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The Helmholtz conditions for systems of second order
homogeneous differential equations

By ZBYNĚK URBAN (Pardubice) and DEMETER KRUPKA (Slatinice)

Abstract. Variationality of systems of second order ordinary differential equations

is studied within the class of positive homogeneous systems. The concept of a higher

order positive homogeneous function, related to Finsler geometry, is represented by the

well-known Zermelo conditions, and applied to the theory of variational equations. In

particular, it is shown that every system of m+ 1 second order variational and positive

homogeneous differential equations is linearly dependent and admits subsystems of m

differential equations which are variational in sense of parameter-invariant variational

problems, and vice versa. An example of a positive homogeneous variational system of

second order differential equations is given.

1. Introduction

In this paper we study variationality of systems of second order ordinary

differential equations given by positive homogeneous functions. Euler–Lagrange

equations associated with systems of this class admit positive homogeneous Lag-

rangian, and they have solutions independent of parametrization which preserves
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orientation. From this point of view Lagrangians of the class of positive homoge-

neous and variational systems may represent fundamental functions for possible

higher order generalizations of Finsler geometry.

Recently in [10], we have analysed by means of the geometric theory of jet dif-

ferential groups (Grigore and Krupka [3], Krupka and Krupka [5], Krupka

and Urban [6]), the concept of positive homogeneity for functions depending on

curves and their derivatives up to an arbitrary finite order. It appeared that this

higher order positive homogeneity is equivalent with the well-known Zermelo con-

ditions (see e.g. Zermelo [11], McKiernan [8], Matsyuk [7]), generalizing the

standard Euler formula for positive homogeneous functions depending on curves

and their first derivatives only. On this basis, every solution of a system of diffe-

rential equations with left-hand sides given by positive homogeneous functions is

an orientation-preserving solution.

In Section 2 we briefly recall basic concepts of the general theory of variational

differential equations (see e.g. Havas [4]). In Section 3 we give second order

version of our results contained in [10]; the Zermelo conditions for second order

systems are given explicitly.

Our main results contained in Section 4 include: a) every positive homogene-

ous system of m+1 second order equations of m+1 dependent variables is linearly

dependent, b) variationality of a system of m+ 1 second order differential equa-

tions, defined by positive homogenous functions, is equivalent with variationality

of certain of its subsystem of m equations in sense of parametrized variational

problems, c) explicit relationship between Lagrangians of both of these systems is

given. Finally, we give an example of two second order equations whose solution

is a unit circle in R2, with analysis of variationality and positive homogeneity.

The methods can be extended to the theory of differential equations on ma-

nifolds, as well as to higher order systems. Examples in higher order dimension

can be constructed analogously.

Throughout the paper we denote by yK , K = 1, 2, . . . ,m + 1, the canonical

coordinate functions on the Euclidean space Rm+1, and by ẏK , ÿK and
...
yK

their first, second and third order derivatives, respectively. If γ : I → Rm+1,

γ(t) = (γ1(t), γ2(t), . . . , γm+1(t)), is a curve, then for every K, yK ◦γ(t) = γK(t),

ẏK ◦ γ(t) = D(yKγ)(t), ÿK ◦ γ(t) = D2(yKγ)(t), and
...
yK ◦ γ(t) = D3(yKγ)(t).
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2. The Helmholtz conditions

Suppose we are given a system of m + 1 second order ordinary differential

equations

εK(yQ, ẏQ, ÿQ) = 0, (1)

where K,Q = 1, 2, . . . ,m+1; the number of equations and the number of depen-

dent variables are both equal m+1. Solutions of the system (1) are differentiable

regular curves γ : J → Rm+1, γ(t) = (y1γ(t), y2γ(t), . . . , ym+1γ(t)), in Rm+1,

defined on an open interval of the real line R, which satisfy the system (1).

