Publ. Math. Debrecen 82/3-4 (2013), 697–708 DOI: 10.5486/PMD.2013.5461

On group algebras with unit groups of derived length three in characteristic three

By HARISH CHANDRA (Lucknow) and MEENA SAHAI (Lucknow)

Abstract. Let K be a field of characteristic 3 and let G be a finite 3-group of class 2. Necessary and sufficient conditions are obtained for the group of units U(KG) to be solvable of derived length 3.

1. Introduction

Let KG be the group algebra of a finite group G over a field K of characteristic p. Let U = U(KG) be the group of units of the group algebra KG. First description of the solvability of the unit group U is given in [16, Chapter VI]. This problem has been discussed by many authors as can be seen in [3], [4], [5], [6], [10], [11]. Computation of the derived length of U and its connection with the order and nature of the commutator subgroup G' of G is an interesting problem. SHALEV [17] has found necessary and sufficient conditions for U to be metabelian when $p \geq 3$. This work was completed by COLEMAN and SANDLING [7] and independently by KURDICS [9] for p = 2. For $p \neq 2$, a complete description of group algebras KG with centrally metabelian unit groups is given in [13]. The group algebras with $\gamma_3(\delta^1(U)) = 1$ have been listed in [15]. BAGINSKI [2] and BALOGH and LI [1] have computed the derived length of U for finite p-groups and arbitrary groups with cyclic commutator subgroup of order p^n (p > 2), respectively. Recently we have obtained the necessary and sufficient conditions for U to have derived length 3 when $p \neq 2,3$, see [8]. As in [8], for p = 3, if U''' = 1, then

Mathematics Subject Classification: Primary: 16S34, 16U60.

Key words and phrases: group rings, unit groups.

The first author is very thankful to UGC for providing financial support in the form of SRF.

 $G = P \rtimes H$ where P is a normal Sylow 3-subgroup of G and H is an abelian 3'-subgroup of G. So in this paper, we continue our work on this problem when p = 3 and G is a finite 3-group. In addition, we assume that $\gamma_3(G) = 1$. We will use $(x, y) = x^{-1}y^{-1}xy$ for the group commutator of elements x and y of a group G and if o(x) = n then $\hat{x} = 1 + x + x^2 + \cdots + x^{n-1}$. The Lie commutators are denoted by [x, y] = xy - yx, $x, y \in KG$.

Our main result is as follows:

Theorem 1.1. Let K be a field such that Char K = 3 and let G be a finite 3-group of class 2. Then the following conditions are equivalent:

- (i) U''' = 1;
- (ii) G' is elementary abelian 3-subgroup such that $|G'| \leq 3^3$.

2. Proof of the Theorem

Throughout this section, K is a field of characteristic 3.

Lemma 2.1. Let G be a finite 3-group of class 2 such that U''' = 1. Then G' has exponent 3.

PROOF. Let $x, y \in G$, z = (x, y), $o(z) = 3^n$, where $n \ge 2$. If u = 1 + x - y, then $y = -(x, y) = 1 + x^{-1} \pi (z - 1)$

$$u_1 = (u, y) = 1 + u^{-1}x(z-1),$$

 $u_2 = (u, x) = 1 + u^{-1}y(z-1)z^{-1}$
and $u_3 = (u, y^{-1}) = 1 - u^{-1}x(z-1)z^{-1}.$

Clearly $(u_1, u_3) = 1$. Now

$$v = (u_1, u_2) = 1 + u_1^{-1} u_2^{-1} u^{-2} y x u^{-1} (z-1)^3 z^{-1}$$

and $w = (u_3, u_2) = 1 - u_3^{-1} u_2^{-1} u^{-2} y x u^{-1} (z-1)^3 z^{-2}.$

Since U''' = 1, so $[v, w] = [u_1^{-1}\beta, u_3^{-1}\beta](z-1)^6 z^{-3} = 0$ where $\beta = u_2^{-1} u^{-2} y x u^{-1}$. The annihilator A of $(z-1)^6$ in KG is a two sided ideal. The above equation implies that $\overline{\beta}^{-1} \overline{u_1}$ and $\overline{\beta}^{-1} \overline{u_3}$ commute in KG/A where \overline{w} is the image of $w \in KG$ in KG/A. Hence

$$[\beta^{-1}u_1, \beta^{-1}u_3](z-1)^6 = 0.$$

On simplifying we get

$$\{ 2uu_2 - x^{-1}yu^{-1}xy^{-1}u^2u_2 - ux^{-1}u^{-1}y^{-1}xu^{-1}xu^2u_2z^{-1} + ux^{-1}u^{-1}y^{-1}xu^2u_2z^{-1} + ux^{-1}y^{-1}u^{-1}yxuu_2 - (z-1)z^{-1} \} (z-1)^8 = 0.$$

