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On group algebras with unit groups of derived length three
in characteristic three

By HARISH CHANDRA (Lucknow) and MEENA SAHAI (Lucknow)

Abstract. Let K be a field of characteristic 3 and let G be a finite 3-group of

class 2. Necessary and sufficient conditions are obtained for the group of units U(KG)

to be solvable of derived length 3.

1. Introduction

Let KG be the group algebra of a finite group G over a field K of characte-

ristic p. Let U = U(KG) be the group of units of the group algebra KG. First

description of the solvability of the unit group U is given in [16, Chapter VI].

This problem has been discussed by many authors as can be seen in [3], [4], [5],

[6], [10], [11]. Computation of the derived length of U and its connection with the

order and nature of the commutator subgroup G′ of G is an interesting problem.

Shalev [17] has found necessary and sufficient conditions for U to be metabelian

when p ≥ 3. This work was completed by Coleman and Sandling [7] and inde-

pendently by Kurdics [9] for p = 2. For p 6= 2, a complete description of group

algebras KG with centrally metabelian unit groups is given in [13]. The group

algebras with γ3(δ
1(U)) = 1 have been listed in [15]. Baginski [2] and Balogh

and Li [1] have computed the derived length of U for finite p-groups and arbit-

rary groups with cyclic commutator subgroup of order pn (p > 2), respectively.

Recently we have obtained the necessary and sufficient conditions for U to have

derived length 3 when p 6= 2, 3, see [8]. As in [8], for p = 3, if U ′′′ = 1, then
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G = P o H where P is a normal Sylow 3-subgroup of G and H is an abelian

3′-subgroup of G. So in this paper, we continue our work on this problem when

p = 3 and G is a finite 3-group. In addition, we assume that γ3(G) = 1. We will

use (x, y) = x−1y−1xy for the group commutator of elements x and y of a group

G and if o(x) = n then x̂ = 1 + x + x2 + · · · + xn−1. The Lie commutators are

denoted by [x, y] = xy − yx, x, y ∈ KG.

Our main result is as follows:

Theorem 1.1. Let K be a field such that CharK = 3 and let G be a finite

3-group of class 2. Then the following conditions are equivalent:

(i) U ′′′ = 1;

(ii) G′ is elementary abelian 3-subgroup such that |G′| ≤ 33.

2. Proof of the Theorem

Throughout this section, K is a field of characteristic 3.

Lemma 2.1. Let G be a finite 3-group of class 2 such that U ′′′ = 1. Then G′

has exponent 3.

Proof. Let x, y ∈ G, z = (x, y), o(z) = 3n, where n ≥ 2. If u = 1 + x − y,

then

u1 = (u, y) = 1 + u−1x(z − 1),

u2 = (u, x) = 1 + u−1y(z − 1)z−1

and u3 = (u, y−1) = 1− u−1x(z − 1)z−1.

Clearly (u1, u3) = 1. Now

v = (u1, u2) = 1 + u−1
1 u−1

2 u−2yxu−1(z − 1)3z−1

and w = (u3, u2) = 1− u−1
3 u−1

2 u−2yxu−1(z − 1)3z−2.

Since U ′′′ = 1, so [v, w] = [u−1
1 β, u−1

3 β](z − 1)6z−3 = 0 where

β = u−1
2 u−2yxu−1. The annihilator A of (z−1)6 in KG is a two sided ideal. The

above equation implies that β
−1

u1 and β
−1

u3 commute in KG/A where w is the

image of w ∈ KG in KG/A. Hence

[β−1u1, β
−1u3](z − 1)6 = 0.
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On simplifying we get

{2uu2 − x−1yu−1xy−1u2u2 − ux−1u−1y−1xu−1xu2u2z
−1

+ ux−1u−1y−1xu2u2z
−1 + ux−1y−1u−1yxuu2 − (z − 1)z−1}(z − 1)8 = 0.