In accordance with the general theory of variational differential equations,

we shall say that the system (1) is variational,if there exists a real-valued function

L = L (yQ, ẏQ) for which (1) is the system of Euler–Lagrange equations; this

means that for every K,

εK =
∂L

∂yK
− d

dt

∂L

∂ẏK
=

∂L

∂yK
− ∂2L

∂yQ∂ẏK
ẏQ − ∂2L

∂ẏQ∂ẏK
ÿQ. (2)

If L exists, it is called the Lagrange function for the system (1) which coincide

with the system of equations for extremals of a certain variational functional,

associated with L . We note that in the definition above the system of equations is

supposed to be as it stands: the functions defining the left-hand sides are supposed

to be fixed. All our assertions will be concerned with this system of functions; for

example, no variational integrating factors are considered. It is the standard result

that for a second order variational system of functions εK = εK(yQ, ẏQ, ÿQ) there

exists a second order Lagrangian L = L (yQ, ẏQ, ÿQ), namely the Vainberg–Tonti

Lagrangian,

L (yQ, ẏQ, ÿQ) = yK
∫ 1

0

εK(syQ, sẏQ, sÿQ)ds (3)

(see e.g. Tonti [9]).

The necessary and sufficient conditions for variationality of systems of dif-

ferential equations are the well-known Helmholtz conditions. We formulate the

Helmholtz conditions for second order systems.

Theorem 1 (Helmholtz conditions). Suppose that we have a system of func-

tions εK = εK(yQ, ẏQ, ÿQ). The following two conditions are equivalent:

(a) The equation (2) has a solution.

(b) The functions εK satisfy the system

∂εK
∂ÿM

− ∂εM
∂ÿK

= 0, (4)
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∂εK
∂ẏM

+
∂εM
∂ẏK

− d

dt

(
∂εK
∂ÿM

+
∂εM
∂ÿK

)
= 0, (5)

∂εK
∂yM

− ∂εM
∂yK

− 1

2

d

dt

(
∂εK
∂ẏM

− ∂εM
∂ẏK

)
= 0. (6)

Proof. This result is standard; see e.g. Havas [4] and references therein.

¤

We note that (4) and (5) immediately implies that the functions εK must

be linear in second derivative variables, i.e. εK = AK + BKQÿ
Q, where BKQ =

∂CK/∂ẏQ = ∂CQ/∂ẏ
K = BQK . The second order Lagrangian (3) can be then

reduced to a first order Lagrangian by deleting a total derivative term; namely

L0(y
Q, ẏQ) = yK

∫ 1

0

AK(syQ, sẏQ)ds− ẏK
∫ 1

0

CK(syQ, sẏQ)ds

− yK
∫ 1

0

(
∂CK

∂yP
ẏP

)

(syQ,sẏQ)

ds. (7)

Clearly, the system of Helmholtz conditions can be rewritten to an equivalent

system for the first order functions AK , BKQ; however, we use in this paper the

conditions given by Theorem 1.

3. Second order positive homogeneous systems

We wish to study in this work variationality of systems of second order ordi-

nary differential equations, which are given by second order positive homogeneous

functions (in the Zermelo sense). We studied the class of higher order positive

homogeneous functions in [10]. Let us briefly recall the basic facts. The concept

of a positive homogeneous function we use, extends the classical positive homo-

geneity for functions depending on curves t → yK(t) and their first derivatives

t → ẏK(t), expressed by the standard Euler formula,

∂F

∂ẏM
ẏM = F,

to functions depending also on second derivatives t → ÿK(t). We shall say that

a function F = F (yK , ẏK , ÿK) is positive homogeneous in the variables ẏK and

ÿK , or simply positive homogeneous, if

F (yK , a1ẏ
K , a21ÿ

K + a2ẏ
K) = a1F (yK , ẏK , ÿK) (8)
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for all regular curves γ : J → Rm+1, γ(t) = (y1γ(t), y2γ(t), . . . , ym+1γ(t)), in

Rm+1, defined on an open interval of the real line R, and for all numbers a1 > 0,

a2 ∈ R. The condition (8) has, however, a geometric meaning: an integral

(variational) functional, associated with F , does not depend on parametrization.

