On group algebras with unit groups of derived length three in characteristic three

By HARISH CHANDRA (Lucknow) and MEENA SAHAI (Lucknow)

Abstract

Let K be a field of characteristic 3 and let G be a finite 3 -group of class 2. Necessary and sufficient conditions are obtained for the group of units $U(K G)$ to be solvable of derived length 3 .

1. Introduction

Let $K G$ be the group algebra of a finite group G over a field K of characteristic p. Let $U=U(K G)$ be the group of units of the group algebra $K G$. First description of the solvability of the unit group U is given in [16, Chapter VI]. This problem has been discussed by many authors as can be seen in [3], [4], [5], [6], [10], [11]. Computation of the derived length of U and its connection with the order and nature of the commutator subgroup G^{\prime} of G is an interesting problem. ShaLev [17] has found necessary and sufficient conditions for U to be metabelian when $p \geq 3$. This work was completed by Coleman and Sandling [7] and independently by Kurdics [9] for $p=2$. For $p \neq 2$, a complete description of group algebras $K G$ with centrally metabelian unit groups is given in [13]. The group algebras with $\gamma_{3}\left(\delta^{1}(U)\right)=1$ have been listed in [15]. Baginski [2] and Balogh and Li [1] have computed the derived length of U for finite p-groups and arbitrary groups with cyclic commutator subgroup of order $p^{n}(p>2)$, respectively. Recently we have obtained the necessary and sufficient conditions for U to have derived length 3 when $p \neq 2,3$, see [8]. As in [8], for $p=3$, if $U^{\prime \prime \prime}=1$, then

[^0]$G=P \rtimes H$ where P is a normal Sylow 3 -subgroup of G and H is an abelian 3^{\prime}-subgroup of G. So in this paper, we continue our work on this problem when $p=3$ and G is a finite 3 -group. In addition, we assume that $\gamma_{3}(G)=1$. We will use $(x, y)=x^{-1} y^{-1} x y$ for the group commutator of elements x and y of a group G and if $o(x)=n$ then $\widehat{x}=1+x+x^{2}+\cdots+x^{n-1}$. The Lie commutators are denoted by $[x, y]=x y-y x, x, y \in K G$.

Our main result is as follows:
Theorem 1.1. Let K be a field such that Char $K=3$ and let G be a finite 3 -group of class 2. Then the following conditions are equivalent:
(i) $U^{\prime \prime \prime}=1$;
(ii) G^{\prime} is elementary abelian 3-subgroup such that $\left|G^{\prime}\right| \leq 3^{3}$.

2. Proof of the Theorem

Throughout this section, K is a field of characteristic 3 .
Lemma 2.1. Let G be a finite 3 -group of class 2 such that $U^{\prime \prime \prime}=1$. Then G^{\prime} has exponent 3.

Proof. Let $x, y \in G, z=(x, y), o(z)=3^{n}$, where $n \geq 2$. If $u=1+x-y$, then

$$
\begin{aligned}
u_{1} & =(u, y)=1+u^{-1} x(z-1) \\
u_{2} & =(u, x)=1+u^{-1} y(z-1) z^{-1} \\
\text { and } \quad u_{3} & =\left(u, y^{-1}\right)=1-u^{-1} x(z-1) z^{-1}
\end{aligned}
$$

Clearly $\left(u_{1}, u_{3}\right)=1$. Now

$$
\begin{aligned}
v & =\left(u_{1}, u_{2}\right) \\
\text { and } \quad w & =\left(u_{3}, u_{2}\right)=1-u_{1}^{-1} u_{2}^{-1} u^{-2} y x u^{-1}(z-1)^{3} z^{-2} y x u^{-1}(z-1)^{3} z^{-2} .
\end{aligned}
$$

Since $U^{\prime \prime \prime}=1$, so $[v, w]=\left[u_{1}^{-1} \beta, u_{3}^{-1} \beta\right](z-1)^{6} z^{-3}=0$ where $\beta=u_{2}^{-1} u^{-2} y x u^{-1}$. The annihilator A of $(z-1)^{6}$ in $K G$ is a two sided ideal. The above equation implies that $\bar{\beta}^{-1} \overline{u_{1}}$ and $\bar{\beta}^{-1} \overline{u_{3}}$ commute in $K G / A$ where \bar{w} is the image of $w \in K G$ in $K G / A$. Hence

$$
\left[\beta^{-1} u_{1}, \beta^{-1} u_{3}\right](z-1)^{6}=0 .
$$

On simplifying we get

$$
\begin{aligned}
& \left\{2 u u_{2}-x^{-1} y u^{-1} x y^{-1} u^{2} u_{2}-u x^{-1} u^{-1} y^{-1} x u^{-1} x u^{2} u_{2} z^{-1}\right. \\
& \left.\quad+u x^{-1} u^{-1} y^{-1} x u^{2} u_{2} z^{-1}+u x^{-1} y^{-1} u^{-1} y x u u_{2}-(z-1) z^{-1}\right\}(z-1)^{8}=0
\end{aligned}
$$

As $u_{2} \in 1+(z-1) K G$, hence on multiplying this equation by $(z-1)^{3^{n}-9}$, we get $(z-1)^{3^{n}-1}=0$, which is a contradiction. Hence $n=1$ and exponent of G^{\prime} is 3 .