As $u_2 \in 1 + (z-1)KG$, hence on multiplying this equation by $(z-1)^{3^n-9}$, we get $(z-1)^{3^n-1} = 0$, which is a contradiction. Hence n = 1 and exponent of G' is 3.

To prove the theorem we only need to show that $|G'| \leq 3^3$. Suppose that $G' \neq C_3$. Then, there exist $x, y, z \in G$ such that $(x, y) \neq 1$ and $(x, z) \notin \langle (x, y) \rangle$. If for all such triplets $x, y, z \in G$, $(y, z), (x, g) \in \langle (x, y), (x, z) \rangle$ for all $g \in G$, then $G' = C_3 \times C_3$, [14, Theorem 14, Step III]. So if $G' \neq C_3 \times C_3$, then there exists a triplet $x, y, z \in G$ such that either $(y, z) \notin \langle (x, y), (x, z) \rangle$ or $(x, g) \notin \langle (x, y), (x, z) \rangle$ for some $g \in G$. We first prove some preliminary results based on these two cases.

Lemma 2.2. Let G be a finite 3-group of class 2 such that U''' = 1. Let $u, v, x, y, z \in G$ such that $a = (x, y) \neq 1$, $b = (x, z) \notin \langle a \rangle$ and $c = (y, z) \notin \langle a, b \rangle$. If $(u, x), (u, y), (u, z) \in \langle a, b, c \rangle$ and $(u, v) \notin \langle a, b, c \rangle$, then (u, x) = (u, y) = (u, z) = 1.

PROOF. If $t \in G'$, then 1 + g(t-1) is a unit for all $g \in G$. Let $\alpha = (u, v) - 1$ and $(u, x) = a^l b^m c^n$. Now

$$r_1 = (1 + x\alpha, y) = 1 + x\alpha(a - 1) - x^2(a - 1)\alpha^2$$

d $r_2 = (1 + u^{-1}, v^{-1}) = 1 + (1 + u)^{-1}\alpha.$

Then $u_1 = (r_1, r_2) = 1 + r_1^{-1} r_2^{-1} [r_1 - 1, r_2 - 1] = 1 + [x, (1+u)^{-1}](a-1)\alpha^2$ = $1 - (1+u)^{-1} ux(1+u)^{-1}(a-1)((x,u)-1)\alpha^2 \in U''.$

Also if

an

$$r_3 = (1 + y^{-1}, x^{-1}) = 1 + (1 + y)^{-1}(a^{-1} - 1)$$

and $r_4 = (1 + z^{-1}, y^{-1}) = 1 + (1 + z)^{-1}(c^{-1} - 1).$

Then $u_2 = (r_3, r_4) = 1 - r_3^{-1}(1+y)^{-2}(1+z)^{-2}zy(a^{-1}-1)\widehat{c} \in U''.$

As $[u_1, u_2] = 0$, so we have

$$[(1+u)^{-1}ux(1+u)^{-1},(1+y)^{-2}(1+z)^{-2}zy]\widehat{a}\widehat{c}((x,u)-1)\alpha^{2} = 0.$$

If $M = \langle a, b, c \rangle$, then $\Delta^7(M) = 0$. Since (u, x), (u, y), $(u, z) \in M$, hence we have

$$[(1+u)^{-2}ux, (1+y)^{-2}(1+z)^{-2}zy]\widehat{ac}((x,u)-1)\alpha^{2} = 0.$$

Thus

$$[(1+u)^{-2}ux, y^{-1}z^{-1}(1+z)^{2}(1+y)^{2}]\widehat{ac}((x,u)-1)\alpha^{2} = 0.$$