In [10], we proved the following two results on positive homogeneous functions

of arbitrary finite order; here we give their second order versions.

The next theorem shows that the Zermelo conditions are necessary and suf-

ficient conditions for a function F = F (yK , ẏK , ÿK) to be positive homogeneous.

Theorem 2. Let F = F (yK , ẏK , ÿK) be a function. The following conditions

are equivalent:

(a) F is positive-homogeneous in the variables ẏK and ÿK .

(b) F satisfies the Zermelo conditions

∂F

∂ẏM
ẏM + 2

∂F

∂ÿM
ÿM = F, (9)

∂F

∂ÿM
ẏM = 0. (10)

Proof. The proof, for arbitrary finite order, can be found in [10]. ¤

The following result concerns solutions of systems of second order ordinary

differential equations. Consider system (1), εK(yQ, ẏQ, ÿQ) = 0. We shall say

that the system (1) is positive homogeneous, if all functions εK are positive ho-

mogeneous in the sense of previous definition (8). Let γ be a solution of the

system (1), defined on an open interval I ⊂ R. Then γ is called an orientation-

preserving solution, if for every diffeomorphism τ : J → I of open intervals such

that Dτ > 0 on J , the regular curve γ ◦ τ is again a solution of (1).

If, moreover, γ ◦ τ is a solution of (1) for arbitrary reparametrization τ , we

say γ is a set-solution. In order that γ be a set-solution, it is sufficient that γ is

orientation-preserving and the curve t → γ(−t) is also a solution. This observa-

tion explains, in particular, the role of the Zermelo conditions.

For second order equations, we have the following general result: the class

of positive homogeneous systems of differential equations has solutions which do

not depend on orientation-preserving parametrization.

Theorem 3. Let εK(yQ, ẏQ, ÿQ) = 0 be a positive-homogeneous system

of second order differential equations. Then every solution of this system is an

orientation-preserving solution.
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Proof. This result is valid for arbitrary higher order positive homogeneous

systems; see [10]. Nevertheless, we prove this proposition for second order systems

explicitly. Suppose that the functions εK , defining the system (1), are positive

homogeneous, i.e. functions satisfying the conditions (9) and (10). Let γ : I →
Rm+1 be a curve in Rm+1, and let τ : J → I be a diffeomorphism of open

intervals in R. Choose t0 ∈ J , and we may suppose that Dτ(t0) > 0. From

positive homogeneity condition (8) we get for every K,

εK(yQ(γ ◦ τ)(t0), ẏQ(γ ◦ τ)(t0), ÿQ(γ ◦ τ)(t0))
= εK(yQγ(τ(t0)), D(yQγ)(τ(t0))Dτ(t0),

D2(yQγ)(τ(t0))(Dτ(t0))
2 +D(yQγ)(τ(t0))D

2τ(t0))

= εK(yQγ(τ(t0)), ẏ
Qγ(τ(t0))Dτ(t0), ÿ

Qγ(τ(t0))(Dτ(t0))
2+ẏQγ(τ(t0))D

2τ(t0))

= Dτ(t0) · εK(yQγ(τ(t0)), ẏ
Qγ(τ(t0)), ÿ

Qγ(τ(t0))).

Hence γ ◦ τ is a solution if and only if γ is a solution, which completes the

proof. ¤

4. The Helmholtz conditions for second order positive

homogeneous systems

In this section we study variationality of positive homogeneous systems of

second order equations. Let us first recall a result we proved in [10]: the necessary

and sufficient condition for a variational system of second order equations to be

positive homogeneous.

Theorem 4. Suppose that the system (1), εK(yQ, ẏQ, ÿQ) = 0, is variatio-

nal. The following two conditions are equivalent:

(a) The system (1) is positive homogeneous.