To prove the theorem we only need to show that $\left|G^{\prime}\right| \leq 3^{3}$. Suppose that $G^{\prime} \neq C_{3}$. Then, there exist $x, y, z \in G$ such that $(x, y) \neq 1$ and $(x, z) \notin\langle(x, y)\rangle$. If for all such triplets $x, y, z \in G,(y, z),(x, g) \in\langle(x, y),(x, z)\rangle$ for all $g \in G$, then $G^{\prime}=C_{3} \times C_{3},[14$, Theorem 14, Step III $]$. So if $G^{\prime} \neq C_{3} \times C_{3}$, then there exists a triplet $x, y, z \in G$ such that either $(y, z) \notin\langle(x, y),(x, z)\rangle$ or $(x, g) \notin\langle(x, y),(x, z)\rangle$ for some $g \in G$. We first prove some preliminary results based on these two cases.

Lemma 2.2. Let G be a finite 3 -group of class 2 such that $U^{\prime \prime \prime}=1$. Let $u, v, x, y, z \in G$ such that $a=(x, y) \neq 1, b=(x, z) \notin\langle a\rangle$ and $c=(y, z) \notin\langle a, b\rangle$. If $(u, x),(u, y),(u, z) \in\langle a, b, c\rangle$ and $(u, v) \notin\langle a, b, c\rangle$, then $(u, x)=(u, y)=(u, z)=1$.

Proof. If $t \in G^{\prime}$, then $1+g(t-1)$ is a unit for all $g \in G$. Let $\alpha=(u, v)-1$ and $(u, x)=a^{l} b^{m} c^{n}$. Now

$$
\begin{aligned}
r_{1} & =(1+x \alpha, y)=1+x \alpha(a-1)-x^{2}(a-1) \alpha^{2} \\
\text { and } \quad r_{2} & =\left(1+u^{-1}, v^{-1}\right)=1+(1+u)^{-1} \alpha . \\
\text { Then } \quad u_{1} & =\left(r_{1}, r_{2}\right)=1+r_{1}^{-1} r_{2}^{-1}\left[r_{1}-1, r_{2}-1\right]=1+\left[x,(1+u)^{-1}\right](a-1) \alpha^{2} \\
& =1-(1+u)^{-1} u x(1+u)^{-1}(a-1)((x, u)-1) \alpha^{2} \in U^{\prime \prime} .
\end{aligned}
$$

Also if

$$
\begin{aligned}
r_{3} & =\left(1+y^{-1}, x^{-1}\right) \\
\text { and } r_{4} & =\left(1+(1+y)^{-1}\left(a^{-1}-1\right)\right. \\
\text { a } \left.y^{-1}\right) & =1+(1+z)^{-1}\left(c^{-1}-1\right)
\end{aligned}
$$

Then $u_{2}=\left(r_{3}, r_{4}\right)=1-r_{3}^{-1}(1+y)^{-2}(1+z)^{-2} z y\left(a^{-1}-1\right) \widehat{c} \in U^{\prime \prime}$.
As $\left[u_{1}, u_{2}\right]=0$, so we have

$$
\left[(1+u)^{-1} u x(1+u)^{-1},(1+y)^{-2}(1+z)^{-2} z y\right] \widehat{a} \widehat{c}((x, u)-1) \alpha^{2}=0
$$

If $M=\langle a, b, c\rangle$, then $\Delta^{7}(M)=0$. Since $(u, x),(u, y),(u, z) \in M$, hence we have

$$
\left[(1+u)^{-2} u x,(1+y)^{-2}(1+z)^{-2} z y\right] \widehat{a} \widehat{c}((x, u)-1) \alpha^{2}=0
$$

Thus

$$
\left[(1+u)^{-2} u x, y^{-1} z^{-1}(1+z)^{2}(1+y)^{2}\right] \widehat{a} \widehat{c}((x, u)-1) \alpha^{2}=0 .
$$

Equivalently

$$
\begin{align*}
&\left\{(1+u)^{-2} u\left[x, y^{-1} z^{-1}(1+z)^{2}(1+y)^{2}\right] x^{-1}\right. \\
&\left.+\left[(1+u)^{-2} u, y^{-1} z^{-1}(1+z)^{2}(1+y)^{2}\right]\right\} \widehat{a} \widehat{c}((x, u)-1) \alpha^{2}=0 \tag{2.1}
\end{align*}
$$

On replacing x by x^{-1} in r_{1} we get

$$
r_{1}^{\prime}=1+x^{-1} \alpha\left(a^{-1}-1\right)-x^{-2} \alpha^{2}\left(a^{-1}-1\right) .
$$

