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On an S-unit variant of Diophantine m-tuples

By LÁSZLÓ SZALAY (Sopron) and VOLKER ZIEGLER (Graz)

Abstract. Let S be a fixed set of primes and let a1, . . . , am be positive distinct

integers. We call the m-tuple (a1, . . . , am) S-Diophantine, if for all i 6= j the integers

aiaj + 1 = si,j are S-integers. In this paper we show that if |S| = 2, then under some

technical restrictions no S-Diophantine quadruple exists.

1. Introduction

An m-tuple (a1, . . . , am) of positive distinct integers is called Diophantine if

aiaj + 1 = ¤ (1)

for i 6= j. Diophantine m-tuples have been studied since ancient times by several

authors. Most notable isDujella’s result [8] that no Diophantine six-tuple exists

and that there are only finitely many quintuples. It is widely believed that there

exist no quintuples at all.

Not only Diophantine m-tuples have been considered, but also various vari-

ants. For instance, Bugeaud and Dujella [3] examined m-tuples, where ¤ in

(1) is replaced by k-th power, Dujella and Fuchs [9] investigated a polynomial

version, and Fuchs, Luca and Szalay [11] replaced ¤ by terms of given binary

recurrence sequences. For a complete overview we suggest Dujella’s web page

on Diophantine tuples [7].

In this paper we mean to consider an S-unit version of Diophantine m-tuples.

Let S be a fixed set of primes. Then we call an m-tuple (a1, . . . , am), with positive

Mathematics Subject Classification: 11D61.
Key words and phrases: Diophantine tuples, S-Diophantine tuples, S-unit equations.
The second author was supported by the Austrian Science Found (FWF) under the project

J2886-NT.
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integers 0 < a1 < · · · < am an S-Diophantine m-tuple, if for all 1 ≤ i < j ≤ n we

have aiaj + 1 = si,j to be an S-unit. A closely related problem was studied by

Győry, Sárközy and Tijdeman [12], who considered the largest prime factor

of the products ∏

a∈A,b∈B

(ab+ 1),

where A and B are fixed sets. This problem goes back to Erdős and Turán

[10], who considered the number of prime factors in the product

∏

a∈A,b∈B

(a+ b).

In particular, Győry, Sárközy and Tijdeman conjectured that for positive

integers a < b < c the greatest prime factor of

(ab+ 1)(ac+ 1)(bc+ 1)

tends to infinity as c → ∞. Effective but only partial results have been proved

by Bugeaud [2] and Stewart and Tijdeman [20]. Finally this conjecture has

been proved by Corvaja and Zannier [6] and independently by Hernández

and Luca [13], which means in our context that there exist only finitely many

S-Diophantine triples for a fixed set of primes S. Since both proofs depend on

Schmidt’s subspace theorem (see e.g. [19][Theorem 1E, p. 178]), this result is

ineffective. A third proof that for a fixed set of primes S there are only finitely

many S-Diophantine triples is given by Bugeaud and Luca [4] who proved that

the greatest prime factor of

∏
a,b,c∈A
a<b<c

(ab+ 1)(ac+ 1)(bc+ 1),

where A is a finite set of positive integers, is larger than

κ log |A| log log |A|,

with κ a constant effectively computable. Again this result does not yield an

effective upper bound for c.

On the other hand Stewart and Tijdeman [20] proved an effective result,

i.e. they showed that for a fixed set of primes there are only finitely many S-

Diophantine quadruples which are effectively computable.
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In this paper we consider the following problem. Fix the size of S, but not S

itself. Does there exist an integer m such that no Diophantine m-tuple exists? In

the case of |S| = 2 we conjecture that one can choose m = 4. Unfortunately, we

were able to proof this conjecture only under some technical restrictions. Using

the notation ordp(q) for the multiplicative order of q modulo p, the main theorem

in this paper is the following.

Theorem 1. Let S = {p, q} be a set of two primes with p < q and assume

that p2 - qordp(q) − 1, q2 - pordq(p) − 1, further that q < pξ holds with some

ξ > 1. Then there exists a constant C = C(ξ) such that for all such p, q > C no

S-Diophantine quadruple exists. In particular we can choose

C = C(ξ) = Ψ(9; 2.142 · 1022ξ3),

where Ψ(k;x) denotes the largest solution y > 0 to the equation x = y
(log y)k

.

Remark 1. In case of ξ = 2 we obtain C = C(2) = 1.023 · 1041.
Let p be a large prime. Then there exists some b ∈ Z, 1 < b < p such that

q = b+ p is also prime. Put g = ordp(q) and g′ = ordq(p). Then we have

qg ≡ bg + gpbg−1 mod p2 and pg
′ ≡ ±(

bg
′ − g′qbg

′−1
)

mod q2.

Let us assume that qg ≡ 1 mod p2 or pg
′ ≡ 1 mod q2, then we replace q by

q′ = ap+ b and obtain

q′g ≡ bg + gapbg−1 mod p2 and pg
′ ≡ ±(bg

′ − g′aqbg
′−1) mod q2.