(b) The system (1) admits a positive homogeneous Lagrangian L = L (yQ, ẏQ).

Proof. The proof can be found in [10]. ¤

For purpose of formulating and proving our main theorem let us comment on

coordinate charts in Rm+1 we shall use. Throughout, we consider regular curves

in Rm+1 or, in other words, curves with non-vanishing tangent vector at every

point of a curve. In this case, there exists an index L such that 1 ≤ L ≤ m+1 and

ẏL 6= 0 at every point of a curve. We introduce another coordinates of regular
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curves in Rm+1, namely the adapted coordinates which arise from the canonical

coordinates and their derivatives in the following way:

wL = yL, ẇL = ẏL, ẅL = ÿL,

wν = yν , wν
1 =

1

ẏL
ẏν , wν

2 =
1

(ẏL)2

(
ÿν − ÿL

ẏL
ẏν

)
, (11)

and conversely we have

yL = wL, ẏL = ẇL, ÿL = ẅL,

yν = wν , ẏν = wν
1 ẇ

L, , ÿν = wν
2 (ẇ

L)2 + wν
1 ẅ

L. (12)

Remark 1 (Invariant coordinates). It is not difficult to see that the coor-

dinates wL, wν , wν
1 , w

ν
2 , defined by (11), are invariant under the composition of

diffeomorphisms τ of a neighbourhood of the origin 0 in R such that τ(0) = 0;

i.e. we have wKγ = wK(γ ◦ τ), wσ
1 γ = wσ

1 (γ ◦ τ), and wσ
2 γ = wσ

2 (γ ◦ τ). On the

other hand, the coordinates ẇL and ẅL are not invariant. We remark that in the

geometric theory of jet differential invariants coordinates of this kind arise when

we study quotient spaces of regular velocities with respect to a differential group

action; for futher details we refer to Grigore and Krupka [3], M. Krupka and

D. Krupka [5], Krupka and Urban [6].

Remark 2 (Total derivative operator). For further need in proofs we find

the transformation of the total derivative operator into the adapted coordinates.

Suppose f = f(yK , ẏK , ÿK) to be a function given in the canonical coordinates,

and denote by f̃ a function in the adapted coordinates defined by

f̃(wL, ẇL, ẅL, wν , wν
1 , w

ν
2 ) = f(yL, ẏL, ÿL, yν , ẏν , ÿν).

Then we obtain

df

dt
=

∂f

∂yL
ẏL +

∂f

∂̇y
L
ÿL +

∂f

∂̈y
L

...
y L +

∂f

∂yν
ẏν +

∂f

∂̇y
ν ÿ

ν +
∂f

∂̈y
ν

...
y ν

=
∂f̃

∂wL
ẇL +

(
∂f̃

∂ẇL
− ∂f̃

∂wν
1

wν
1

ẇL
+

∂f̃

∂wν
2

(
wν

1 ẅ
L

(ẇL)
3 − 2

wν
2

ẇL

))
ẅL

+

(
∂f̃

∂ẅL
− ∂f̃

∂wν
2

wν
1

(ẇL)
2

)
...
wL +

∂f̃

∂wν
wν

1 ẇ
L

+

(
∂f̃

∂wν
1

1

ẇL
− ∂f̃

∂wν
2

ẅL

(ẇL)
3

)(
wν

2

(
ẇL

)2
+ wν

1 ẅ
L
)
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+
1

(ẇL)
2

∂f̃

∂wν
2

(
wν

3

(
ẇL

)3
+ 3wν

2 ẇ
LẅL + wν

1
...
wL

)
= ẇL df̃

dwL
,

where

df̃

dwL
=

∂f̃

∂wL
+

∂f̃

∂ẇL

ẅL

ẇL
+

∂f̃

∂ẅL

...
wL

ẇL
+

∂f̃

∂wν
wν

1 +
∂f̃

∂wν
1

wν
2 +

∂f̃

∂wν
2

wν
3

is the formal derivative of a function f̃ = f̃(wL, ẇL, ẅL, wν , wν
1 , w

ν
2 ).