Then

$$
u_{1}^{\prime}=\left(r_{1}^{\prime}, r_{2}\right)=1-(1+u)^{-1} u x^{-1}(1+u)^{-1}\left((x, u)^{-1}-1\right)\left(a^{-1}-1\right) \alpha^{2} .
$$

As $\left[u_{1}^{\prime}, u_{2}\right]=0$, so we have

$$
\begin{align*}
& \left\{(1+u)^{-2} u\left[x^{-1}, y^{-1} z^{-1}(1+z)^{2}(1+y)^{2}\right] x\right. \\
& \left.\quad+\left[(1+u)^{-2} u, y^{-1} z^{-1}(1+z)^{2}(1+y)^{2}\right]\right\} \widehat{a} \widehat{c}((x, u)-1) \alpha^{2}=0 \tag{2.2}
\end{align*}
$$

Subtracting (2.2) from (2.1) we get

$$
0=\left\{\left[x, z^{-1}+z\right] x^{-1}-\left[x^{-1}, z^{-1}+z\right] x\right\} \widehat{a} \widehat{c}((x, u)-1) \alpha^{2}=2 m\left(z-z^{-1}\right) \widehat{a} \widehat{b} \widehat{c} \alpha^{2} .
$$

Thus $m=0$.
Now take $r_{5}=(1+x \alpha, z), r_{5}^{\prime}=\left(1+x^{-1} \alpha, z\right), r_{6}=\left(1+y^{-1}, z^{-1}\right), r_{7}=$ $\left(1+z^{-1}, x^{-1}\right)$ and the commutators $u_{3}=\left(r_{5}, r_{2}\right), u_{3}^{\prime}=\left(r_{5}^{\prime}, r_{2}\right), u_{4}=\left(r_{6}, r_{7}\right)$ we have

$$
0=\left[u_{3}, u_{4}\right]=\left[(1+u)^{-1} u x(1+u)^{-1},(1+z)^{-2}(1+y)^{-2} y z\right] \widehat{b} \widehat{c}((x, u)-1) \alpha^{2} .
$$

Equivalently

$$
\begin{align*}
& \left\{(1+u)^{-2} u\left[x, z^{-1} y^{-1}(1+y)^{2}(1+z)^{2}\right] x^{-1}\right. \\
& \left.\quad+\left[(1+u)^{-2} u, z^{-1} y^{-1}(1+y)^{2}(1+z)^{2}\right]\right\} \widehat{b} \widehat{c}((x, u)-1) \alpha^{2}=0 \tag{2.3}
\end{align*}
$$

Also $\left[u_{3}^{\prime}, u_{4}\right]=0$ implies

$$
\begin{align*}
& \left\{(1+u)^{-2} u\left[x^{-1}, z^{-1} y^{-1}(1+y)^{2}(1+z)^{2}\right] x\right. \\
& \left.\quad+\left[(1+u)^{-2} u, z^{-1} y^{-1}(1+y)^{2}(1+z)^{2}\right]\right\} \widehat{b} \widehat{c}((x, u)-1) \alpha^{2}=0 . \tag{2.4}
\end{align*}
$$

Subtracting (2.4) from (2.3) we get

$$
0=\left\{\left[x, y^{-1}+y\right] x^{-1}-\left[x^{-1}, y^{-1}+y\right] x\right\} \widehat{b} \widehat{c}((x, u)-1) \alpha^{2}=2 l\left(y-y^{-1}\right) \widehat{a} \widehat{b} \widehat{c} \alpha^{2} .
$$

Thus $l=0$. Now

$$
\begin{gathered}
u_{5}=\left(r_{3}, r_{7}\right) \\
=1+r_{3}^{-1} r_{7}^{-1}(1+z)^{-1}(1+y)^{-1} z y(1+y)^{-1}(1+z)^{-1}\left(a^{-1}-1\right)\left(b^{-1}-1\right)(c-1)
\end{gathered}
$$

Hence $\left[u_{1}, u_{5}\right]=0$ yields

$$
\begin{aligned}
0=\left[(1+u)^{-1} u x(1+u)^{-1}\right. & , r_{7}^{-1}(1+z)^{-1}(1+y)^{-1} \\
& \left.\times z y(1+y)^{-1}(1+z)^{-1}\right] \widehat{a}(b-1)(c-1)((x, u)-1) \alpha^{2}
\end{aligned}
$$

Equivalently

$$
\begin{align*}
& \left\{(1+u)^{-2} u\left[x, y^{-1} z^{-1}(1+z)^{2}(1+y)^{2}\right] x^{-1}\right. \\
& \left.\quad+\left[(1+u)^{-2} u, y^{-1} z^{-1}(1+z)^{2}(1+y)^{2}\right]\right\} \\
& \quad \times \widehat{a}(b-1)(c-1)((x, u)-1) \alpha^{2}=0 \tag{2.5}
\end{align*}
$$

