First, by the inclusion a†abR ⊆ a∗abR, we conclude that a†ab =
a∗aby, for some y ∈ R. Further, for any (a∗ab)(1,3) ∈ (a∗ab){1, 3} and a′ ∈
(a†)∗{1, 3}, we get

a†ab = a∗aby = a∗ab(a∗ab)(1,3)(a∗aby) = a∗ab(a∗ab)(1,3)a†ab. (8)

When we apply the involution to (8), we observe that

b∗a†a = b∗a†aa∗ab(a∗ab)(1,3) = b∗a∗ab(a∗ab)(1,3). (9)

Since a′ ∈ (a†)∗{1, 3}, by the equality (6) and Theorem 1.1,

a†aa′ = a∗[(a†)∗a′] = a∗(a†)∗[(a†)∗]† = a†aa∗ = a∗. (10)

If we multiply the equality (9) from the right side by a′ and use (10), we obtain

b∗a∗ = b∗a∗ab(a∗ab)(1,3)a′,

which implies, by Lemma 1.1, (a∗ab)(1,3)a′ ∈ (ab){1, 3}, for any (a∗ab)(1,3) ∈
(a∗ab){1, 3} and a′ ∈ (a†)∗{1, 3}, that is, the condition (4) holds.



Mixed-type reverse order laws for generalized inverses. . . 647

(4) =⇒ (2): By Theorem 1.1, a∗ = [((a†)†]∗ = [((a†)∗]† ∈ (a†)∗{1, 3} and

this implication follows.

(2) ⇐⇒ (3): Obviously. ¤

In the same manner as in the proof of Theorem 3.1, we can verify the following

results.

Theorem 3.2. If a, b, abb∗ ∈ R†, then the following statements are equiva-

lent:

(1) bb†a∗R ⊆ bb∗a∗R;

(2) b∗(abb∗)† ∈ (ab){1, 4};
(3) b∗(abb∗)† = (ab)†;

(4) (b†)∗{1, 4} · (abb∗){1, 4} ⊆ (ab){1, 4}.
Necessary and sufficient conditions related to the reverse order law (ab)† =

b∗(a∗abb∗)†a∗ are studied in the next result.

Theorem 3.3. If a, b, a∗abb∗ ∈ R†, then the following statements are equi-

valent:

(1) a†abR ⊆ a∗abR and bb†a∗R ⊆ bb∗a∗R;

(2) b∗(a∗abb∗)†a∗ ∈ (ab){1, 3, 4};
(3) b∗(a∗abb∗)†a∗ = (ab)†;

(4) (b†)∗{1, 3} · (a∗abb∗){1, 3} · (a†)∗{1, 3} ⊆ (ab){1, 3} and

(b†)∗{1, 4} · (a∗abb∗){1, 4} · (a†)∗{1, 4} ⊆ (ab){1, 4}.
Proof. (2) =⇒ (1): From b∗(a∗abb∗)†a∗ ∈ (ab){3},

abb∗(a∗abb∗)†a∗ = (abb∗(a∗abb∗)†a∗)∗ = ((a†)∗a∗abb∗(a∗abb∗)†a∗)∗

= aa∗abb∗(a∗abb∗)†a†.

Now, by b∗(a∗abb∗)†a∗ ∈ (ab){1},

a†ab = a†(abb∗(a∗abb∗)†a∗)ab = a†aa∗abb∗(a∗abb∗)†a†ab

= a∗abb∗(a∗abb∗)†a†ab

implying a†abR ⊆ a∗abR.

Analogously, we can prove the implication b∗(a∗abb∗)†a∗ ∈ (ab){1, 4} =⇒
bb†a∗R ⊆ bb∗a∗R.
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(1) =⇒ (4): If a†abR ⊆ a∗abR, by bR = bb∗R, we see a†abb∗R ⊆ a∗abb∗R
and a†abb∗ = a∗abb∗y, for some y ∈ R. For any (a∗ab)(1,3) ∈ (a∗ab){1, 3},
a′ ∈ (a†)∗{1, 3} and b′ ∈ (b†)∗{1, 3}, then

a†abb∗ = a∗abb∗(a∗abb∗)(1,3)(a∗abb∗y) = a∗abb∗(a∗abb∗)(1,3)a†abb∗. (11)

Applying the involution to (11), it follows

bb∗a†a = bb∗a†aa∗abb∗(a∗abb∗)(1,3) = bb∗a∗abb∗(a∗abb∗)(1,3). (12)

From the condition b′ ∈ (b†)∗{1, 3} and the equality (10), we obtain

bb′ = b(b†bb′) = bb∗.