Now we formulate the main result of this paper.

Theorem 5. The following two conditions for the system (1) are equivalent:

(a) The system (1) is variational and positive homogeneous.

(b) For every index L, 1 ≤ L ≤ m+ 1, there exists a coordinate transformation,

represented by adapted coordinates wL, ẇL, ẅL, wν , wν
1 , w

ν
2 (11), such that

the functions ε̃K , defined by

ε̃K(wL, ẇL, ẅL, wν , wν
1 , w

ν
2 ) = εK(yL, ẏL, ÿL, yν , ẏν , ÿν), (13)

are of the form ε̃K = µKẇL, where µK = µK(wL, wν , wν
1 , w

ν
2 ), µL = −µσw

σ
1 ,

and the system of m ordinary differential equations

µσ(w
L, wν , wν

1 , w
ν
2 ) = 0, (14)

σ = 1, 2, . . . ,m+ 1, σ 6= L, is variational.

Proof. 1. We consider the system (1) satisfying conditions (4), (5), (6)

(Helmholtz), and conditions (9), (10) (Zermelo) for second order systems. Let L,

1 ≤ L ≤ m+1, be a fixed index, and let wL, ẇL, ẅL, wν , wν
1 , w

ν
2 be the L-adapted

coordinates, defined by (11).

First we wish to show that the transformed system ε̃K in adapted coordinates

is of the form ε̃K = µKẇL, for some functions µK = µK(wL, wν , wν
1 , w

ν
2 ). Using

the transformation equations (11), (12), between the canonical and the adapted

chart we get

∂εK
∂yν

=
∂ε̃K
∂wν

,
∂εK
∂yL

=
∂ε̃K
∂wL

,
∂εK
∂ẏν

=
1

ẇL

∂ε̃K
∂wν

1

− ẅL

(ẇL)3
∂ε̃K
∂wν

2

,

∂εK
∂ẏL

=
∂ε̃K
∂ẇL

− wλ
1

ẇL

∂ε̃K
∂wλ

1

+

(
wλ

1 ẅ
L

(ẇL)3
− 2

wλ
2

ẇL

)
∂ε̃K
∂wλ

2

,

∂εK
∂ÿν

=
1

(ẇL)2
∂ε̃K
∂wν

2

,
∂εK
∂ÿL

=
∂ε̃K
∂ẅL

− wλ
1

(ẇL)2
∂ε̃K
∂wλ

2

. (15)
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Applying (15), we can directly transform the Zermelo conditions into the adapted

coordinates. From (9) we get

∂ε̃K
∂ẇL

ẇL + 2
∂ε̃K
∂ẅL

ẅL = ε̃K , (16)

and from (10)
∂ε̃K
∂ẅL

ẇL = 0, (17)

(no summation through L). Since the coordinate function ẇL is non-vanishing,

from (16) and (17) we immediately get

∂ε̃K
∂ẇL

ẇL = ε̃K ,
∂ε̃K
∂ẅL

= 0; (18)

the Zermelo conditions for the system of functions ε̃K in adapted coordinates.

These conditions for ε̃K , however, can be solved, and we get

ε̃K = µKẇL, (19)

where µK = µK(wL, wν , wν
1 , w

ν
2 ).

Now we apply the variationality of the system (1). Rewriting the Helmholtz

conditions for functions ε̃K in adapted coordinates, we obtain from (4)

∂ε̃σ
∂wν

2

− ∂ε̃ν
∂wσ

2

= 0,
∂ε̃L
∂wσ

2

+
∂ε̃σ
∂wλ

2

wλ
1 = 0, (20)

from (5) we get

1

ẇL

(
∂ε̃σ
∂wν

1

+
∂ε̃ν
∂wσ

1

)
+

ẅL

(ẇL)3

(
∂ε̃σ
∂wν

2

+
∂ε̃ν
∂wσ

2

)
− 1

ẇL

d

dwL

(
∂ε̃σ
∂wν

2

+
∂ε̃ν
∂wσ

2

)
= 0,

1

ẇL

∂ε̃L
∂wσ

1

+ 2
ẅL

(ẇL)3
∂ε̃L
∂wσ

2

− 2
1

ẇL

d

dwL

(
∂ε̃L
∂wσ

2

)