Also $\left[u_{1}^{\prime}, u_{5}\right]=0$ yields

$$
\begin{align*}
& \left\{(1+u)^{-2} u\left[x^{-1}, y^{-1} z^{-1}(1+z)^{2}(1+y)^{2}\right] x\right. \\
& \left.\quad+\left[(1+u)^{-2} u, y^{-1} z^{-1}(1+z)^{2}(1+y)^{2}\right]\right\} \\
& \quad \times \widehat{a}(b-1)(c-1)((x, u)-1) \alpha^{2}=0 \tag{2.6}
\end{align*}
$$

Subtracting (2.6) from (2.5) we get

$$
\begin{aligned}
0 & =\left\{\left[x, z^{-1}+z\right] x^{-1}-\left[x^{-1}, z^{-1}+z\right] x\right\} \widehat{a}(b-1)(c-1)((x, u)-1) \alpha^{2} \\
& =2 n\left(z-z^{-1}\right) \widehat{a} \widehat{b} \widehat{c} \alpha^{2}
\end{aligned}
$$

Thus $n=0$ and $(u, x)=1$.
On interchanging x and y in the above proof we get $(u, y)=1$. Similarly, if we interchange x and z we get $(u, z)=1$.

If for all triplets $x, y, z \in G$ such that $a=(x, y) \neq 1, b=(x, z) \notin\langle a\rangle$, we have $c=a^{i} b^{j}$, then on replacing z by $x^{i-1} z$ and y by $x^{1-j} y$, we can assume that $c=a b$.

Lemma 2.3. Let G be a finite 3-group of class 2 such that $U^{\prime \prime \prime}=1$. Let for all triplets x, y, z in G such that $a=(x, y) \neq 1, b=(x, z) \notin\langle a\rangle, c=(y, z) \in\langle a, b\rangle$. If $u, v, g \in G$ such that $d=(x, g) \notin\langle a, b\rangle,(u, v) \notin\langle a, b, d\rangle$ and $(u, x),(u, y)$, $(u, z) \in\langle a, b, d\rangle$. Then $(u, x)=(u, y)=(u, z)=1$.

Proof. Let $\alpha=(u, v)-1$ and $(u, x)=a^{l} b^{m} d^{n}$. Now

$$
\begin{aligned}
& r_{8}=(1+x \alpha, g)=1+x \alpha(d-1)-x^{2}(d-1) \alpha^{2} \\
& r_{8}^{\prime}=\left(1+x^{-1} \alpha, g\right)=1+x^{-1} \alpha\left(d^{-1}-1\right)-x^{-2} \alpha^{2}\left(d^{-1}-1\right)
\end{aligned}
$$

and

$$
r_{9}=\left(1+x^{-1}, g^{-1}\right)=1+(1+x)^{-1}(d-1)
$$

Then

$$
\begin{aligned}
& u_{6}=\left(r_{8}, r_{2}\right)=1-(1+u)^{-1} u x(1+u)^{-1}(d-1)((x, u)-1) \alpha^{2} \\
& u_{6}^{\prime}=\left(r_{8}^{\prime}, r_{2}\right)=1-(1+u)^{-1} u x^{-1}(1+u)^{-1}\left(d^{-1}-1\right)\left((x, u)^{-1}-1\right) \alpha^{2}
\end{aligned}
$$

and

$$
\begin{gathered}
u_{7}=\left(r_{9}, r_{6}\right) \\
=1+r_{9}^{-1} r_{6}^{-1}(1+x)^{-1}(1+y)^{-1} y x(1+y)^{-1}(1+x)^{-1}(a-1)(c-1)(d-1)
\end{gathered}
$$

As $\left[u_{6}, u_{7}\right]=0$, so we have

$$
\begin{gathered}
{\left[(1+u)^{-1} u x(1+u)^{-1}, r_{6}^{-1}(1+x)^{-1}(1+y)^{-1} y x(1+y)^{-1}(1+x)^{-1}\right]} \\
(a-1)(c-1) \widehat{d}((x, u)-1) \alpha^{2}=0
\end{gathered}
$$

Let $N=\langle a, b, d\rangle$, then $\Delta^{7}(N)=0$. Since $(u, x),(u, y) \in N$, hence we have

$$
\left[(1+u)^{-2} u x,(1+x)^{-2}(1+y)^{-2} y x\right](a-1)(c-1) \widehat{d}((x, u)-1) \alpha^{2}=0
$$

Thus

$$
\left[(1+u)^{-2} u x, x^{-1} y^{-1}(1+y)^{2}(1+x)^{2}\right](a-1)(c-1) \widehat{d}((x, u)-1) \alpha^{2}=0
$$