Now, multiplying (12) from the left side by b† and from the right side by a′, we
get, by (10) and the last equality,

b∗a∗ = b∗a∗abb′(a∗abb∗)(1,3)a′.

Thus, by Lemma 1.1, b′(a∗abb∗)(1,3)a′∈(ab){1, 3}, for any (a∗ab)(1,3)∈(a∗ab){1, 3},
a′∈(a†)∗{1, 3} and b′∈(b†)∗{1, 3}, which is equivalent to (b†)∗{1, 3}·(a∗abb∗){1, 3}·
(a†)∗{1, 3} ⊆ (ab){1, 3}.

Similarly, we show that bb†a∗R ⊆ bb∗a∗R gives (b†)∗{1, 4} · (a∗abb∗){1, 4} ·
(a†)∗{1, 4} ⊆ (ab){1, 4}.

(4) =⇒ (2) ⇐⇒ (3): These parts can be check easy. ¤

If we state in the proved results the elements a∗, (a†)∗, a†, b∗, (b†)∗ or b†

instead a or b, we obtain various mixed-type reverse order laws for the Moore–

Penrose inverses in rings with involution.

By the results presenting in Section 2 and Section 3, we can get the following

consequence.

Corollary 3.1. If a, b, ab, a†ab, abb†, a†abb†, a∗ab, abb∗, a∗abb∗ ∈ R†. Then

the following statements are equivalent:

(1) (ab)† = b†(a†abb†)†a†;

(2) (ab)† = (a†ab)†a† = b†(abb†)†;

(3) (ab)† = b∗(a∗abb∗)†a∗;

(4) (ab)† = (a∗ab)†a∗ = b∗(abb∗)†;

(5) a∗abR ⊆ a†abR and bb∗a∗R ⊆ bb†a∗R;

(6) b†(a†abb†)†a† ∈ (ab){1, 3, 4};



Mixed-type reverse order laws for generalized inverses. . . 649

(7) b{1, 3} · (a†abb†){1, 3} · a{1, 3} ⊆ (ab){1, 3} and b{1, 4} · (a†abb†){1, 4} ·
a{1, 4} ⊆ (ab){1, 4};

(8) (a†ab)†a† ∈ (ab){1, 3} and b†(abb†)† ∈ (ab){1, 4};
(9) (a†ab){1, 3} · a{1, 3} ⊆ (ab){1, 3} and b{1, 4} · (abb†){1, 4} ⊆ (ab){1, 4};
(10) a†abR ⊆ a∗abR and bb†a∗R ⊆ bb∗a∗R;

(11) b∗(a∗abb∗)†a∗ ∈ (ab){1, 3, 4};
(12) (b†)∗{1, 3} · (a∗abb∗){1, 3} · (a†)∗{1, 3} ⊆ (ab){1, 3} and

(b†)∗{1, 4} · (a∗abb∗){1, 4} · (a†)∗{1, 4} ⊆ (ab){1, 4};
(13) (a∗ab)†a∗ ∈ (ab){1, 3} and b∗(abb∗)† ∈ (ab){1, 4};
(14) (a∗ab){1, 3}·(a†)∗{1, 3} ⊆ (ab){1, 3} and (b†)∗{1, 4}·(abb∗){1, 4} ⊆ (ab){1, 4}.

Proof. The equivalences of conditions (1)–(4) follow as in [12, Theorem 2.6]

for elements of C∗-algebras. The rest follows from these equivalences and theor-

ems in Section 2 and Section 3. ¤
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[6] D. S. Djordjević and V. Rakočević, Lectures on generalized inverses, Faculty of Sciences
and Mathematics, University of Nǐs, 2008.
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FACULTY OF SCIENCES

AND MATHEMATICS

P.O. BOX 224, 18000 NIŠ
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