+
1

ẇL
ε̃σ − wλ

1

ẇL

∂ε̃σ
∂wλ

1

− 2
wλ

2

ẇL

∂ε̃σ
∂wλ

2

= 0,

∂ε̃L
∂ẇL

− wλ
1

ẇL

∂ε̃L
∂wλ

1

−
(
wλ

2

ẇL
+

wλ
1 ẅ

L

(ẇL)3

)
∂ε̃L
∂wλ

2

+
wλ

1

ẇL

d

dwL

(
∂ε̃L
∂wλ

2

)
= 0, (21)

and from (6)

∂ε̃σ
∂wν

− ∂ε̃ν
∂wσ

+
1

2

ẅL

(ẇL)2

(
∂ε̃σ
∂wν

1

− ∂ε̃ν
∂wσ

1

)
− 1

2

d

dwL

(
∂ε̃σ
∂wν

1

− ∂ε̃ν
∂wσ

1

)
= 0,
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∂ε̃L
∂wσ

− ∂ε̃σ
∂wL

− 1

2
ẇL d

dwL

(
1

ẇL

∂ε̃L
∂wσ

1

− ∂ε̃σ
∂wL

1

+
wλ

1

ẇL

∂ε̃σ
∂wλ

1

+ 2
wλ

2

ẇL

∂ε̃σ
∂wλ

2

)
= 0. (22)

Substituting for ε̃K from (19) in the variationality conditions (20), (21), and (22),

then the conditions for system of functions {µσ, µL} read

∂µσ

∂wν
2

− ∂µν

∂wσ
2

= 0, (23)

∂µσ

∂wν
1

+
∂µν

∂wσ
1

− d

dwL

(
∂µσ

∂wν
2

+
∂µν

∂wσ
2

)
= 0, (24)

∂µσ

∂wν
− ∂µν

∂wσ
− 1

2

d

dwL

(
∂µσ

∂wν
1

− ∂µν

∂wσ
1

)
= 0, (25)

and

∂µL

∂wσ
2

+
∂µσ

∂wλ
2

wλ
1 = 0,

∂µL

∂wσ
1

− 2
d

dwL

(
∂µL

∂wσ
2

)
+ µσ − ∂µσ

∂wλ
1

wλ
1 − 2

∂µσ

∂wλ
2

wλ
2 = 0,

µL − ∂µL

∂wλ
1

wλ
1 − ∂µL

∂wλ
2

wλ
2 + wλ

1

d

dwL

(
∂µL

∂wλ
2

)
= 0,

∂µL

∂wσ
− ∂µσ

∂wL
− 1

2

d

dwL

(
∂µL

∂wσ
1

− µσ +
∂µσ

∂wλ
1

wλ
1 + 2

∂µσ

∂wλ
2

wλ
2

)
= 0. (26)

To find µL = µL(w
L, wν , wν

1 , w
ν
2 ) (L fixed) satisfying the previous conditions, we

note that it is possible to solve the conditions (26) directly. However, here we

apply again the positive homogeneity of the system εK(yQ, ẏQ, ÿQ). The The-

orem 4 allow us to choose a positive homogeneous Lagrangian L = L (yQ, ẏQ)

for the system of functions εK(yQ, ẏQ, ÿQ). We have

εK ẏK =

(
∂L

∂yK
− d

dt

∂L

∂ẏK

)
ẏK =

∂L

∂yK
ẏK − ∂2L

∂yQ∂ẏK
ẏQẏK − ∂2L

∂ẏQ∂ẏK
ÿQẏK .