Since bg ≡ 1 + Ap mod p2 for some A or bg
′ ≡ 1 + Bq mod q2 and p - g with

q - g′ we deduce that if q′ satisfies the assumptions of Theorem 1 then we have

a 6≡ s1 mod p and a 6≡ s2 mod q for some s1, s2. Hence, a ≡ r mod pq for some

r ∈ (Zpq)
∗. For technical reasons we also exclude the case a ≡ 1 mod q and we

therefore assume that (p− 1)(q− 2) possiblities for choosing a are left. I.e. a pair

of primes (p, q′) with
q′ = b+ ap = b+ (r + kpq)p = b+ rp+ kp2q

satisfies the assumptions of Theorem 1. Furthermore b+ pr and p2q are coprime

provided r 6≡ 1 mod q and we may apply Dirichlet’s prime number theorem. We

have

]
{
q′ ∈ P : p2 - qordp(q) − 1, q2 - pordq(p) − 1, q′ ≤ x

}

À x

log x

(p− 1)(q − 2)

φ(p2q)
À x

p log x
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primes q′ < x such that the pair (p, q′) satisfies the assumptions of Theorem 1.

Now, we choose x = p1+δ for some δ > 0 and we deduce that there exists a prime

q′ < p1+δ such that the assumptions of Theorem 1 are fulfilled provided p is large.

In particular, we obtain

Corollary 1. There are infinitely many pairs p, q such that no non-trivial

S-Diophantine quadruples exist.

As mentioned above we conjecture that even more is true:

Conjecture 1. There exist at most finitely many (respectively no) pairs of

primes (p, q) such that {p, q}-Diophantine quadruples exist.

2. Plan of the paper

In the next section we provide some useful lemmas that will be used frequ-

ently through the rest of the paper. These lemmas contain divisibility properties

for the possible solutions in an explicit version of Stewart’s and Tijdeman’s

result [20]. In our case we only have two primes to consider and we can there-

fore sharpen their result by using lower bounds for linear forms of logarithms in

two variables due to Laurent, Mignotte and Nesterenko [15]. Moreover,

we show that, assuming (a, b, c, d) is an S-Diophantine quadruple, yields three

S-unit equations. In two subsequent sections we will consider two of these S-unit

equations and will obtain restrictions for the exponents appearing in the S-units

according to the assumptions of Theorem 1. These restrictions are in many cases

contradictory and only finally 3 cases remain to handle. In Section 6 we consider

the third S-unit equation and show that its possible solutions are not consistent

with the restrictions found in the previous sections. In the last section we discuss

open problems and questions. In particular, we discuss the case |S| = 3.

3. Preliminaries

At the beginning of this section we introduce and fix the following notations

and assumptions for the rest of the paper. Let (a, b, c, d) ∈ Z4 be an S-Diophantine

quadruple with S = {p, q} and p < q. We assume 0 < a < b < c < d and write

ab+ 1 = s1, ac+ 1 = s2,

ad+ 1 = s3, bc+ 1 = s4,

bd+ 1 = s5, cd+ 1 = s6,
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where si = pαiqβi are S-units for i = 1, . . . , 6. Moreover, we note that

abcd = s2s5 − ac− bd− 1 = s2s5 − s2 − s5 + 1

= s3s4 − ad− bc− 1 = s3s4 − s3 − s4 + 1

and therefore we obtain the unit equation

s2s5 − s3s4 = s2 + s5 − s3 − s4. (2)

Similarly we also get the unit equations

s1s6 − s3s4 = s1 + s6 − s3 − s4 (3)

and

s2s5 − s1s6 = s2 + s5 − s1 − s6. (4)

The solution of these unit equations, under some conditions, plays a crucial role

in the proof. Since our proof heavily depends on computing p-adic and q-adic

valuations, therefore the following lemma provides a useful tool.

Lemma 1. Let p and q be odd primes and assume that qc‖pordq(p) − 1 and

qz|px − 1. Then x ≥ ordq(p)q
z−c. Moreover, if qc‖pordq(p) − 1 and qz|px + 1 then

x ≥ ordq(p)
2 qz−c.

Proof. The lemma is elementary and some related versions can be found

in [5, Section 2.1.4]. For completeness we give a sketch of the proof.

First, note that by the assumption above we have

pordq(p) ≡ 1 + aqc mod qc+1

holds for some a relatively prime to q. Now let us assume px ≡ 1+aqm mod qm+2

with q - a and m ≥ c ≥ 1. Taking the q-th power we obtain

pxq ≡ 1 + aqm+1 + q2m+1B ≡ 1 + aqm+1 mod qm+2,

since m ≥ 1. Clearly, B denotes some appropriate integer. Similarly, we see that

qm+1 - pxk−1 follows if q - k. Now, by induction, the first statement of the lemma

is obvious.

Note that the smallest positive solution to pz ≡ −1 mod pc is at least
ordq(p)

2 .