Equivalently

$$\{(1+u)^{-2}u[x,y^{-1}z^{-1}(1+z)^2(1+y)^2]x^{-1} + [(1+u)^{-2}u,y^{-1}z^{-1}(1+z)^2(1+y)^2]\}\widehat{a}\widehat{c}((x,u)-1)\alpha^2 = 0.$$
(2.1)

On replacing x by x^{-1} in r_1 we get

$$r'_{1} = 1 + x^{-1}\alpha(a^{-1} - 1) - x^{-2}\alpha^{2}(a^{-1} - 1).$$

Then

$$u'_1 = (r'_1, r_2) = 1 - (1+u)^{-1}ux^{-1}(1+u)^{-1}((x,u)^{-1}-1)(a^{-1}-1)\alpha^2.$$

As $[u'_1, u_2] = 0$, so we have

$$\{(1+u)^{-2}u[x^{-1}, y^{-1}z^{-1}(1+z)^2(1+y)^2]x + [(1+u)^{-2}u, y^{-1}z^{-1}(1+z)^2(1+y)^2]\}\widehat{ac}((x,u)-1)\alpha^2 = 0.$$
 (2.2)

Subtracting (2.2) from (2.1) we get

$$0 = \{ [x, z^{-1} + z] x^{-1} - [x^{-1}, z^{-1} + z] x \} \widehat{ac}((x, u) - 1) \alpha^2 = 2m(z - z^{-1}) \widehat{abc} \widehat{c} \alpha^2.$$

Thus m = 0.

Now take $r_5 = (1 + x\alpha, z)$, $r'_5 = (1 + x^{-1}\alpha, z)$, $r_6 = (1 + y^{-1}, z^{-1})$, $r_7 = (1 + z^{-1}, x^{-1})$ and the commutators $u_3 = (r_5, r_2)$, $u'_3 = (r'_5, r_2)$, $u_4 = (r_6, r_7)$ we have

$$0 = [u_3, u_4] = [(1+u)^{-1}ux(1+u)^{-1}, (1+z)^{-2}(1+y)^{-2}yz]\widehat{b}\widehat{c}((x,u)-1)\alpha^2.$$

Equivalently

$$\{(1+u)^{-2}u[x,z^{-1}y^{-1}(1+y)^2(1+z)^2]x^{-1} + [(1+u)^{-2}u,z^{-1}y^{-1}(1+y)^2(1+z)^2]\}\widehat{b}\widehat{c}((x,u)-1)\alpha^2 = 0.$$
 (2.3)

Also $[u'_3, u_4] = 0$ implies

$$\{(1+u)^{-2}u[x^{-1}, z^{-1}y^{-1}(1+y)^2(1+z)^2]x + [(1+u)^{-2}u, z^{-1}y^{-1}(1+y)^2(1+z)^2]\}\widehat{b}\widehat{c}((x,u)-1)\alpha^2 = 0. \quad (2.4)$$

Subtracting (2.4) from (2.3) we get

$$0 = \{ [x, y^{-1} + y]x^{-1} - [x^{-1}, y^{-1} + y]x \} \widehat{b}\widehat{c}((x, u) - 1)\alpha^2 = 2l(y - y^{-1})\widehat{a}\widehat{b}\widehat{c}\alpha^2.$$

Thus l = 0. Now

$$u_5 = (r_3, r_7)$$

= 1 + $r_3^{-1}r_7^{-1}(1+z)^{-1}(1+y)^{-1}zy(1+y)^{-1}(1+z)^{-1}(a^{-1}-1)(b^{-1}-1)(c-1).$

Hence $[u_1, u_5] = 0$ yields

$$\begin{aligned} 0 &= [(1+u)^{-1}ux(1+u)^{-1}, r_7^{-1}(1+z)^{-1}(1+y)^{-1} \\ &\quad \times zy(1+y)^{-1}(1+z)^{-1}]\widehat{a}(b-1)(c-1)((x,u)-1)\alpha^2. \end{aligned}$$

Equivalently

$$\{(1+u)^{-2}u[x,y^{-1}z^{-1}(1+z)^{2}(1+y)^{2}]x^{-1} + [(1+u)^{-2}u,y^{-1}z^{-1}(1+z)^{2}(1+y)^{2}]\} \times \hat{a}(b-1)(c-1)((x,u)-1)\alpha^{2} = 0.$$
(2.5)

