Year: 2013 Vol.: 82 Fasc.: 3-4

Title: Rational points in geometric progressions on certain hyperelliptic curves

Author(s): Andrew Bremner and Maciej Ulas

We pose a simple Diophantine problem which may be expressed in the language of geometry. Let C be a hyperelliptic curve given by the equation $y^2 = f(x)$, where $f \in Z[x]$ is without multiple roots. We say that points $P_i = (x_i, y_i) \in C(Q)$ for i = 1, 2, ..., k, are in geometric progression if the numbers x_i for i = 1, 2, ..., k, are in geometric progression.

Let $n \geq 3$ be a given integer. In this paper we show that there exist polynomials $a, b \in \mathbb{Z}[t]$ such that on the curve $y^2 = a(t)x^n + b(t)$ (defined over the field $\mathbb{Q}(t)$) we can find four points in geometric progression. In particular this result generalizes earlier results of Berczes and Ziegler concerning the existence of geometric progressions on Pell type quadrics $y^2 = ax^2 + b$. We also investigate for fixed $b \in \mathbb{Z}$, when there can exist rationals y_i , $i = 1, \ldots, 4$, with $\{y_i^2 - b\}$ forming a geometric progression, with particular attention to the case b = 1. Finally, we show that there exist infinitely many parabolas $y^2 = ax + b$ which contain five points in geometric progression.

Address:

Andrew Bremner School of Mathematical and Statistical Sciences Arizona State University Tempe AZ 85287-1804 USA

Address:

Maciej Ulas Jagiellonian University Faculty of Mathematics and Computer Science Institute of Mathematics Lojasiewicza 6 30-348 Kraków Poland