Therefore pordq(p)/2 ≡ −1+aqc mod qc+1 holds for some a. Indeed, squaring both

sides, it shows that qc‖pordq(p) − 1. Now the proof runs along similar lines as in

the case above. ¤



102 László Szalay and Volker Ziegler

Next we consider the case when the S-units on the right side fulfill some

divisibility properties.

Lemma 2. Assume that {a, b, c} is an S-Diophantine triple with a < b < c.

If ac+ 1 = s and bc+ 1 = t then s - t.

Proof. Let us assume s|t. Then

Z 3 m =
bc+ 1

ac+ 1
=

b

a
+

a− b

a2c+ a
=

b

a
+

θ

a2

with |θ| < 1. Therefore m is an integer if and only if θ = 0. Thus a = b leads to

a contradiction. ¤

Corollary 2. If |S| = 1, then there does not exist an S-Diophantine triple.

Proof. Apply Lemma 2 and note that in case of |S| = 1 we immediately

have s|t using the notation of the lemma. ¤

We can immediately see that s2 - s4, s3 - s5, s5 - s6 and s3 - s6, in particular

none of the equations α2 = α4, α3 = α5, α5 = α6, α3 = α6, β2 = β4, β3 = β5,

β5 = β6 and β3 = β6 hold.

Lemma 3. We have

a| gcd
(

s2 − s1
gcd(s2, s1)

,
s3 − s1

gcd(s3, s1)
,

s3 − s2
gcd(s3, s2)

)
,

b| gcd
(

s4 − s1
gcd(s4, s1)

,
s5 − s1

gcd(s5, s1)
,

s5 − s4
gcd(s5, s4)

)
,

c| gcd
(

s4 − s2
gcd(s4, s2)

,
s6 − s2

gcd(s6, s2)
,

s6 − s4
gcd(s6, s4)

)
,

d| gcd
(

s5 − s3
gcd(s5, s3)

,
s6 − s3

gcd(s6, s3)
,

s6 − s5
gcd(s6, s5)

)
.

Proof. We prove only the divisibility property for a since the other cases run

completely analogously. First note that a|a(c− b) = s2 − s1. Since gcd(a, s1) = 1

and gcd(a, s2) = 1 we deduce a| s2−s1
gcd(s2,s1)

. Similarly we get the other relations

a| s3−s1
gcd(s3,s1)

and a| s3−s2
gcd(s3,s2)

, hence the proof of the lemma is complete. ¤

The next lemma is a useful consequence of Lemma 3.

Lemma 4. Let (a, b, c, d) ∈ Z4 be an S-Diophantine quadruple. Then

gcd(s4, s2) gcd(s4, s1) < s4.



On an S-unit variant of Diophantine m-tuples 103

Proof. By the lemma above we have b ≤ s4
gcd(s4,s1)

−1 and c ≤ s4
gcd(s4,s2)

−1.

It yields

s4 = bc+ 1 <
s24

gcd(s4, s1) gcd(s4, s2)
. ¤

Now we prove a lemma which is very helpful in the last two sections of

the paper, after collecting enough information on the exponents αi and βi, i =

1, 2 . . . , 6.

Lemma 5. Let the notations be as above and assume that q > p ≥ 5. Put

δ = max{0, α4 − α1 − α2} and ε = max{0, β4 − β1 − β2}. Then we have

pδqεa2 = pα1+α2+δ−α4qβ1+β2+ε−β4 − r,

with 0 < r < 2pδqε and r ∈ Z. If we additionally assume that

pα4−α2qβ4−β2 > pδqε or δ = ε = 0

then

pα4qβ4 − 2pα1+α2+2δ−α4qβ1+β2+2ε−β4 < pα2+δqβ2+ε < pα4qβ4 .

The essential part in the proof of the Lemma is the computation of a good

approximation of the quantity a2. To quantify our approximations we will use

the so called L-notation (cf. [14]). This allows us to keep track of how large the

constants of the usual O-terms get. The L-notation is defined as follows. For two

functions g(t) and h(|t|) we write g(t) = L(h(|t|)) if |g(t)| ≤ h(|t|). In view of

applications the estimate

1

x− 1
=

1

x
+ L

(
1.25

x2

)
=

1

x
+

1

x2
+ L

(
1.25

x3

)

for |x| ≥ 5 becomes useful. We obtain it by a formal Laurent expansion of 1
x−1

at infinity.

Proof of Lemma 5. We compute

a2 =
(s1 − 1)(s2 − 1)

s4 − 1

=
s1s2
s4

− s1 + s2
s4

+
1

s4
+

s1s2
s24

+ L

(
1.25

s1 + s2 + 1 + s1s2/s4
s24

)