Also $[u'_1, u_5] = 0$ yields

$$\{(1+u)^{-2}u[x^{-1}, y^{-1}z^{-1}(1+z)^{2}(1+y)^{2}]x + [(1+u)^{-2}u, y^{-1}z^{-1}(1+z)^{2}(1+y)^{2}]\} \times \hat{a}(b-1)(c-1)((x,u)-1)\alpha^{2} = 0.$$
(2.6)

Subtracting (2.6) from (2.5) we get

$$0 = \{ [x, z^{-1} + z] x^{-1} - [x^{-1}, z^{-1} + z] x \} \widehat{a}(b-1)(c-1)((x, u) - 1)\alpha^2$$

= $2n(z - z^{-1}) \widehat{a} \widehat{b} \widehat{c} \alpha^2.$

Thus n = 0 and (u, x) = 1.

On interchanging x and y in the above proof we get (u, y) = 1. Similarly, if we interchange x and z we get (u, z) = 1.

If for all triplets $x, y, z \in G$ such that $a = (x, y) \neq 1$, $b = (x, z) \notin \langle a \rangle$, we have $c = a^i b^j$, then on replacing z by $x^{i-1}z$ and y by $x^{1-j}y$, we can assume that c = ab.

Lemma 2.3. Let G be a finite 3-group of class 2 such that U''' = 1. Let for all triplets x, y, z in G such that $a = (x, y) \neq 1$, $b = (x, z) \notin \langle a \rangle$, $c = (y, z) \in \langle a, b \rangle$. If $u, v, g \in G$ such that $d = (x, g) \notin \langle a, b \rangle$, $(u, v) \notin \langle a, b, d \rangle$ and (u, x), (u, y), $(u, z) \in \langle a, b, d \rangle$. Then (u, x) = (u, y) = (u, z) = 1.

PROOF. Let $\alpha = (u, v) - 1$ and $(u, x) = a^l b^m d^n$. Now

$$r_8 = (1 + x\alpha, g) = 1 + x\alpha(d - 1) - x^2(d - 1)\alpha^2,$$

$$r'_8 = (1 + x^{-1}\alpha, g) = 1 + x^{-1}\alpha(d^{-1} - 1) - x^{-2}\alpha^2(d^{-1} - 1)$$

and

$$r_9 = (1 + x^{-1}, g^{-1}) = 1 + (1 + x)^{-1}(d - 1).$$

Then

$$u_{6} = (r_{8}, r_{2}) = 1 - (1+u)^{-1} ux(1+u)^{-1} (d-1)((x, u) - 1)\alpha^{2},$$

$$u_{6}' = (r_{8}', r_{2}) = 1 - (1+u)^{-1} ux^{-1} (1+u)^{-1} (d^{-1} - 1)((x, u)^{-1} - 1)\alpha^{2}$$

and

$$u_7 = (r_9, r_6)$$

= 1 + $r_9^{-1} r_6^{-1} (1+x)^{-1} (1+x)^{-1} (1+x)^{-1} (1+x)^{-1} (a-1)(c-1)(d-1).$

As $[u_6, u_7] = 0$, so we have

$$[(1+u)^{-1}ux(1+u)^{-1}, r_6^{-1}(1+x)^{-1}(1+y)^{-1}yx(1+y)^{-1}(1+x)^{-1}]$$
$$(a-1)(c-1)\widehat{d}((x,u)-1)\alpha^2 = 0.$$

Let $N = \langle a, b, d \rangle$, then $\Delta^7(N) = 0$. Since $(u, x), (u, y) \in N$, hence we have

$$[(1+u)^{-2}ux, (1+x)^{-2}(1+y)^{-2}yx](a-1)(c-1)\widehat{d}((x,u)-1)\alpha^2 = 0.$$

Thus

$$[(1+u)^{-2}ux, x^{-1}y^{-1}(1+y)^2(1+x)^2](a-1)(c-1)\hat{d}((x,u)-1)\alpha^2 = 0.$$