Equivalently

$$
\begin{align*}
& \left\{(1+u)^{-2} u\left[x, x^{-1} y^{-1}(1+y)^{2}(1+x)^{2}\right] x^{-1}\right. \\
& \left.\quad+\left[(1+u)^{-2} u, x^{-1} y^{-1}(1+y)^{2}(1+x)^{2}\right]\right\} \\
& \quad \times(a-1)(c-1) \widehat{d}((x, u)-1) \alpha^{2}=0 \tag{2.7}
\end{align*}
$$

Also $\left[u_{6}^{\prime}, u_{7}\right]=0$, so we have

$$
\begin{align*}
& \left\{(1+u)^{-2} u\left[x^{-1}, x^{-1} y^{-1}(1+y)^{2}(1+x)^{2}\right] x\right. \\
& \left.\quad+\left[(1+u)^{-2} u, x^{-1} y^{-1}(1+y)^{2}(1+x)^{2}\right]\right\} \\
& \quad \times(a-1)(c-1) \widehat{d}((x, u)-1) \alpha^{2}=0 \tag{2.8}
\end{align*}
$$

Subtracting (2.8) from (2.7) we get

$$
\begin{aligned}
0 & =\left\{\left[x, y^{-1}+y\right] x^{-1}-\left[x^{-1}, y^{-1}+y\right] x\right\}(a-1)(c-1) \widehat{d}((x, u)-1) \alpha^{2} \\
& =2\left(y-y^{-1}\right) \widehat{a}(c-1) \widehat{d}((x, u)-1) \alpha^{2}=2 m\left(y-y^{-1}\right) \widehat{a} \widehat{b} \widehat{d} \alpha^{2}
\end{aligned}
$$

Thus $m=0$.
Now take $r_{10}=\left(1+x^{-1}, z^{-1}\right), r_{11}=\left(1+y^{-1}, g^{-1}\right)$ and $u_{8}=\left(r_{10}, r_{11}\right)$. We have

$$
\begin{aligned}
0= & {\left[u_{3}, u_{8}\right]=\left[(1+u)^{-1} u x(1+u)^{-1}, r_{11}^{-1}(1+x)^{-1}(1+y)^{-1}\right.} \\
& \left.\times y x(1+y)^{-1}(1+x)^{-1}\right](a-1) \widehat{b}((y, g)-1)((x, u)-1) \alpha^{2} .
\end{aligned}
$$

Equivalently

$$
\begin{align*}
& (1+u)^{-2} u\left[x, x^{-1} y^{-1}(1+y)^{2}(1+x)^{2}\right] x^{-1} \\
& \left.\quad+\left[(1+u)^{-2} u, x^{-1} y^{-1}(1+y)^{2}(1+x)^{2}\right]\right\} \\
& \quad \times(a-1) \widehat{b}((y, g)-1)((x, u)-1) \alpha^{2}=0 \tag{2.9}
\end{align*}
$$

Also $\left[u_{3}^{\prime}, u_{8}\right]=0$ implies

$$
\begin{align*}
& \left\{(1+u)^{-2} u\left[x^{-1}, x^{-1} y^{-1}(1+y)^{2}(1+x)^{2}\right] x\right. \\
& \left.\quad+\left[(1+u)^{-2} u, x^{-1} y^{-1}(1+y)^{2}(1+x)^{2}\right]\right\} \\
& \quad \times(a-1) \widehat{b}((y, g)-1)((x, u)-1) \alpha^{2}=0 \tag{2.10}
\end{align*}
$$

Subtracting (2.10) from (2.9) we get

$$
\begin{aligned}
0 & =\left\{\left[x, y^{-1}+y\right] x^{-1}-\left[x^{-1}, y^{-1}+y\right] x\right\}(a-1) \widehat{b}((y, g)-1)((x, u)-1) \alpha^{2} \\
& =2\left(y-y^{-1}\right) \widehat{a} \widehat{b}((y, g)-1)((x, u)-1) \alpha^{2} .
\end{aligned}
$$

Let $(y, g)=a^{r} d^{s}$. On replacing y by $x y$, if needed, we can assume that $s \neq 0$. Hence

$$
2 n\left(y-y^{-1}\right) \widehat{a} \widehat{b} \widehat{d} \alpha^{2}=0
$$

Thus $n=0$. Now let $u_{9}=\left(r_{9}, r_{4}\right)$. Then

$$
\begin{gathered}
0=\left[u_{6}, u_{9}\right]=\left[(1+u)^{-1} u x(1+u)^{-1}, r_{4}^{-1}(1+x)^{-1}(1+z)^{-1}\right. \\
\left.\times z x(1+z)^{-1}(1+x)^{-1}\right](b-1)(c-1) \widehat{d}((x, u)-1) \alpha^{2}
\end{gathered}
$$

Equivalently

$$
\begin{align*}
& \left\{(1+u)^{-2} u\left[x, x^{-1} z^{-1}(1+z)^{2}(1+x)^{2}\right] x^{-1}\right. \\
& \left.\quad+\left[(1+u)^{-2} u, x^{-1} z^{-1}(1+z)^{2}(1+x)^{2}\right]\right\} \\
& \quad \times(b-1)(c-1) \widehat{d}((x, u)-1) \alpha^{2}=0 \tag{2.11}
\end{align*}
$$