As u2 ∈ 1 + (z − 1)KG, hence on multiplying this equation by (z − 1)3
n−9,

we get (z − 1)3
n−1 = 0, which is a contradiction. Hence n = 1 and exponent of

G′ is 3. ¤

To prove the theorem we only need to show that |G′| ≤ 33. Suppose that

G′ 6= C3. Then, there exist x, y, z ∈ G such that (x, y) 6= 1 and (x, z) /∈ 〈(x, y)〉.
If for all such triplets x, y, z ∈ G, (y, z), (x, g) ∈ 〈(x, y), (x, z)〉 for all g ∈ G, then

G′ = C3 ×C3, [14, Theorem 14, Step III]. So if G′ 6= C3 ×C3, then there exists a

triplet x, y, z ∈ G such that either (y, z) /∈ 〈(x, y), (x, z)〉 or (x, g) /∈ 〈(x, y), (x, z)〉
for some g ∈ G. We first prove some preliminary results based on these two cases.

Lemma 2.2. Let G be a finite 3-group of class 2 such that U ′′′ = 1. Let

u, v, x, y, z ∈ G such that a = (x, y) 6= 1, b = (x, z) /∈ 〈a〉 and c = (y, z) /∈ 〈a, b〉. If
(u, x), (u, y), (u, z) ∈ 〈a, b, c〉 and (u, v) /∈ 〈a, b, c〉, then (u, x)=(u, y) = (u, z)= 1.

Proof. If t ∈ G′, then 1+ g(t− 1) is a unit for all g ∈ G. Let α = (u, v)− 1

and (u, x) = albmcn. Now

r1 = (1 + xα, y) = 1 + xα(a− 1)− x2(a− 1)α2

and r2 = (1 + u−1, v−1) = 1 + (1 + u)−1α.

Then u1 = (r1, r2) = 1 + r−1
1 r−1

2 [r1 − 1, r2 − 1] = 1 + [x, (1 + u)−1](a− 1)α2

= 1− (1 + u)−1ux(1 + u)−1(a− 1)((x, u)− 1)α2 ∈ U ′′.

Also if

r3 = (1 + y−1, x−1) = 1 + (1 + y)−1(a−1 − 1)

and r4 = (1 + z−1, y−1) = 1 + (1 + z)−1(c−1 − 1).

Then u2 = (r3, r4) = 1− r−1
3 (1 + y)−2(1 + z)−2zy(a−1 − 1)ĉ ∈ U ′′.

As [u1, u2] = 0, so we have

[(1 + u)−1ux(1 + u)−1, (1 + y)−2(1 + z)−2zy]âĉ((x, u)− 1)α2 = 0.

If M = 〈a, b, c〉, then ∆7(M) = 0. Since (u, x), (u, y), (u, z) ∈ M , hence we

have

[(1 + u)−2ux, (1 + y)−2(1 + z)−2zy]âĉ((x, u)− 1)α2 = 0.
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Thus

[(1 + u)−2ux, y−1z−1(1 + z)2(1 + y)2]âĉ((x, u)− 1)α2 = 0.

Equivalently

{(1 + u)−2u[x, y−1z−1(1 + z)2(1 + y)2]x−1

+ [(1 + u)−2u, y−1z−1(1 + z)2(1 + y)2]}âĉ((x, u)− 1)α2 = 0. (2.1)

On replacing x by x−1 in r1 we get

r′1 = 1 + x−1α(a−1 − 1)− x−2α2(a−1 − 1).

Then

u′
1 = (r′1, r2) = 1− (1 + u)−1ux−1(1 + u)−1((x, u)−1 − 1)(a−1 − 1)α2.

As [u′
1, u2] = 0, so we have

{(1 + u)−2u[x−1, y−1z−1(1 + z)2(1 + y)2]x

+ [(1 + u)−2u, y−1z−1(1 + z)2(1 + y)2]}âĉ((x, u)− 1)α2 = 0. (2.2)

Subtracting (2.2) from (2.1) we get

0 = {[x, z−1 + z]x−1 − [x−1, z−1 + z]x}âĉ((x, u)− 1)α2 = 2m(z − z−1)âb̂ĉα2.

Thus m = 0.