and therefore we obtain

pδqεa2 = pα1+α2+δ−α4qβ1+β2+ε−β4 − pα1+δ−α4qβ1+ε−β4 − pα2+δ−α4qβ2+ε−β4

+pδ−α4qε−β4 + pα1+α2+δ−2α4qβ1+β2+ε−2β4 + L

(
3.93

p2α4−α2−δq2β4−β2−ε

)
. (5)
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It implies

pδqεa2 = pα1+α2+δ−α4qβ1+β2+ε−β4 − r

with 0 < r < 2pδqε and r ∈ Z. Note that the Diophantine problems

s1 + s2
s4

+
3.93s2
s24

− 1

s4
− s1s2

s24
> 2, s1 ≥ 5, s4 ≥ 35

and
s1 + s2

s4
− 3.93s2

s24
− 1

s4
− s1s2

s24
< 0, s1 ≥ 5, s4 ≥ 35

have no integer solutions. On the other hand, if r ≥ 1 we deduce that

1 < pα1+δ−α4qβ1+ε−β4 + pα2+δ−α4qβ2+ε−β4

since 1/s4 + s1s2/s
2
4 > 3.93s2/s

2
4. In the case of δ = ε = 0 we obtain

1− pα1−α4qβ1−β4 < pα2−α4qβ2−β4 < 1

and

1− pα1+δ−α4qβ1+ε−β4 < pα2+δ−α4qβ2+ε−β4 < pα2+δ−δ−α2qβ2+ε−ε−β2 = 1

otherwise. Some simple computations yield now the second part of the lemma. ¤

Next, we mean to find appropriate lower bounds for b and c. When ac + 1

and bc + 1 are perfect powers of p we may apply Lemma 2. Therefore q divides

either ac + 1 or bc + 1, and we have (c − 1)c + 1 ≥ bc + 1 ≥ q. Hence c >
√
q.

Knowing that p ≤ ab+ 1 < b2 we derive b >
√
p and therefore we established

Lemma 6. We have b >
√
p and c >

√
q.

The rest of this section is devoted to bring the result due to Stewart and

Tijdeman [20] in a more accurate form according to our intentions. In particular,

we need suitable upper bounds for d.

Lemma 7. Let S = {p, q}, and suppose that (a, b, c, d) is an S-Diophantine

quadruple with a < b < c < d. Assuming that 1010 < p < q we have

log d

(log log d)4
< 7.969 · 1021(log p log q)3.

Proof. In order to keep the constants as small as possible we use the the-

orems on linear forms of logarithms due to Matveev [16] and Laurent, Mig-

notte and Nesterenko [15]. First recall Matveev’s result.
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Theorem 2 (Matveev 2000). Denote by γ1, . . . , γn algebraic numbers,

nor 0 neither 1, by log γ1, . . ., log γn determinations of their logarithms, by D

the degree over Q of the number field K = Q(γ1, . . . , γn), and by b1, . . . , bn rati-

onal integers. Furthermore let κ = 1 if K is real and κ = 2 otherwise. Choose

Ai ≥ max{Dh(γi), | log γi|} (1 ≤ i ≤ n),

where h(γ) denotes the absolute logarithmic Weil height of γ and

B = max{1,max{|bj |Aj/An : 1 ≤ j ≤ n}}.

Assume that bn 6= 0 and log γ1, . . . , log γn are linearly independent over Z. Then

log |b1 log γ1 + · · ·+ bn log γn| ≥ −C(n)C0W0D
2Ω,

with

Ω = A1 · · ·An,

C(n) = C(n, κ) =
16

n!κ
en(2n+ 1 + 2κ)(n+ 2)(4(n+ 1))n+1

(
1

2
en

)κ

,

C0 = log
(
e4.4n+7n5.5D2 log(eD)

)
, W0 = log(1.5eBD log(eD)).

In the case of linear forms in two logarithms we can use a sharper bound due

to Laurent et al. [15]:

Theorem 3 (Laurent, Mignotte, Nesternko 1995). Let γ1 and γ2
be two positive, real, multiplicatively independent elements in a number field of

degree D over Q. For i = 1, 2, let log γi be any determination of the logarithm

of αi, and let Ai > 1 be a real number satisfying

logAi ≥ max{h(γi), | log γi|/D, 1/D}.

Further, let b1 and b2 be two positive integers. Define

b′ =
b1

D logA2
+

b2
D logA1

and log b = max

{
log b′ + 0.14, 21/D,

1

2

}
.

Then

|b2 log γ2 − b1 log γ1| ≥ exp
(−24.34D4(log b)2 logA1 logA2

)
.



106 László Szalay and Volker Ziegler

We use the same linear forms as in [20] and consider

T1 =
c

b
· bd+ 1

cd+ 1
=

c

b
pα5−α6qβ5−β6 .

Similarly we find (see also Stewart and Tijdeman [20])

log(T1) = log

(
1 +

c− b

dcb+ b

)
≤ log

(
1 +

1

2d

)
<

1

d
.

On the other hand, Matveev’s result (Theorem 2) yields a lower bound. We bring

up this lower bound now. First, choose A1 = log p,A2 = log q and A3 = log c >
log q
2 . Obviously we have 0 ≤ α5, α6 ≤ log(d2−d+1)

log p < 2 log d
log p and 0 ≤ β5, β6 ≤ 2 log d

log q .