But differentiating the positive homogeneity condition

L =
∂L

∂ẏK
ẏK ,

we get
∂L

∂ẏQ
=

∂2L

∂ẏQ∂ẏK
ẏK +

∂L

∂ẏQ

hence

εK ẏK =
∂L

∂yK
ẏK − ∂2L

∂yQ∂ẏK
ẏQẏK =

∂L

∂yK
ẏK − ∂

∂yQ

(
∂L

∂ẏK
ẏK

)
ẏQ = 0. (27)



The Helmholtz conditions for systems of homogeneous differential equations 81

From (27) and (19) we now obtain

0 = εK ẏK = ε̃σw
σ
1 ẇ

L + ε̃Lẇ
L = (ẇL)2(µσw

σ
1 + µL),

and thus µL is a linear combination of µσ of the form µL = −µσw
σ
1 .

Finally, from Theorem 1 we see that the conditions (23), (24) and (25) are

the necessary and sufficient conditions for the system µσ(w
L, wν , wν

1 , w
ν
2 ) = 0 to

be variational.

2. Conversely, suppose that the system of functions ε̃K , defined by (13), is

of the form ε̃K = µKẇL, where µK = µK(wL, wν , wν
1 , w

ν
2 ), µL = −µσw

σ
1 in some

L-adapted coordinates, and let the system of functions µσ satisfies conditions

of variationality (23), (24) and (25). It is now sufficient to verify the Helmholtz

conditions (20), (21), (22), and the Zermelo conditions (18) for the system ε̃K and

apply the transformation equations into the canonical coordinates, or equivalently,

it is sufficient to verify conditions (26) for the function µL. This can be, however,

proceed by a direct calculation. This completes the proof. ¤
Remark 3. Clearly, Theorem 5 shows that every positive homogeneous sys-

tem of m + 1 second order differential equations, εK(yQ, ẏQ, ÿQ) = 0, is linearly

dependent. Moreover, if this system is variational, then its subsystem of m equa-

tions is also variational in sense of parameter-invariant variational problems (cf.

Theorem 3, Theorem 4), and vice-versa. The result (b) means that there exists

a function L = L(wL, wν , wν
1 ) such that

µσ =
∂L

∂wσ
− d

dwL

∂L

∂wσ
1

. (28)

It is worth to note that the adapted coordinates play a crucial role in variational

analysis of positive homogeneous systems.

Corollary 1. Suppose that system εK(yQ, ẏQ, ÿQ) = 0 is variational and

positive homogeneous, with a positive homogeneous Lagrangian L = L (yQ, ẏQ)

(cf. Theorem 4), and let L̃ be a function defined in the adapted coordinates by

L̃ (wL, ẇL, wν , wν
1 )=L (yQ, ẏQ). Then variational system µσ(w

L, wν , wν
1 , w

ν
2 )= 0

(14) has a Lagrangian L = L(wL, wν , wν
1 ) given by

L =
∂L̃

∂ẇL
=

∂L

∂ẏL
+

∂L

∂ẏσ
ẏσ

ẏL
.

Proof. Applying the transformation (11) from the canonical to adapted

coordinates, we obtain the system of Euler–Lagrange equations of the form

µσ =
1

ẇL

∂L̃

∂wσ
+

ẅL

(ẇL)3
∂L̃

∂wσ
1

− 1

ẇL

d

dwL

(
∂L̃

∂wσ
1

)
=

∂
(

1
ẇL L̃

)

∂wσ
− d

dwL

(
∂
(

1
ẇL L̃

)