Now take r5 = (1 + xα, z), r′5 = (1 + x−1α, z), r6 = (1 + y−1, z−1), r7 =

(1 + z−1, x−1) and the commutators u3 = (r5, r2), u
′
3 = (r′5, r2), u4 = (r6, r7) we

have

0 = [u3, u4] = [(1 + u)−1ux(1 + u)−1, (1 + z)−2(1 + y)−2yz ]̂bĉ((x, u)− 1)α2.

Equivalently

{(1 + u)−2u[x, z−1y−1(1 + y)2(1 + z)2]x−1

+ [(1 + u)−2u, z−1y−1(1 + y)2(1 + z)2]}b̂ĉ((x, u)− 1)α2 = 0. (2.3)

Also [u′
3, u4] = 0 implies

{(1 + u)−2u[x−1, z−1y−1(1 + y)2(1 + z)2]x

+ [(1 + u)−2u, z−1y−1(1 + y)2(1 + z)2]}b̂ĉ((x, u)− 1)α2 = 0. (2.4)
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Subtracting (2.4) from (2.3) we get

0 = {[x, y−1 + y]x−1 − [x−1, y−1 + y]x}b̂ĉ((x, u)− 1)α2 = 2l(y − y−1)âb̂ĉα2.

Thus l = 0. Now

u5 = (r3, r7)

= 1 + r−1
3 r−1

7 (1 + z)−1(1 + y)−1zy(1 + y)−1(1 + z)−1(a−1−1)(b−1−1)(c−1).

Hence [u1, u5] = 0 yields

0 = [(1 + u)−1ux(1 + u)−1, r−1
7 (1 + z)−1(1 + y)−1

× zy(1 + y)−1(1 + z)−1]â(b− 1)(c− 1)((x, u)− 1)α2.

Equivalently

{(1 + u)−2u[x, y−1z−1(1 + z)2(1 + y)2]x−1

+ [(1 + u)−2u, y−1z−1(1 + z)2(1 + y)2]}
× â(b− 1)(c− 1)((x, u)− 1)α2 = 0. (2.5)

Also [u′
1, u5] = 0 yields

{(1 + u)−2u[x−1, y−1z−1(1 + z)2(1 + y)2]x

+ [(1 + u)−2u, y−1z−1(1 + z)2(1 + y)2]}
× â(b− 1)(c− 1)((x, u)− 1)α2 = 0. (2.6)

Subtracting (2.6) from (2.5) we get

0 = {[x, z−1 + z]x−1 − [x−1, z−1 + z]x}â(b− 1)(c− 1)((x, u)− 1)α2

= 2n(z − z−1)âb̂ĉα2.

Thus n = 0 and (u, x) = 1.

On interchanging x and y in the above proof we get (u, y) = 1. Similarly, if

we interchange x and z we get (u, z) = 1. ¤

If for all triplets x, y, z ∈ G such that a = (x, y) 6= 1, b = (x, z) /∈ 〈a〉, we
have c = aibj , then on replacing z by xi−1z and y by x1−jy, we can assume that

c = ab.
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Lemma 2.3. LetG be a finite 3-group of class 2 such that U ′′′ = 1. Let for all

triplets x, y, z in G such that a = (x, y) 6= 1, b = (x, z) /∈ 〈a〉, c = (y, z) ∈ 〈a, b〉.
If u, v, g ∈ G such that d = (x, g) /∈ 〈a, b〉, (u, v) /∈ 〈a, b, d〉 and (u, x), (u, y),

(u, z) ∈ 〈a, b, d〉. Then (u, x) = (u, y) = (u, z) = 1.

Proof. Let α = (u, v)− 1 and (u, x) = albmdn. Now

r8 = (1 + xα, g) = 1 + xα(d− 1)− x2(d− 1)α2,

r′8 = (1 + x−1α, g) = 1 + x−1α(d−1 − 1)− x−2α2(d−1 − 1)

and
r9 = (1 + x−1, g−1) = 1 + (1 + x)−1(d− 1).

Then

u6 = (r8, r2) = 1− (1 + u)−1ux(1 + u)−1(d− 1)((x, u)− 1)α2,

u′
6 = (r′8, r2) = 1− (1 + u)−1ux−1(1 + u)−1(d−1 − 1)((x, u)−1 − 1)α2

and

u7 = (r9, r6)

= 1 + r−1
9 r−1

6 (1 + x)−1(1 + y)−1yx(1 + y)−1(1 + x)−1(a− 1)(c− 1)(d− 1).