Also $\left[u_{6}^{\prime}, u_{9}\right]=0$ implies

$$
\begin{align*}
& \left\{(1+u)^{-2} u\left[x^{-1}, x^{-1} z^{-1}(1+z)^{2}(1+x)^{2}\right] x\right. \\
& \left.\quad+\left[(1+u)^{-2} u, x^{-1} z^{-1}(1+z)^{2}(1+x)^{2}\right]\right\} \\
& \quad \times(b-1)(c-1) \widehat{d}((x, u)-1) \alpha^{2}=0 \tag{2.12}
\end{align*}
$$

Subtracting (2.12) from (2.11) we get

$$
\begin{aligned}
0 & =\left\{\left[x, z^{-1}+z\right] x^{-1}-\left[x^{-1}, z^{-1}+z\right] x\right\}(b-1) \widehat{d}(c-1)((x, u)-1) \alpha^{2} \\
& =2\left(z-z^{-1}\right) \widehat{b}(c-1) \widehat{d}((x, u)-1) \alpha^{2}=2 l\left(z-z^{-1}\right) \widehat{a} \widehat{b} \widehat{d} \alpha^{2}
\end{aligned}
$$

Thus $l=0$ and $(u, x)=1$. On interchanging x and y in the above proof we get $(u, y)=1$. Similarly interchanging x and z leads to $(u, z)=1$.

Theorem 2.1. Let G be a group of class 2. Then $U^{\prime \prime \prime}=1$ if and only if G^{\prime} is an elementary abelian 3-subgroup of G such that $\left|G^{\prime}\right| \leq 3^{3}$.

Proof. Let $U^{\prime \prime \prime}=1$. Then by Lemma 2.1, G^{\prime} is an elementary abelian 3 -subgroup of G. Suppose that $G^{\prime} \neq C_{3}$, then there exist $x, y, z \in G$ such that $(x, y) \neq 1$ and $(x, z) \notin\langle(x, y)\rangle$. If for all such triplets $x, y, z \in G,(y, z),(x, g) \in$ $\langle(x, y),(x, z)\rangle$ for all $g \in G$, then $G^{\prime}=C_{3} \times C_{3}$ by [14]. Now we have two cases which we examine one by one:

Case (I): Let $x, y, z \in G$ such that $a=(x, y) \neq 1, b=(x, z) \notin\langle a\rangle, c=$ $(y, z) \notin\langle a, b\rangle$. Then we show that $G^{\prime}=\langle a, b, c\rangle=M$. Let, if possible, $u, v \in G$ such that $(u, v) \notin M$. For any $t \in G$, let $r_{12}=\left(1+x^{-1}, y^{-1}\right), r_{13}=(1+z((x, t)-1), x)$, $r_{14}=\left(1+x^{-1}, t^{-1}\right)$,

$$
u_{10}=\left(r_{12}, r_{6}\right)=1+r_{6}^{-1}(1+x)^{-2}(1+y)^{-2} y x \widehat{a}(c-1) \in U^{\prime \prime}
$$

and

$$
u_{11}=\left(r_{13}, r_{14}\right)=1-(1+x)^{-2} z x \widehat{b} \widehat{(x, t)} \in U^{\prime \prime}
$$

Thus $\left[u_{10}, u_{11}\right]=0$ leads to

$$
\left[r_{6}^{-1}(1+x)^{-2}(1+y)^{-2} y x,(1+x)^{-2} z x\right] \widehat{a} \widehat{b}(c-1) \widehat{(x, t)}=0
$$

Equivalently
$0=\left[y^{-1}(1+y)^{2}, z\right] \widehat{a} \widehat{b}(c-1) \widehat{(x, t)}=\left[y+y^{-1}, z\right] \widehat{a} \widehat{b}(c-1) \widehat{(x, t)}=(1-y) \widehat{a} \widehat{a} \widehat{c}(x, t)$.
Thus $(x, t) \in M$, for all $t \in G$. On interchanging x and y in the above proof, we get $(y, t) \in M$, for all $t \in G$. Similarly, interchanging x and z leads to $(z, t) \in M$, for all $t \in G$.

Now by Lemma 2.2, $(u, x)=1=(u, y)$. So $(z u, x)=b^{-1},(z u, y)=c^{-1}$ and $a=(x, y) \notin\langle(z u, x),(z u, y)\rangle=\langle b, c\rangle$. This yields $(z u, v)=(z, v)(u, v) \in M$. Hence $(u, v) \in M$.

