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Weakly-symmetry of the Sasakian lifts on tangent bundles
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This paper is dedicated to Professor Lajos Tamássy on the occasion

of 90th birthday

Abstract. The weakly symmetry of the Sasakian lift G of a Riemannian metric g

is characterized in terms of flatness for g and G. The cases of recurrent or pseudo-

symmetric G studied by Binh and Tamássy are obtained in particular.

1. Introduction

The notion of weakly symmetric Riemannian manifold was introduced by

Lajos Tamássy and Tran Quoc Binh in [9]. Since then, this type of Rie-

mannian geometry was the subject of several papers: [3]–[8], [12]. For example,

the authors of this concept study the case of Einstein and Sasaki manifold in [10],

respectively the situation of Kähler manifolds in [11]; the case of decomposable

(i.e. product) space appears in [1].

Two weaker variants of weakly symmetries, namely recurrence and pseudo-

symmetry, are considered, again by Tamássy and Binh, in [2] having as prescri-

bed metric the Sasakian lift G to TM of a Riemannian metric g on the base ma-

nifold M . Their result is as follows: If (TM,G) is recurrent or pseudo-symmetric

then (M, g) must be flat and thus (TM,G) must be flat too. The converse is tri-

vially true. The aim of this short note is to extend this reduction result to the

general case of weakly symmetry for G.
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2. The Sasaki lift of a Riemannian metric

Fix a pair (M, g) with Mn a smooth n(≥ 3)-dimensional manifold and g a

Riemannian metric on M . Let π : TM → M its tangent bundle. Let q = (qi) =

(q1, . . . , qn) be the coordinates on the base manifold M and the corresponding

bundle coordinates (q, v) = (qi, vi) = (q1, . . . , qn, v1, . . . , vn) on TM ; then the

metric g has the local coefficients gij = g
(

∂
∂qi ,

∂
∂qj

)
. For t ∈ TM let VtTM =

kerπ∗,t be the vertical subspace of TtTM . The basis of the vertical distribution

V (TM) is given by { ∂
∂vi ; 1 ≤ i ≤ n}. The Levi–Civita connection ∇ of g has the

Christoffel symbols (Γk
ij) and yields the decomposition:

TtTM = VtTM ⊕HtTM (2.1)

with HtTM the horizontal subspace spanned by
{

δ
δqi ; 1 ≤ i ≤ n

}
where:

δ

δqi
=

∂

∂qi
− Γk

ijv
j ∂

∂vk
. (2.2)

Then every vector field X̃ on TM has the decomposition: X̃ = Xv + Xh with

respect to (2.1). Also, a vector field X = Xi(q) ∂
∂qi on M has the following lifts:

a vertical one, XV = Xi ∂
∂vi , respectively a horizontal one, XH = Xi δ

δqi . Let us

denote by R the tensor field of curvature of g.

The Sasaki lift of g to TM is the Riemannian metric G of diagonal form:

G =

(
gij 0

0 gij

)
(2.3)

with respect to the decomposition (2.1). Let ∇̃ and R̃ be the Levi–Civita con-

nection and respectively the curvature of G; we have in the point t ∈ TM :





(∇̃XHY H)|t = (∇XY )H |t − 1

2
(R(X,Y )t)V |t,

(∇̃XHY V )|t = (∇XY )V |t + 1

2
(R(t, Y )X)H |t,

(∇̃XV Y H)|t = 1

2
(R(t,X)Y )H |t, (∇̃XV Y V )|t = 0.

(2.4)
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The expression of R̃ is, [2, p. 556–557]:



R̃(XV , Y V )ZV |t = 0,

R̃(XV , Y V )ZH
t =

[
R(X,Y )Z +

1

4
R(t,X)R(t, Y )Z

−R(t, Y )R(t,X)Z]
H
t ,

R̃(XH , Y V )ZV |t = −
[
1

2
R(Y, Z)X +

1

4
R(t, Y )R(t, Z)X

]H
|t,

2R̃(XH , Y V )ZH
t = [(∇XR)(t, Y, Z)]

H
t

+

[
R(X,Z)Y +

1

2
R(R(t, Y )Z,X)t

]V

t

,

R̃(XH , Y H)ZV |t = 1

2
[(∇XR)(t, Z, Y )− (∇Y R)(t, Z,X)]

H |t

+

[
R(X,Y )Z +

1

4
R(R(t, Z)Y,X)t− 1

4
R(R(t, Z)X,Y )t

]V
|t,

R̃(XH , Y H)ZH |t = 1

2
[(∇ZR)(X,Y, t)]

V |t
+

[
R(X,Y )Z +

1

4
R(t, R(Z, Y )t)X +

1

4
R(t, R(X,Z)t)Y

+
1

2
R(t, R(X,Y )t)Z

]H

t

(2.5)

where t from the above expressions R(t, ·) ·, R(·, ·)t is thought as a vector field

on M , namely t = vi ∂
∂qi . Then tV = vi ∂

∂vi is the Liouville vector field while

tH = vi δ
δqi is exactly the geodesic spray of the metric g.