As [u6, u7] = 0, so we have

[(1 + u)−1ux(1 + u)−1, r−1
6 (1 + x)−1(1 + y)−1yx(1 + y)−1(1 + x)−1]

(a− 1)(c− 1)d̂((x, u)− 1)α2 = 0.

Let N = 〈a, b, d〉, then ∆7(N) = 0. Since (u, x), (u, y) ∈ N , hence we have

[(1 + u)−2ux, (1 + x)−2(1 + y)−2yx](a− 1)(c− 1)d̂((x, u)− 1)α2 = 0.

Thus

[(1 + u)−2ux, x−1y−1(1 + y)2(1 + x)2](a− 1)(c− 1)d̂((x, u)− 1)α2 = 0.

Equivalently

{(1 + u)−2u[x, x−1y−1(1 + y)2(1 + x)2]x−1

+ [(1 + u)−2u, x−1y−1(1 + y)2(1 + x)2]}
× (a− 1)(c− 1)d̂((x, u)− 1)α2 = 0. (2.7)
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Also [u′
6, u7] = 0, so we have

{(1 + u)−2u[x−1, x−1y−1(1 + y)2(1 + x)2]x

+ [(1 + u)−2u, x−1y−1(1 + y)2(1 + x)2]}
× (a− 1)(c− 1)d̂((x, u)− 1)α2 = 0. (2.8)

Subtracting (2.8) from (2.7) we get

0 = {[x, y−1 + y]x−1 − [x−1, y−1 + y]x}(a− 1)(c− 1)d̂((x, u)− 1)α2

= 2(y − y−1)â(c− 1)d̂((x, u)− 1)α2 = 2m(y − y−1)âb̂d̂α2.

Thus m = 0.

Now take r10 = (1 + x−1, z−1), r11 = (1 + y−1, g−1) and u8 = (r10, r11). We

have

0 = [u3, u8] = [(1 + u)−1ux(1 + u)−1, r−1
11 (1 + x)−1(1 + y)−1

× yx(1 + y)−1(1 + x)−1](a− 1)̂b((y, g)− 1)((x, u)− 1)α2.

Equivalently

(1 + u)−2u[x, x−1y−1(1 + y)2(1 + x)2]x−1

+ [(1 + u)−2u, x−1y−1(1 + y)2(1 + x)2]}
× (a− 1)̂b((y, g)− 1)((x, u)− 1)α2 = 0. (2.9)

Also [u′
3, u8] = 0 implies

{(1 + u)−2u[x−1, x−1y−1(1 + y)2(1 + x)2]x

+ [(1 + u)−2u, x−1y−1(1 + y)2(1 + x)2]}
× (a− 1)̂b((y, g)− 1)((x, u)− 1)α2 = 0. (2.10)

Subtracting (2.10) from (2.9) we get

0 = {[x, y−1 + y]x−1 − [x−1, y−1 + y]x}(a− 1)̂b((y, g)− 1)((x, u)− 1)α2

= 2(y − y−1)âb̂((y, g)− 1)((x, u)− 1)α2.

Let (y, g) = ards. On replacing y by xy, if needed, we can assume that s 6= 0.

Hence

2n(y − y−1)âb̂d̂α2 = 0.
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Thus n = 0. Now let u9 = (r9, r4). Then

0 = [u6, u9] = [(1 + u)−1ux(1 + u)−1, r−1
4 (1 + x)−1(1 + z)−1

× zx(1 + z)−1(1 + x)−1](b− 1)(c− 1)d̂((x, u)− 1)α2.

