Title: Rational points in geometric progressions on certain hyperelliptic curves
Author(s): Andrew Bremner and Maciej Ulas
We pose a simple Diophantine problem which may be expressed in the language of geometry. Let C be a hyperelliptic curve given by the equation $y^{2}=f(x)$, where $f \in Z[x]$ is without multiple roots. We say that points $P_{i}=\left(x_{i}, y_{i}\right) \in C(Q)$ for $i=1,2, \ldots, k$, are in geometric progression if the numbers x_{i} for $i=1,2, \ldots, k$, are in geometric progression.

Let $n \geq 3$ be a given integer. In this paper we show that there exist polynomials $a, b \in \mathbb{Z}[t]$ such that on the curve $y^{2}=a(t) x^{n}+b(t)$ (defined over the field $\left.\mathbb{Q}(t)\right)$ we can find four points in geometric progression. In particular this result generalizes earlier results of Berczes and Ziegler concerning the existence of geometric progressions on Pell type quadrics $y^{2}=a x^{2}+b$. We also investigate for fixed $b \in \mathbb{Z}$, when there can exist rationals $y_{i}, i=1, \ldots, 4$, with $\left\{y_{i}^{2}-b\right\}$ forming a geometric progression, with particular attention to the case $b=1$. Finally, we show that there exist infinitely many parabolas $y^{2}=a x+b$ which contain five points in geometric progression.

Address:

Andrew Bremner
School of Mathematical
and Statistical Sciences
Arizona State University
Tempe AZ 85287-1804
USA
Address:
Maciej Ulas
Jagiellonian University
Faculty of Mathematics
and Computer Science
Institute of Mathematics
Lojasiewicza 6
30-348 Kraków
Poland