3. Weakly symmetric Sasakian lifts

Definition ([9]). The Riemannian manifold (M, g) is called weakly symmetric

if there exist four 1-forms α1, . . . , α4 and a vector field A, all on M , such that:

(∇WR)(X,Y, Z) = α1(W )R(X,Y )Z + α2(X)R(W,Y )Z + α3(Y )R(X,W )Z

+ α4(Z)R(X,Y )W + g(R(X,Y )Z,W )A. (3.1)

De and Bandyopadhyay proved in [3] that the following relations are neces-

sary: 


α2 = α3 = α4

A = (α2)
]

(3.2)
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i.e. A is the g-dual vector field of the 1-form α2. Therefore a weakly symmetric

Riemannian manifold is characterized by:

(∇WR)(X,Y, Z) = α1(W )R(X,Y )Z + α2(X)R(W,Y )Z + α2(Y )R(X,W )Z

+ α2(Z)R(X,Y )W + g(R(X,Y )Z,W )(α2)
]. (3.3)

The aim of this note is to study the weakly symmetry of the Sasakian lift

(2.3). More precisely, we have:

Theorem. The Riemannian manifold (TM,G) is weakly symmetric if and

only if the base manifold (M, g) is flat. Hence, (TM,G) is flat.

Proof. If R = 0 it results that R̃ = 0 and we have (3.3) as null equality.

For a proof of the first part we use several times the techniques of [2] using the

formulae (2.5). Firstly, we consider the condition (3.3) for WH , XH , Y V and ZV

and we get:

α1(W
H)R̃(XH , Y V )ZV + α2(X

H)R̃(WH , Y V )ZV + α2(Y
V )R̃(XH ,WH)ZV

+ α2(Z
V )R̃(XH , Y V )WH +G(R̃(XH , Y V )ZV ,WH)(α2)

]

= −∇̃WH

[
1

2
R(Y, Z)X +

1

4
R(t, Y )R(t, Z)X

]H

t

− R̃

[
(∇WX)Ht − 1

2
(R(W,X)t)Vt )Y

V

]
ZV

− R̃(XH ,
1

2
(R(t, Y )W )Ht + (∇WY )Vt )Z

V

− R̃(XH , Y V )

[
1

2
(R(t, Z)W )Ht + (∇WZ)Vt

]
. (3.4)

Secondly, in the above equation we consider only the four times the vertical part

of both sides and then:

α2(Y
V ) [4R(X,W )Z +R(R(t, Z)W,X)t−R(R(t, Z)X,W )t]

+ α2(Z
V )(2R(X,W )Y +R(R(t, Y )W,X)t)− g(2R(Y,Z)X

+R(t, Y )R(t, Z)X,W )α]
2 =

1

2
R [W, 2R(Y, Z)X +R(t, Y )R(t, Z)X] t

− 2R(X,R(t, Y )W )Z +
1

2
R[R(t, Z)R(t, Y )W,X]t− 1

2
R[R(t, Z)X,R(t, Y )W ]

− 1

2
R[R(t, Y )R(t, Z)W,X]t+R(X,R(t, Z)W )Y (3.5)



Weakly-symmetry of the Sasakian lifts on tangent bundles 67

which is exactly four times the first relation on the page 559 of [2]. Thus in the

following, the arguments are as in [2, p. 559-560]. We choose in (3.5) consequ-

ently:

I) Y = t and then:

α2(t
V ) [4R(X,W )Z +R(R(t, Z)W,X)t−R(R(t, Z)X,W )t] + 2α2(Z

V )R(X,W )t

−2g(R(t, Z)X,W )(α2)
] = R(W,R(t, Z)X)t+R(X,R(t, Z)W )t (3.6)

II) Z = t and then:

4α2(Y
V )R(X,W )t+α2(t

V )[2R(X,W )Y+R(R(t, Y )W,X)t]− 2g(R(Y, t)X,W )α]
2

= R(W,R(Y, t)X)t− 2R(X,R(t, Y )W )t. (3.7)

In the last relation we replace Y with Z:

4α2(Z
V )R(X,W )t+ α2(t

V ) [2R(X,W )Z+R(R(t,Z)W,X)t]−2g(R(Z, t)X,W )α]
2

= R(W,R(Z, t)X)t− 2R(X,R(t, Z)W )t (3.8)

and by adding (3.6) and (3.8) we derive:

6α2(Z
V )R(X,W )t+ α2(t

V ) [6R(X,W )Z + 2R(R(t, Z)W,X)t−R(R(t, Z)X,W )t]

= −R(X,R(t, Z)W )t. (3.9)

With Z = t we get:

α2(t
V )R(X,W )t = 0 (3.10)

and if α2(t
V ) 6= 0 we have the conclusion. Suppose now that α2(t

V ) = 0 then

(α2)
]V = 0; returning to (3.6) it results:

4α2(Z
V )R(X,W )t = 2R(X,R(t, Z)W )t+ 2R(W,R(t, Z)X)t. (3.11)

With W = X we obtain:

R(X,R(t, Z)X)t = 0 (3.12)

and we take the g-product with Z: g(R(t, Z)X,R(t, Z)X) = 0 which means:

R(t, Z)X = 0. (3.13)

Again the g-product with an arbitrary Y gives:

g(R(X,Y )t, Z) = 0. (3.14)

The vector field Z being arbitrary we get: R(X,Y )t = 0, for every X, Y and t.

Thus, we have the Conclusion. ¤
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For α2 = 0 respectively α1 = 2α2 in (3.3) we get the Tamássy–Binh result of

Introduction:

Corollary. The Riemannian manifold (TM,G) is recurrent or pseudo-sym-

metric or locally symmetric (∇̃R̃ = 0) if and only if the base manifold (M, g) is

flat. Hence, (TM,G) is flat.

The following open problem is natural: to extend the present Theorem to

other classes of metrics on tangent bundles. The possible (first) candidates are

from the natural metrics of [4] or [5].
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[12] S. A. Uysal and R. Ö. Laleoglu, On weakly symmetric spaces with semi-symmetric
metric connection, Publ. Math. Debrecen 67 (2005), 145–154.

CORNELIA LIVIA BEJAN

SEMINARUL MATEMATIC “AL. MYLLER”

UNIVERSITY “AL. I. CUZA”
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