Equivalently

{(1 + u)−2u[x, x−1z−1(1 + z)2(1 + x)2]x−1

+ [(1 + u)−2u, x−1z−1(1 + z)2(1 + x)2]}
× (b− 1)(c− 1)d̂((x, u)− 1)α2 = 0. (2.11)

Also [u′
6, u9] = 0 implies

{(1 + u)−2u[x−1, x−1z−1(1 + z)2(1 + x)2]x

+ [(1 + u)−2u, x−1z−1(1 + z)2(1 + x)2]}
× (b− 1)(c− 1)d̂((x, u)− 1)α2 = 0. (2.12)

Subtracting (2.12) from (2.11) we get

0 = {[x, z−1 + z]x−1 − [x−1, z−1 + z]x}(b− 1)d̂(c− 1)((x, u)− 1)α2

= 2(z − z−1)̂b(c− 1)d̂((x, u)− 1)α2 = 2l(z − z−1)âb̂d̂α2.

Thus l = 0 and (u, x) = 1. On interchanging x and y in the above proof we get

(u, y) = 1. Similarly interchanging x and z leads to (u, z) = 1. ¤

Theorem 2.1. Let G be a group of class 2. Then U ′′′ = 1 if and only if G′

is an elementary abelian 3−subgroup of G such that |G′| ≤ 33.

Proof. Let U ′′′ = 1. Then by Lemma 2.1, G′ is an elementary abelian

3-subgroup of G. Suppose that G′ 6= C3, then there exist x, y, z ∈ G such that

(x, y) 6= 1 and (x, z) /∈ 〈(x, y)〉. If for all such triplets x, y, z ∈ G, (y, z), (x, g) ∈
〈(x, y), (x, z)〉 for all g ∈ G, then G′ = C3 × C3 by [14]. Now we have two cases

which we examine one by one:

Case (I): Let x, y, z ∈ G such that a = (x, y) 6= 1, b = (x, z) /∈ 〈a〉, c =

(y, z) /∈ 〈a, b〉. Then we show thatG′ = 〈a, b, c〉 = M. Let, if possible, u, v ∈ G such

that (u, v) /∈ M . For any t ∈ G, let r12 = (1+x−1, y−1), r13 = (1+z((x, t)−1), x),

r14 = (1 + x−1, t−1),

u10 = (r12, r6) = 1 + r−1
6 (1 + x)−2(1 + y)−2yxâ(c− 1) ∈ U ′′
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and

u11 = (r13, r14) = 1− (1 + x)−2zxb̂(̂x, t) ∈ U ′′.

Thus [u10, u11] = 0 leads to

[r−1
6 (1 + x)−2(1 + y)−2yx, (1 + x)−2zx]âb̂(c− 1)(̂x, t) = 0.

Equivalently

0 = [y−1(1 + y)2, z]âb̂(c− 1)(̂x, t) = [y + y−1, z]âb̂(c− 1)(̂x, t) = (1− y)âb̂ĉ(̂x, t).

Thus (x, t) ∈ M , for all t ∈ G. On interchanging x and y in the above

proof, we get (y, t) ∈ M , for all t ∈ G. Similarly, interchanging x and z leads to

(z, t) ∈ M , for all t ∈ G.

Now by Lemma 2.2, (u, x) = 1 = (u, y). So (zu, x) = b−1, (zu, y) = c−1

and a = (x, y) /∈ 〈(zu, x), (zu, y)〉 = 〈b, c〉. This yields (zu, v) = (z, v)(u, v) ∈ M .

Hence (u, v) ∈ M .

Case (II): For all x, y, z ∈ G such that (x, y) 6= 1 and (x, z) /∈ 〈(x, y)〉,
let (y, z) ∈ 〈(x, y), (x, z)〉. Out of all such triplets, there is a triplet x, y, z ∈ G

such that (x, g) /∈ 〈(x, y), (x, z)〉 for some g ∈ G. Let a = (x, y), b = (x, z),

c = (y, z) and d = (x, g). Then we shall prove that G′ = 〈a, b, d〉 = N. As

noted earlier, we can assume that c = ab. For all t ∈ G, let r15 = (1 + g−1, x−1),

r16 = (1 + y((x, t)− 1), z),

u12 = (r16, r14) = 1− (1 + x)−1xy(1 + x)−1(a−1 − 1)(c− 1)(̂x, t) ∈ U ′′

and

u13 = (r15, r10) = 1 + r−1
10 (1 + g)−2(1 + x)−2gx(b− 1)d̂ ∈ U ′′.