∂wσ
1

)
.
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We put L =(1/ẇL)L̃ , and because of the positive homogeneity of L̃ (cf. (18)),

we get

L =
1

ẇL
L̃ =

1

ẇL

∂L̃

∂ẇL
ẇL =

∂L̃

∂ẇL
=

∂L

∂ẏL
+

∂L

∂ẏσ
ẏσ

ẏL
,

the first order Lagrangian of the system (14). ¤

5. Example: second order positive homogeneous variational equations

We consider an example of a system of two second order differential equations

of two dependent variables,

ẋy +
1

ẋ
y(ẏ2 + yÿ)− 1

ẋ2
y2ẏẍ = 0,−yẏ − 1

ẋ2
yẏ(ẏ2 + yÿ) +

1

ẋ3
y2ẏ2ẍ = 0, (29)

where x = x(t) and y = y(t) are the canonical coordinate functions in R2. A so-

lution of this system is a regular curve t → (x(t), y(t)) in R2, satisfying (29); we

suppose that ẋ is a non-vanishing function at every point of a solution. It can

be easily checked that this system is positive homogeneous; this means that the

left-hand sides of (29) satisfy the Zermelo conditions (9), (10) from Theorem 2.

However, Theorem 5 shows that equations (29) must be linearly dependent which

can be, indeed, observed apparently. On the other hand, system (29) is varia-

tional; its left-hand sides satisfy the Helmholtz conditions (4), (5) and (6) from

Theorem 1. One can directly compute the Vainberg–Tonti Lagrangian (3) for

system (29),

L =
1

3
y(yẋ− xẏ) +

1

3

1

ẋ
y2(ẏ2 + yÿ)− 1

3

1

ẋ2
yẏ

(
x(ẏ2 + yÿ) + y2ẍ

)
+

1

3

1

ẋ3
xy2ẏ2ẍ,

and its first order reduction (7),

L0 =
1

3
y(yẋ− xẏ)− 1

2

1

ẋ
y2ẏ2. (30)

In accordance with Theorem 5, we find now an equivalent system (14) with (29):

the one differential equation of one dependent variable in adapted coordinates

which is variational in sense of (28). We put wL = x, w1 = y, and using coordinate

transformation we get from the first equation of (29),

µ =
(
1 + (w1

1)
2 + w1w1

2

)
w1 = 0. (31)
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Indeed, (31) satisfies the Helmholtz condition for one second order equation,

∂µ

∂w1
1

− d

dwL

(
∂µ

∂w1
2

)
= 0,

(cf. Theorem 1). The first order Lagrangian for (31), described in Corollary 1, is

of the form

L =
1

3
w1(w1 − wLw1

1)−
1

2
(w1)2(w1

1)
2.

We note that there exists another first order Lagrangian of equation (31) which

does not depend on wL, namely

L0 =
1

2
(w1)2

(
1− (w1

1)
2
)
.

The solution of second order differential equation (31) is the unit circle in R2.

Remark 4 (Added in proofs). The authors are thankful to the referee for

pointing out to recent sources, closely related to subject of this paper (ref. [1],

[2]), where the (contravariant) differential equation fields are considered.
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(in: O. Kowalski, D. Krupka, O. Krupková, J. Slovák, eds.), World Scientific, Singapore,
2008, 463–473.

[7] R. Matsyuk, Autoparallel variational description of the free relativistic top third order dy-
namics, in: Diff. Geom. Appl., Proc. Conf., Opava, Czech Republic, August 2001, Silesian
University in Opava, Czech Republic, 2001, 447–459.

[8] M. A. McKiernan, Sufficiency of parameter invariance conditions in areal and higher order
Kawaguchi spaces, Publ. Math. Debrecen 13 (1966), 77–85.

[9] E. Tonti, Variational formulation of nonlinear differential equations I, II, Acad. Roy. Belg.
Bull. Cl. Sci. 55 (1969), 137–165, 262–278.



84 Z. Urban and D. Krupka : The Helmholtz conditions for systems. . .

[10] Z. Urban and D. Krupka, The Zermelo conditions and higher order homogeneous func-
tions, Math. Publ. Debrecen 82 (2013), 59–76.

[11] E. Zermelo, Untersuchungen zur Variationsrechnung, Dissertation, Friedrich-Wilhelms–
Universität, Berlin, 1894.
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