Case (II): For all $x, y, z \in G$ such that $(x, y) \neq 1$ and $(x, z) \notin\langle(x, y)\rangle$, let $(y, z) \in\langle(x, y),(x, z)\rangle$. Out of all such triplets, there is a triplet $x, y, z \in G$ such that $(x, g) \notin\langle(x, y),(x, z)\rangle$ for some $g \in G$. Let $a=(x, y), b=(x, z)$, $c=(y, z)$ and $d=(x, g)$. Then we shall prove that $G^{\prime}=\langle a, b, d\rangle=N$. As noted earlier, we can assume that $c=a b$. For all $t \in G$, let $r_{15}=\left(1+g^{-1}, x^{-1}\right)$, $r_{16}=(1+y((x, t)-1), z)$,

$$
u_{12}=\left(r_{16}, r_{14}\right)=1-(1+x)^{-1} x y(1+x)^{-1}\left(a^{-1}-1\right)(c-1) \widehat{(x, t)} \in U^{\prime \prime}
$$

and

$$
u_{13}=\left(r_{15}, r_{10}\right)=1+r_{10}^{-1}(1+g)^{-2}(1+x)^{-2} g x(b-1) \widehat{d} \in U^{\prime \prime}
$$

Thus

$$
\begin{gathered}
0=\left[u_{12}, u_{13}\right] \\
=\left[(1+x)^{-1} x y(1+x)^{-1}, r_{10}^{-1}(1+g)^{-2}(1+x)^{-2} g x\right]\left(a^{-1}-1\right)(b-1)(c-1) \widehat{d}(x, t) .
\end{gathered}
$$

Equivalently

$$
\begin{align*}
0= & {\left[y, x^{-1}(1+x)^{2} g^{-1}(1+g)^{2}\right](a-1)(b-1)(c-1) \widehat{d(x, t)} } \\
= & \left\{\left[y, x^{-1}+x\right] g^{-1}(1+g)^{2}+x^{-1}(1+x)^{2}\left[y, g^{-1}+g\right]\right\} \\
& \times(a-1)(b-1)(c-1) \widehat{d}(x, t) . \tag{2.13}
\end{align*}
$$

Since $d \notin\langle a\rangle$, we can write $(y, g)=a^{r} d^{s}$. On replacing g by $x^{r} g$, we get
$\left(y, x^{r} g\right)=d^{s}$ and the above equation yields

$$
(x-1) \widehat{a} \widehat{b} \widehat{d} \widehat{(x, t)}=0 .
$$

Thus $(x, t) \in N$. On interchanging x and y in (2.13) we get

$$
\begin{aligned}
\left\{\left[x, y^{-1}+y\right] g^{-1}(1+g)^{2}+y^{-1}(1+y)^{2}[\right. & \left.\left.x, g^{-1}+g\right]\right\} \\
& (a-1)(b-1)(c-1) \widehat{(y, g)} \widehat{(y, t)}=0 .
\end{aligned}
$$

As before, on replacing g by $x^{r} g$ we get

$$
s^{2}(y-1) \widehat{a} \widehat{b} \widehat{d}(y, t)=0
$$

So if $s \neq 0$, then $(y, t) \in N$. If $s=0$, then replace y by $x y$ to get

$$
(x y-1) \widehat{a} \widehat{b} \widehat{d}(x y, t)=0
$$

Since $(x, t) \in N$, we conclude $(y, t) \in N$. Similarly on interchanging x and z in (2.13) we get
$\left\{\left[y, z^{-1}+z\right] g^{-1}(1+g)^{2}+z^{-1}(1+z)^{2}\left[y, g^{-1}+g\right]\right\}(a-1)(b-1)(c-1) \widehat{(z, g)} \widehat{(z, t)}=0$.
Now $d \notin\langle b\rangle$, so $(z, g)=b^{l} d^{m}$ and on replacing g by $x^{l} g$, we get $\left(z, x^{l} g\right)=d^{m}$ and $\left(y, x^{l} g\right)=a^{r-l} d^{s}$. Thus if $r=l$, we get

$$
m^{2}(z-1) \widehat{a} \widehat{b} \widehat{d}(z, t)=0
$$

and $(z, t) \in N$, if $m \neq 0$. For $m=0$, replacing z by $x^{2} z$ leads to the same conclusion. If $r \neq l$, then replacing z by $x z$ for $m \neq 2$ and by $x^{2} z$ for $m=2$, yields the same result.

Let $u, v \in G$ such that $(u, v) \notin N$. Then $(u, x)=1=(u, y)$, by Lemma 2.3. Thus $(x, u y)=a,(x, u z)=b,(x, u g)=d$, and hence $(u y, v)=(u, v)(y, v) \in N$. So $(u, v) \in N$.

Conversely, if G^{\prime} is a central and elementary abelian 3-subgroup of G of order $\leq 3^{3}$ then by [12, Theorem 2.3], we have $\delta^{(3)}(K G)=0$ and hence $U^{\prime \prime \prime}=1$.

Finally, we give an example of a finite group G with $G^{\prime}=C_{3} \times C_{3} \times C_{3}$ but non-central and show that for this group derived length of U is more than 3 .