Thus

0 = [u12, u13]

= [(1 + x)−1xy(1 + x)−1, r−1
10 (1 + g)−2(1 + x)−2gx](a−1 − 1)(b− 1)(c− 1)d̂(̂x, t).

Equivalently

0 = [y, x−1(1 + x)2g−1(1 + g)2](a− 1)(b− 1)(c− 1)d̂(̂x, t)

= {[y, x−1 + x]g−1(1 + g)2 + x−1(1 + x)2[y, g−1 + g]}
× (a− 1)(b− 1)(c− 1)d̂(̂x, t). (2.13)

Since d /∈ 〈a〉, we can write (y, g) = ards. On replacing g by xrg, we get
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(y, xrg) = ds and the above equation yields

(x− 1)âb̂d̂(̂x, t) = 0.

Thus (x, t) ∈ N . On interchanging x and y in (2.13) we get

{[x, y−1 + y]g−1(1 + g)2 + y−1(1 + y)2[x, g−1 + g]}
(a− 1)(b− 1)(c− 1)(̂y, g)(̂y, t) = 0.

As before, on replacing g by xrg we get

s2(y − 1)âb̂d̂(̂y, t) = 0.

So if s 6= 0, then (y, t) ∈ N . If s = 0, then replace y by xy to get

(xy − 1)âb̂d̂(̂xy, t) = 0.

Since (x, t) ∈ N , we conclude (y, t) ∈ N . Similarly on interchanging x and z

in (2.13) we get

{[y, z−1+z]g−1(1+g)2+z−1(1+z)2[y, g−1+g]}(a−1)(b−1)(c−1)(̂z, g)(̂z, t) = 0.

Now d /∈ 〈b〉, so (z, g) = bldm and on replacing g by xlg, we get (z, xlg) = dm

and (y, xlg) = ar−lds. Thus if r = l, we get

m2(z − 1)âb̂d̂(̂z, t) = 0

and (z, t) ∈ N , if m 6= 0. For m = 0, replacing z by x2z leads to the same

conclusion. If r 6= l, then replacing z by xz for m 6= 2 and by x2z for m = 2,

yields the same result.

Let u, v ∈ G such that (u, v) /∈ N . Then (u, x) = 1 = (u, y), by Lemma 2.3.

Thus (x, uy) = a, (x, uz) = b, (x, ug) = d, and hence (uy, v) = (u, v)(y, v) ∈ N .

So (u, v) ∈ N .

Conversely, if G′ is a central and elementary abelian 3-subgroup of G of order

≤ 33 then by [12, Theorem 2.3], we have δ(3)(KG) = 0 and hence U ′′′ = 1. ¤

Finally, we give an example of a finite group G with G′ = C3 ×C3 ×C3 but

non-central and show that for this group derived length of U is more than 3.
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Example 2.1. Let G = 〈a, b, c, d|a3 = b3 = c3 = d2 = 1, (a, b) = (a, c) =

(b, c) = 1, (a, d) = a, (b, d) = b, (c, d) = c〉. Then G′ = C3×C3×C3 = 〈a〉×〈b〉×〈c〉
is not central in G and U ′′′ 6= 1.

Let K be a field with CharK = 3, then

u1 = (1 + d(a− 1), d) = 1 + da(a− 1) + â,

r = (u1, b) = 1 + da(a− 1)(b−1 − 1) + â(b−1 − 1),

u2 = (1 + d(c− 1), d) = 1 + dc(c− 1) + ĉ

and s = (u2, b) = 1 + dc(c− 1)(b−1 − 1) + ĉ(b−1 − 1).

Then

(r, s) = 1 + r−1s−1[da(a− 1)(b−1−1)+ â(b−1−1), dc(c− 1)(b−1 − 1) + ĉ(b−1 − 1)]

= 1 + r−1s−1db̂(a− 1){c(a− 1)− a(c− 1)} = 1 + db̂(a− 1)(c− 1)(a− c).

This implies that δ3(U(KG)) 6= 1.

Acknowledgments: The authors wish to thank the referee for useful sugg-

estions that led to a better presentation of the paper.
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