Therefore we obtain B < 2 log d
log c , hence we have

1.690182 · 1010 log c log p log q
(
2.1 + log

(
log d

log c

))
> log d. (6)

In the case of

T2 =
(bd+ 1)(ac+ 1)

(cd+ 1)ab

we compute

log(T2) = log

(
1 +

db+ ac− ab+ 1

abcd+ ab

)
< log

(
1 +

2

ac

)
<

4

c
,

and therefore by Theorem 2

1.690182 · 1010 log(ab) log p log q
(
2.8 + log

(
log d

log(ab)

))
> log c− log 4 (7)

follows.

In case of

T3 =
(ab+ 1)(cd+ 1)

(ac+ 1)(bd+ 1)

we find

log(T3) = log

(
1 +

(d− a)(c− b)

abcd+ db+ ac+ 1

)
< log

(
1 +

1

ab

)
<

2

ab
.

Assume for a moment that b′ +0.14 ≥ 21. Thus we may apply Theorem 3. First,

b′ ≤ 8 log d

log p log q
,
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therefore we have

24.34 log p log q

(
2.08 + log

(
log d

log p log q

))2

> log(ab)− log 2. (8)

If we even suppose that p, q are large, say 1010 < p < q, by combining the

inequalities (6), (7) and (8), and using the lower bounds for b and c derived in

Lemma 6, we obtain

7.969 · 1021(log p log q)3(log log d)4 > log d. (9)

Since the bound 21
8 log p log q > log d is much sharper than (9), we proved

the lemma completely. ¤

The previous result gives us upper bounds for d. On the other hand, we will

find by Lemma 1 lower bounds for d. In particular, the following lemma provides

bounds for p under some restrictions.

Lemma 8. Assume maxi=1,...,6{αi + βi} > p. Then we deduce p < C(ξ)

with

C(ξ) = Ψ(9; 2.142 · 1022ξ3),
where Ψ(k;x) denotes the largest solution y > 0 to the equation x = y

(log y)k
.

Proof. Note that C(ξ) is increasing with ξ ≥ 1 and note that C(1) =

1.02 · 1040. Therefore we may assume p, q > 1040. By

d2 > cd+ 1 > pmaxi=1,...,6{αi+βi} > pp,

Lemma 7 and the conditions of the lemma we get

cξ3(log p)6(log log d)4 > log d >
1

2
p log p,

where c = 8.478 · 1021. Therefore

cξ3(log p)6 >
log d

(log log d)4
>

p log p

2(log log p+ log p)4
>

p

2.687842(log p)3
,

since log x
(log log x)4 is increasing if x > 5.15 · 1023. Solving the last inequality for p, it

gives the required result. ¤

The following proposition will be frequently used.
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Proposition 1. Assume that one of the equations (2), (3) and (4) is written

in the form

pe1qf1 − pe2qf2 = pe3qf3 + pe4qf4 − pe5qf5 − pe6qf6 ,

further let e be the difference of the third to least exponent and the least exponent

of the ei, with i = 1, . . . , 6, and let f be defined in the obvious similar way. Then

we deduce e, f ≤ 1, provided that p > C(ξ). Moreover, the two least exponents

are equal.

Proof. Let us consider, say, unit equation (2). We obtain

pα2+α5qβ2+β5 − pα3+α4qβ3+β4 = pα5qβ5 + pα2qβ2 − pα3qβ3 − pα4qβ4 .

Suppose that all exponents αi with i = 2, 3, 4, 5 are distinct. Computing the

p-adic valuations on the left and right hand sides we see that

vp
(
pα5qβ5 + pα2qβ2 − pα3qβ3 − pα4qβ4

)
= min{αi}.

Say, the minimum is α2. But, in this case we have α2 < α2+α5 and α2 < α3+α4,

i.e. the p-adic valuation on the left side does not fit to the p-adic valuation on

the right. Therefore in any case the two least exponents are equal. Observe, that

all other cases can be deduced by the same method.

Now divide the equation by the least occurring powers of p and q, respectively.

Consider (2) and assume α2 = α5 and β4 = β3 are the smallest exponents. Then

pα2qβ2+β5−β3−pα3+α4−α2qβ3−qβ2−β3(qβ5−β2+1) = −pmin{α3,α4}−α2(p|α3−α4|+1)

holds. Clearly, in all other cases we obtain similar equations. In particular, in

any case we obtain that for some x the quantity 1 ± px is divided by qf . Since

x is at most max{αi + βi}, due to Lemma 8 we obtain that x < p or p < C(ξ).

Hence Lemma 1 yields f ≤ 1 for large p. By similar arguments we also deduce

e ≤ 1. ¤

4. Unit equation (2)

In this section we deal with equation (2), and our main result is to deduce

some relations for the exponents appearing in (2). In particular, this section is

devoted to the proof of the following proposition.
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Table 1. List of the possible solutions to equation (2)

Case α β

1 α2 = α5 ≤ 1 β3 = β4 ≤ 1

2 α2 = α5 ≤ 1 β3 = β4 = β2 − 1

3 α3 = α4 = α2 − 1 β2 = β5 = β3 − 1

4 α3 = α4 = α2 − 1 β2 = β5 ≤ 1

5 α3 = α4 ≤ 1 β2 = β5 = β3 − 1

6 α3 = α4 ≤ 1 β2 = β5 = β4 − 1 = 0

7 α3 = α4 ≤ 1 β2 = β5 ≤ 1

Proposition 2. Let C(ξ) be defined as in Lemma 8. If p > C(ξ) then one

of the seven cases in Table 1 holds.