Example 2.1. Let $G=\langle a, b, c, d| a^{3}=b^{3}=c^{3}=d^{2}=1,(a, b)=(a, c)=$ $(b, c)=1,(a, d)=a,(b, d)=b,(c, d)=c\rangle$. Then $G^{\prime}=C_{3} \times C_{3} \times C_{3}=\langle a\rangle \times\langle b\rangle \times\langle c\rangle$ is not central in G and $U^{\prime \prime \prime} \neq 1$.

Let K be a field with Char $K=3$, then

$$
\begin{aligned}
u_{1} & =(1+d(a-1), d)=1+d a(a-1)+\widehat{a}, \\
r & =\left(u_{1}, b\right)=1+d a(a-1)\left(b^{-1}-1\right)+\widehat{a}\left(b^{-1}-1\right), \\
u_{2} & =(1+d(c-1), d)=1+d c(c-1)+\widehat{c} \\
\text { and } s & =\left(u_{2}, b\right)=1+d c(c-1)\left(b^{-1}-1\right)+\widehat{c}\left(b^{-1}-1\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
(r, s) & =1+r^{-1} s^{-1}\left[d a(a-1)\left(b^{-1}-1\right)+\widehat{a}\left(b^{-1}-1\right), d c(c-1)\left(b^{-1}-1\right)+\widehat{c}\left(b^{-1}-1\right)\right] \\
& =1+r^{-1} s^{-1} d \widehat{b}(a-1)\{c(a-1)-a(c-1)\}=1+d \widehat{b}(a-1)(c-1)(a-c)
\end{aligned}
$$

This implies that $\delta^{3}(U(K G)) \neq 1$.

Acknowledgments: The authors wish to thank the referee for useful suggestions that led to a better presentation of the paper.

References

[1] Z. Balogh and Y. Li, On the derived length of the group of units of a group algebra, J. Algebra Appl. 6, no. 6 (2007), 991-999.
[2] C. Baginski, A note on the derived length of the unit group of a modular group algebra, Comm. Algebra 30 (2002), 4905-4913.
[3] J. M. Bateman, On the solvability of unit groups of group algebras, Trans. Amer. Math. Soc. 157 (1971), 73-86.
[4] A. A. BovDi, The group of units of a group algebra of characteristic p, Publ. Math. Debrecen 52 (1998), 193-244.
[5] A. A. BovDi, Group algebras with solvable group of units, Comm. Algebra 33, no. 10 (2005), 3725-3738.
[6] A. A. Bovdi and I. I. Khripta, Group algebras of periodic groups with solvable multiplicative group, Mat. Zametki 22 (1977), 3421-3432.
[7] D. B. Coleman and R. Sandling, Mod 2 group algebras with metabelian unit groups, J. Pure Appl. Algebra 131 (1998), 25-36.
[8] H. Chandra and M. Sahai, Group algebras with unit groups of derived length three, J. Algebra Appl. 9, no. 2 (2010), 305-314.
[9] J. Kurdics, On group algebras with metabelian unit groups, Period. Math. Hungar. 32 (1996), 57-64.
[10] K. Motose and Y. Ninomiya, On the solvability of unit groups of group rings, Math. J. Okayama Univ. 15 (1972), 209-214.
[11] D. S. Passman, Observations on group rings, Comm. Algebra 5 (1977), 1119-1162.
[12] M. SaHAI, Lie solvable group algebras of derived length 3, Publ. Math. 39 (1995), 233-240.
[13] M. Sahai, Group algebras with centrally metabelian unit groups, Publ. Math. 40 (1996), 443-456.
[14] M. Sahai, Group algebras satisfying a certain Lie identity, Comm. Algebra 34 (2006), 817-828.
[15] M. Sahai, On group algebras $K G$ with $U(K G)^{\prime}$ nilpotent of class at most 2, Contemp Math. 456 (2008), 165-173.
[16] S. K. Sehgal, Topics in group rings, Marcel Dekker, New York, 1978.
[17] A. Shalev, Metabelian unit groups of group algebras are usually abelian, J. Pure Appl. Algebra 72 (1991), 295-302.

HARISH CHANDRA
DEPARTMENT OF MATHEMATICS
AND ASTRONOMY
UNIVERSITY OF LUCKNOW
LUCKNOW
U.P. (INDIA) 226007

E-mail: hcp_1985@yahoo.co.in
MEENA SAHAI
DEPARTMENT OF MATHEMATICS
AND ASTRONOMY
UNIVERSITY OF LUCKNOW
LUCKNOW
U.P. (INDIA) 226007

E-mail: meena_sahai@hotmail.com
(Received February 27, 2012; revised July 11, 2012)

[^0]: Mathematics Subject Classification: Primary: 16S34, 16U60.
 Key words and phrases: group rings, unit groups.
 The first author is very thankful to UGC for providing financial support in the form of SRF.