Equivalently

$$\{(1+u)^{-2}u[x,x^{-1}y^{-1}(1+y)^{2}(1+x)^{2}]x^{-1} + [(1+u)^{-2}u,x^{-1}y^{-1}(1+y)^{2}(1+x)^{2}]\} \times (a-1)(c-1)\widehat{d}((x,u)-1)\alpha^{2} = 0.$$
(2.7)

Also $[u'_6, u_7] = 0$, so we have

$$\{(1+u)^{-2}u[x^{-1}, x^{-1}y^{-1}(1+y)^{2}(1+x)^{2}]x + [(1+u)^{-2}u, x^{-1}y^{-1}(1+y)^{2}(1+x)^{2}]\} \times (a-1)(c-1)\widehat{d}((x,u)-1)\alpha^{2} = 0.$$
(2.8)

Subtracting (2.8) from (2.7) we get

$$0 = \{ [x, y^{-1} + y] x^{-1} - [x^{-1}, y^{-1} + y] x \} (a - 1)(c - 1) \widehat{d}((x, u) - 1) \alpha^2$$

= $2(y - y^{-1}) \widehat{a}(c - 1) \widehat{d}((x, u) - 1) \alpha^2 = 2m(y - y^{-1}) \widehat{a} \widehat{b} \widehat{d} \alpha^2.$

Thus m = 0.

Now take $r_{10} = (1 + x^{-1}, z^{-1}), r_{11} = (1 + y^{-1}, g^{-1})$ and $u_8 = (r_{10}, r_{11})$. We have

$$0 = [u_3, u_8] = [(1+u)^{-1}ux(1+u)^{-1}, r_{11}^{-1}(1+x)^{-1}(1+y)^{-1} \times yx(1+y)^{-1}(1+x)^{-1}](a-1)\widehat{b}((y,g)-1)((x,u)-1)\alpha^2.$$

Equivalently

$$(1+u)^{-2}u[x,x^{-1}y^{-1}(1+y)^{2}(1+x)^{2}]x^{-1} + [(1+u)^{-2}u,x^{-1}y^{-1}(1+y)^{2}(1+x)^{2}]\} \times (a-1)\widehat{b}((y,g)-1)((x,u)-1)\alpha^{2} = 0.$$
(2.9)

Also $[u'_3, u_8] = 0$ implies

$$\{ (1+u)^{-2}u[x^{-1}, x^{-1}y^{-1}(1+y)^2(1+x)^2]x + [(1+u)^{-2}u, x^{-1}y^{-1}(1+y)^2(1+x)^2] \} \times (a-1)\widehat{b}((y,g)-1)((x,u)-1)\alpha^2 = 0.$$
 (2.10)

Subtracting (2.10) from (2.9) we get

$$0 = \{ [x, y^{-1} + y]x^{-1} - [x^{-1}, y^{-1} + y]x \} (a - 1)\widehat{b}((y, g) - 1)((x, u) - 1)\alpha^2$$

= 2(y - y^{-1})\widehat{a}\widehat{b}((y, g) - 1)((x, u) - 1)\alpha^2.

Let $(y,g) = a^r d^s$. On replacing y by xy, if needed, we can assume that $s \neq 0$. Hence

$$2n(y-y^{-1})\widehat{a}\widehat{b}\widehat{d}\alpha^2 = 0.$$

Thus n = 0. Now let $u_9 = (r_9, r_4)$. Then

$$\begin{split} 0 &= [u_6, u_9] = [(1+u)^{-1} u x (1+u)^{-1}, r_4^{-1} (1+x)^{-1} (1+z)^{-1} \\ &\times z x (1+z)^{-1} (1+x)^{-1}] (b-1) (c-1) \widehat{d}((x,u)-1) \alpha^2. \end{split}$$

Equivalently

$$\{(1+u)^{-2}u[x,x^{-1}z^{-1}(1+z)^{2}(1+x)^{2}]x^{-1} + [(1+u)^{-2}u,x^{-1}z^{-1}(1+z)^{2}(1+x)^{2}]\} \times (b-1)(c-1)\widehat{d}((x,u)-1)\alpha^{2} = 0.$$
(2.11)

Also $[u'_6, u_9] = 0$ implies

$$\{(1+u)^{-2}u[x^{-1}, x^{-1}z^{-1}(1+z)^{2}(1+x)^{2}]x + [(1+u)^{-2}u, x^{-1}z^{-1}(1+z)^{2}(1+x)^{2}]\} \times (b-1)(c-1)\widehat{d}((x,u)-1)\alpha^{2} = 0.$$
(2.12)