By Proposition 1 we may assume that αi = αj is minimal for some distinct

i, j ∈ {2, 3, 4, 5}, i.e. we have to consider six cases. If αi = αj and βi = βj hold

we deduce that either si|sj or sj |si. Therefore we can exclude, by Lemma 2 the

cases α2 = α4 and α3 = α5 and also when β2 = β4 and β3 = β5. So four subcases

remain to consider.

Before we discuss them we write down again equation (2) explicitly:

pα2+α5qβ2+β5 − pα3+α4qβ3+β4 = pα2qβ2 + pα5qβ5 − pα3qβ3 − pα4qβ4 . (10)

4.1. The case when α2 = α5 is minimal. First, observe that β2 < β5 and we

also note that β4 < β2 otherwise s2|s4 would contradict Lemma 2. Since a sole

minimum cannot exist we deduce that β3 = β4. The third smallest exponent of q

in equation (10) is either 2β3 or β2. Hence, by Proposition 1 we have β3 = β4 ≤ 1

or β3 = β4 = β2 − 1. Note that β4 = β2 would yield a contradiction by s2|s4.
The third smallest exponent of p in equation (10) is either 2α2, α3 or α4.

Therefore we have either α2 = α5 ≤ 1, α2 = α5 = α3−1 or α2 = α5 = α4−1. Note

that only the first case may hold since by assumption β2 > β3 = β4, consequently

s2 > s3 or s2 > s4 fulfills because of p < q. Therefore we deduce that one of the

first two cases in Table 1 holds.

4.2. The case when α2 = α3 is minimal. Again β4 < β2 since s2 - s4. Thus

we have β4 = β5 < β2 < β3. Therefore the third smallest exponent of q in

equation (10) is β2, subsequently β4 = β5 = β2 − 1.

Similarly, by considering the exponents of p in equation (10), we obtain that

α2 = α3 = α4 − 1 because α4 < α5. But together with the relations of the β’s we

arrived at the contradiction s2 > s4.
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4.3. The case when α4 = α5 is minimal. We immediately see that β2 < β4

and β4 < β5, since otherwise s2|s4 and s4 > s5, respectively. Therefore β2 = β3 is

minimal. Consider the exponents of q in equation (10) to obtain β := β2 = β3 =

β4 − 1. Since we have β2 = β3 we deduce α2 < α3 and therefore Proposition 1 in

view of p-exponents yields α := α5 = α4 = α2 − 1.

In the virtue of c|s4 − s2 Lemma 3 yields c < q. On the other hand, we have

s4 = pαqβ+1 = bc + 1 < c2 < q2, and therefore β = 0 and pα < q. Consider

now s1. We have

qp > pα+1 = s2 = ac+ 1 > ab+ 1 = pα1qβ1 .

Therefore we have either β1 = 0 and b < pα or ab+ 1 = q.

First suppose β1 = 0. Then we have

Z 3 ps4
s2

=
pb

a
− 1

a
· p(b− a)

ac+ 1
=

pb

a
− 1

a
·

<1︷ ︸︸ ︷
b− a

pα
.

Since the left hand side is an integer we deduce that the “braced” quantity is

zero, hence b = a, which is a contradiction.

In the case of ab+ 1 = q, by assumption c < q and ab+ 1 = q we get

Z 3 s4
s1

=
c

a
− 1

a
·

<1︷ ︸︸ ︷
c− a

ab+ 1
.

But c = a is again a contradiction.

4.4. The case when α3 = α4 is minimal. We have β2 < β3, β4 since otherwise

we would have s2 ≥ s3, s4. Because no sole minimum exists we deduce β2 = β5.

Applying Proposition 1 we obtain either β2 = β5 ≤ 1 or β2 = β5 = β3 − 1 or

β2 = β5 = β4−1. Now we may assume α2 < α5 and again applying Proposition 1,

it provides either α3 = α4 = α2 − 1 or α3 = α4 ≤ 1. The combination of

the relations of the α’s and β’s yields either cases listed in Table 1 or the case

α := α3 = α4 = α2 − 1 and β := β2 = β5 = β4 − 1 or the case α3 = α4 ≤ 1 and

β := β2 = β5 = β4 − 1.

When α := α3 = α4 = α2 − 1 and β := β2 = β5 = β4 − 1, similarly to

the subsection above, it leads to a contradiction. Note that only the relations

between s2 and s4 have been used there.

Therefore it remains to prove β = β2 = 0 in the last case. By c|s4 − s2 and

Lemma 3 we have c < q and therefore q2 > bc + 1 = s4. Hence β4 ≤ 1. But

β4 = 0 would lead to a negative β2, hence β4 = β2 + 1 = 1.
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5. Unit equation (4)

In this section we consider the unit equation (4) more closely, in particular

we prove the following proposition.

Proposition 3. Let C(ξ) be defined as in Lemma 8. If p > C(ξ) then one

of the three cases in Table 2 holds.

Table 2. List of the possible solutions to the system of equations (2)

and (4)

Case α β

I α3 = α4 ≤ 1; α1 = α6 ≤ 1 β2 = β5 ≤ 1

II α2 = α5 ≤ 1 β3 = β4 ≤ 1; β1 = β6 ≤ 1

III α2 = α5 ≤ 1 β3 = β4 = β2 − 1; β1 = β6 ≤ 1

Since none of the α’s take a sole minimum in Proposition 1, and α5 = α6

induces s5|s6 (a contradiction to Lemma 2) we are left to five subcases. Note that

equation (4) takes the form

pα2+α5qβ2+β5 − pα1+α6qβ1+β6 = pα2qβ2 + pα5qβ5 − pα1qβ1 − pα6qβ6 . (11)

5.1. The case when α1 = α2 is minimal. Since β5 = β6 implies s5|s6 and

β1 < β2 we are left to the two possibilities β1 = β5 and β1 = β6.

5.1.1. The subcase when β1 = β5 is minimal. Note that α1 = α2 = α5 cannot

hold since otherwise s1 = s5 is a contradiction. Therefore we deduce α2 < α5,

but this yields by Proposition 2 β2 = β5 = β1, again a contradiction.

5.1.2. The subcase when β1 = β6 is minimal. By the assumption β1 = β6 < β5

we deduce α5 < α6. Hence Proposition 1 yields α1 = α2 = α5 or α1 = α2 = α5−1

for the exponents of p. Since α5 ≤ α2 + 1 we deduce β2 ≤ β5 and Proposition 1

yields in view of exponents of q that either β1 = β6 ≤ 1 or β1 = β6 = β2 − 1.

Let us assume α1 = α2 = α5 and β1 = β6 ≤ 1. Then only the first two cases

of Table 1 hold, i.e. these are cases II and III of Table 2.

Now let us assume α1 = α2 = α5 and 1 < β1 = β6 = β2 − 1. Again only the

first two cases of Table 1 hold. In the first case we have α3 > α6 since s3 - s6 and

obviously β3 < β6 and we also have α6 > α5 = α2 since otherwise s5|s6. Therefore
Lemma 3 in view of the pairs (s6, s3) and (s6, s2) yields d|pβ6−β3 − pα3−α6 thus

d < qβ6 , and c|pα6−α2 − q thus c < pα6 . Therefore pα6qβ6 = cd + 1 < pα6qβ6
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shows a contradiction. In the second case we obtain β1 = β6 = β2 − 1 = β3 = β4,

hence s3|s6 again is a contradiction.

Assume now that α1 = α2 = α5−1. Since α2 6= α5, we may exclude the first

two cases of Table 1.

Next we consider the cases 3 and 4 in Table 1 and we may assume α := α3 =

α4 = α1 − 1 = α2 − 1 = α5 − 2. Since β2 = β5 we have

s2 = pα+1qβ2 < pαqβ3 , pαqβ4 < pα+2qβ2 = s5,

and therefore we may suppose β := β2 = β5 = β3 − 1 = β4 − 1 and β1 < β.

Now Lemma 3 yields in view of the pair (s3, s5) that d|p2 − q and therefore

pα+2qβ = bd + 1 < p4 which is impossible unless α = 0, β = 1 and β1 = 0. But

the later assumption leads to ab+1 = p, hence b < p and p2q = bd+1 < p3 mean

again a contradiction.

Now let us assume that either case 5 or case 6 of Table 1 holds. Write

α := α1 = α2 = α5 − 1. Since α3 = α4 ≤ 1 and s2 < s3, s4 < s5 = ps2 we deduce

β3 = β4. Therefore we have β1 < β2 = β5 = β3 − 1 = β4 − 1 =: β and Lemma 3

in view of the pairs (s4, s2) and (s5, s3) yields b < c < q and d < pα+1−α4 . Hence

bd + 1 < qpα+1 which yields a contradiction unless β = 0. But β = 0 yields

β1 < 0.

We turn now to the case α := α1 = α2 = α5 − 1, α′ := α3 = α4 ≤ 1,

β1 = β6 = 0 and β2 = β5 = 1 which corresponds to case 7 of Table 1. Since

pαq = s2 < s3, s4 < pα+1q and α3 = α4 we deduce that β3 = β4 =: β. Next, in

view of the pairs (s2, s1), (s5, s1), (s4, s2) and (s6, s5) and Lemma 3 we obtain

a < q, b < pq, c < qβ−1, d ≤ pα6−α−1 − q.

Therefore pqβ > bc + 1 = pα
′
qβ , which can only hold if α′ = 0. We reconsider

now the unit equation (11) and solve it for pα6 . We get

pα6 =

(
1− 1

pα

)−1 (
pα+1q2 − q(p+ 1) + 1

)
= pα+1q2 + L(2pq2). (12)

Together with the estimations above, (12) implies

d ≤ q2 +
2q2

pα
− q.