Subtracting (2.12) from (2.11) we get

$$0 = \{ [x, z^{-1} + z]x^{-1} - [x^{-1}, z^{-1} + z]x \} (b-1)\widehat{d}(c-1)((x, u) - 1)\alpha^2$$

= $2(z - z^{-1})\widehat{b}(c-1)\widehat{d}((x, u) - 1)\alpha^2 = 2l(z - z^{-1})\widehat{a}\widehat{b}\widehat{d}\alpha^2.$

Thus l = 0 and (u, x) = 1. On interchanging x and y in the above proof we get (u, y) = 1. Similarly interchanging x and z leads to (u, z) = 1.

Theorem 2.1. Let G be a group of class 2. Then U''' = 1 if and only if G' is an elementary abelian 3-subgroup of G such that $|G'| \leq 3^3$.

PROOF. Let U''' = 1. Then by Lemma 2.1, G' is an elementary abelian 3-subgroup of G. Suppose that $G' \neq C_3$, then there exist $x, y, z \in G$ such that $(x, y) \neq 1$ and $(x, z) \notin \langle (x, y) \rangle$. If for all such triplets $x, y, z \in G$, $(y, z), (x, g) \in$ $\langle (x, y), (x, z) \rangle$ for all $g \in G$, then $G' = C_3 \times C_3$ by [14]. Now we have two cases which we examine one by one:

Case (I): Let $x, y, z \in G$ such that $a = (x, y) \neq 1$, $b = (x, z) \notin \langle a \rangle$, $c = (y, z) \notin \langle a, b \rangle$. Then we show that $G' = \langle a, b, c \rangle = M$. Let, if possible, $u, v \in G$ such that $(u, v) \notin M$. For any $t \in G$, let $r_{12} = (1 + x^{-1}, y^{-1})$, $r_{13} = (1 + z((x, t) - 1), x)$, $r_{14} = (1 + x^{-1}, t^{-1})$,

$$u_{10} = (r_{12}, r_6) = 1 + r_6^{-1}(1+x)^{-2}(1+y)^{-2}yx\widehat{a}(c-1) \in U''$$

and

$$u_{11} = (r_{13}, r_{14}) = 1 - (1+x)^{-2} z x \widehat{b}(x, t) \in U''.$$

Thus $[u_{10}, u_{11}] = 0$ leads to

$$[r_6^{-1}(1+x)^{-2}(1+y)^{-2}yx,(1+x)^{-2}zx]\widehat{a}\widehat{b}(c-1)(x,t) = 0.$$

Equivalently

$$0 = [y^{-1}(1+y)^2, z]\widehat{ab}(c-1)\widehat{(x,t)} = [y+y^{-1}, z]\widehat{ab}(c-1)\widehat{(x,t)} = (1-y)\widehat{ab}\widehat{c}(x,t).$$

Thus $(x,t) \in M$, for all $t \in G$. On interchanging x and y in the above proof, we get $(y,t) \in M$, for all $t \in G$. Similarly, interchanging x and z leads to $(z,t) \in M$, for all $t \in G$.

Now by Lemma 2.2, (u, x) = 1 = (u, y). So $(zu, x) = b^{-1}$, $(zu, y) = c^{-1}$ and $a = (x, y) \notin \langle (zu, x), (zu, y) \rangle = \langle b, c \rangle$. This yields $(zu, v) = (z, v)(u, v) \in M$. Hence $(u, v) \in M$.

Case (II): For all $x, y, z \in G$ such that $(x, y) \neq 1$ and $(x, z) \notin \langle (x, y) \rangle$, let $(y, z) \in \langle (x, y), (x, z) \rangle$. Out of all such triplets, there is a triplet $x, y, z \in G$ such that $(x, g) \notin \langle (x, y), (x, z) \rangle$ for some $g \in G$. Let a = (x, y), b = (x, z),c = (y, z) and d = (x, g). Then we shall prove that $G' = \langle a, b, d \rangle = N$. As noted earlier, we can assume that c = ab. For all $t \in G$, let $r_{15} = (1 + g^{-1}, x^{-1}),$ $r_{16} = (1 + y((x, t) - 1), z),$

$$u_{12} = (r_{16}, r_{14}) = 1 - (1+x)^{-1} xy(1+x)^{-1} (a^{-1} - 1)(c-1)(x, t) \in U''$$

and

$$u_{13} = (r_{15}, r_{10}) = 1 + r_{10}^{-1}(1+g)^{-2}(1+x)^{-2}gx(b-1)\hat{d} \in U''.$$

Thus

$$0 = [u_{12}, u_{13}]$$

$$= [(1+x)^{-1}xy(1+x)^{-1}, r_{10}^{-1}(1+g)^{-2}(1+x)^{-2}gx](a^{-1}-1)(b-1)(c-1)\widehat{d(x,t)}.$$

Equivalently

$$0 = [y, x^{-1}(1+x)^2 g^{-1}(1+g)^2](a-1)(b-1)(c-1)\widehat{d(x,t)}$$

= { [y, x^{-1}+x]g^{-1}(1+g)^2 + x^{-1}(1+x)^2[y, g^{-1}+g] }
× (a-1)(b-1)(c-1)\widehat{d(x,t)}. (2.13)

Since $d \notin \langle a \rangle$, we can write $(y,g) = a^r d^s$. On replacing g by $x^r g$, we get

 $(y, x^r g) = d^s$ and the above equation yields

$$(x-1)\widehat{a}\widehat{b}\widehat{d}(x,t) = 0.$$

Thus $(x,t) \in N$. On interchanging x and y in (2.13) we get

$$\{ [x, y^{-1} + y]g^{-1}(1+g)^2 + y^{-1}(1+y)^2 [x, g^{-1} + g] \}$$

$$(a-1)(b-1)(c-1)\widehat{(y,g)}\widehat{(y,t)} = 0.$$

As before, on replacing g by $x^r g$ we get

$$s^2(y-1)\widehat{a}\widehat{b}\widehat{d}(y,t) = 0$$

So if $s \neq 0$, then $(y,t) \in N$. If s = 0, then replace y by xy to get

$$(xy-1)\widehat{a}\widehat{b}\widehat{d}(xy,t) = 0$$

Since $(x,t) \in N$, we conclude $(y,t) \in N$. Similarly on interchanging x and z in (2.13) we get

$$\{[y, z^{-1} + z]g^{-1}(1 + g)^2 + z^{-1}(1 + z)^2[y, g^{-1} + g]\}(a - 1)(b - 1)(c - 1)(\widehat{(z, g)}(\widehat{(z, t)}) = 0.$$

Now $d \notin \langle b \rangle$, so $(z,g) = b^l d^m$ and on replacing g by $x^l g$, we get $(z, x^l g) = d^m$ and $(y, x^l g) = a^{r-l} d^s$. Thus if r = l, we get

$$m^2(z-1)\widehat{a}\widehat{b}\widehat{d}(z,\overline{t}) = 0$$

and $(z,t) \in N$, if $m \neq 0$. For m = 0, replacing z by x^2z leads to the same conclusion. If $r \neq l$, then replacing z by xz for $m \neq 2$ and by x^2z for m = 2, yields the same result.

Let $u, v \in G$ such that $(u, v) \notin N$. Then (u, x) = 1 = (u, y), by Lemma 2.3. Thus (x, uy) = a, (x, uz) = b, (x, ug) = d, and hence $(uy, v) = (u, v)(y, v) \in N$. So $(u, v) \in N$.

Conversely, if G' is a central and elementary abelian 3-subgroup of G of order $\leq 3^3$ then by [12, Theorem 2.3], we have $\delta^{(3)}(KG) = 0$ and hence U''' = 1. \Box

Finally, we give an example of a finite group G with $G' = C_3 \times C_3 \times C_3$ but non-central and show that for this group derived length of U is more than 3.

Example 2.1. Let $G = \langle a, b, c, d | a^3 = b^3 = c^3 = d^2 = 1, (a, b) = (a, c) = (b, c) = 1, (a, d) = a, (b, d) = b, (c, d) = c \rangle$. Then $G' = C_3 \times C_3 \times C_3 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ is not central in G and $U''' \neq 1$.

Let K be a field with $\operatorname{Char} K = 3$, then

$$u_{1} = (1 + d(a - 1), d) = 1 + da(a - 1) + \hat{a},$$

$$r = (u_{1}, b) = 1 + da(a - 1)(b^{-1} - 1) + \hat{a}(b^{-1} - 1),$$

$$u_{2} = (1 + d(c - 1), d) = 1 + dc(c - 1) + \hat{c}$$

and $s = (u_{2}, b) = 1 + dc(c - 1)(b^{-1} - 1) + \hat{c}(b^{-1} - 1).$

Then

$$\begin{split} (r,s) &= 1 + r^{-1}s^{-1}[da(a-1)(b^{-1}-1) + \widehat{a}(b^{-1}-1), dc(c-1)(b^{-1}-1) + \widehat{c}(b^{-1}-1)] \\ &= 1 + r^{-1}s^{-1}d\widehat{b}(a-1)\{c(a-1) - a(c-1)\} = 1 + d\widehat{b}(a-1)(c-1)(a-c). \end{split}$$

This implies that $\delta^3(U(KG)) \neq 1$.

ACKNOWLEDGMENTS: The authors wish to thank the referee for useful suggestions that led to a better presentation of the paper.

References

- Z. BALOGH and Y. LI, On the derived length of the group of units of a group algebra, J. Algebra Appl. 6, no. 6 (2007), 991–999.
- [2] C. BAGINSKI, A note on the derived length of the unit group of a modular group algebra, Comm. Algebra 30 (2002), 4905–4913.
- [3] J. M. BATEMAN, On the solvability of unit groups of group algebras, Trans. Amer. Math. Soc. 157 (1971), 73–86.
- [4] A. A. BOVDI, The group of units of a group algebra of characteristic p, Publ. Math. Debrecen 52 (1998), 193–244.
- [5] A. A. BOVDI, Group algebras with solvable group of units, Comm. Algebra 33, no. 10 (2005), 3725–3738.
- [6] A. A. BOVDI and I. I. KHRIPTA, Group algebras of periodic groups with solvable multiplicative group, *Mat. Zametki* 22 (1977), 3421–3432.
- [7] D. B. COLEMAN and R. SANDLING, Mod 2 group algebras with metabelian unit groups, J. Pure Appl. Algebra 131 (1998), 25–36.
- [8] H. CHANDRA and M. SAHAI, Group algebras with unit groups of derived length three, J. Algebra Appl. 9, no. 2 (2010), 305–314.
- [9] J. KURDICS, On group algebras with metabelian unit groups, Period. Math. Hungar. 32 (1996), 57–64.

- 708 H. Chandra and M. Sahai : On group algebras with unit groups...
- [10] K. MOTOSE and Y. NINOMIYA, On the solvability of unit groups of group rings, Math. J. Okayama Univ. 15 (1972), 209–214.
- [11] D. S. PASSMAN, Observations on group rings, Comm. Algebra 5 (1977), 1119–1162.
- [12] M. SAHAI, Lie solvable group algebras of derived length 3, Publ. Math. 39 (1995), 233–240.
- [13] M. SAHAI, Group algebras with centrally metabelian unit groups, Publ. Math. 40 (1996), 443–456.
- [14] M. SAHAI, Group algebras satisfying a certain Lie identity, Comm. Algebra 34 (2006), 817–828.
- [15] M. SAHAI, On group algebras KG with U(KG)' nilpotent of class at most 2, Contemp. Math. 456 (2008), 165–173.
- [16] S. K. SEHGAL, Topics in group rings, Marcel Dekker, New York, 1978.
- [17] A. SHALEV, Metabelian unit groups of group algebras are usually abelian, J. Pure Appl. Algebra 72 (1991), 295–302.

HARISH CHANDRA DEPARTMENT OF MATHEMATICS AND ASTRONOMY UNIVERSITY OF LUCKNOW LUCKNOW U.P. (INDIA) 226007 *E-mail:* hcp_1985@yahoo.co.in

MEENA SAHAI DEPARTMENT OF MATHEMATICS AND ASTRONOMY UNIVERSITY OF LUCKNOW LUCKNOW U.P. (INDIA) 226007

E-mail: meena_sahai@hotmail.com

(Received February 27, 2012; revised July 11, 2012)