Furthermore, we have

qβ = bc+ 1 < d2 ≤ q4
(
1 +

4

pα
+

4

p2α

)
− 2q3

(
1 +

2

pα

)
+ q2 + 1 < q5, (13)



On an S-unit variant of Diophantine m-tuples 113

i.e. β ≤ 4. Since s2 > s1 and s2 - s4 we deduce β ≥ 2. In case of β = 2 we have

c < q, i.e. q2 = bc + 1 < q2 is a contradiction. Therefore we consider the case

β = 4 next. Note that we have 1
pα < p

q3 since s3 < s5. Using this estimate in

(13), it yields

q4 = bc+ 1 < d2 < q4 + 4pq +
4p2

q2
− 2q3 + q2 + 1 < q4.

Therefore we can restrict ourselves to the case β = 3. Since s3 < s5 we deduce
1
pα < p

q2 and by the estimations for d we obtain

d ≤ q2 + 2p− q ≤ q2,

provided q ≥ 2p. Recall that a < q, hence q3 = ad+ 1 < q3 leads to a contradic-

tion. Consequently, we may assume q < 2p. In this case we have

q3 = bc+ 1 > ac+ 1 >
qα+1

2α

which is again a contradiction unless α ≤ 2. Obviously, α = 0 is impossible.

Thus we consider the case α = 1, which provides a contradiction by q3 = bc+1 <

bd+ 1 = p2q. So only α = 2 remains to investigate. Recall (12) to obtain

pα6 = p3q2 + L(2pq).

It gives α6 = 5. Note that we assume that p < q < 2p and p is large. Hence by

the estimate d < pα6−α−1 = p2 we have p5 = cd+1 < p4. This is a contradiction.

5.2. The case when α1 = α5 is minimal. Since the case α1 = α2 has already

treated, we may suppose α1 = α5 < α2. But by Proposition 2 we obtain β2 = β5,

hence s2 > s5 which is an obvious contradiction.

5.3. The case when α1 = α6 is minimal. Note that β1 < β6, therefore we

distinguish three subcases: β2 = β5, β1 = β5 and β1 = β2.

5.3.1. The subcase when β2 = β5 is minimal. Here β1 < β6 and α2 < α5.

Applying Proposition 1, we obtain either β2 = β5 ≤ 1 or β2 = β5 = β1 or

β2 = β5 = β1 − 1. Meanwhile, for the α′s we have either α1 = α6 ≤ 1 or

α1 = α6 = α2 − 1. Note that the case α1 = α2 has already been treated above.

Let us consider the case β′ := β2 = β5 ≤ 1 and α′ := α1 = α6 ≤ 1 first. By

Proposition 2, we deduce that either case I holds or we have α := α3 = α4 = α2−1.
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First, let us assume that β4 ≤ β1 + β′. Applying Lemma 4 we see immediately

that no solution exists in this case.

Therefore we may suppose β4 ≥ β1 + β′ + 1. Now Lemma 5 yields

a2 = p1+α′
qβ1+β′−β4 − r

with 0 < r < 2, where r is not necessarily an integer. By a ≥ 1 we deduce

β4 = β1 + β′ + 1, i.e. a2 = p1+α′

q − r, hence α′ = 1. In order to apply the

inequality stated in Lemma 5, we have to show that

pα2+δqβ2+ε < pα4qβ4 ,

which is in our case equivalent to

pα+1q1+β′
< pαqβ1+β′+1.

This is true unless β1 = 0. Now Lemma 5 gives

pαqβ1+β′+1 − 2p2q < pα+1q1+β′
< pαqβ1+β′+1

or

qβ1 − 2
1

pα−2qβ′ < p < qβ1 . (14)

Unless β′ = 0 and α ≤ 1 or β′ = 1 and α = 0 we have qβ1 − 2 < p < qβ1 which

is a contradiction to p is an odd prime. But α = 1 leads to α3 = α6 and α = 0

leads to s1 > s2, since we assume β1 > 0.

If β1 = 0 then, by the assumption β1 ≥ β2 = β′ we deduce β′ = 0 and

therefore β4 = 1. Since c < q (apply Lemma 3 to the pair (s2, s4)) and b < s1 = p

(note that α1 = α6 ≤ 1) we have bc + 1 < pq, i.e. α = 0. But α = 0 entails

s2 = s1 = p, and this is a contradiction.

Now, let us consider the case β2 = β5 ≤ 1 and α1 = α6 = α2 − 1. We

note that the cases 3 and 4 in Proposition 2 cannot hold since we would obtain

α1 = α6 = α2− 1 = α3 = α4 and then s3|s6 is a contradiction. Therefore we may

assume α3 = α4 ≤ 1. Since s2 > s1 we deduce that β1 ≤ β2 and therefore also

β1 < β3, β4. Considering the unit equation (3), we obtain β1 = β6 since a sole

minimum cannot exist. So s1 = s6 is a contradiction.

Now we treat the case β2 = β5 = β1. Proposition 2 shows us that β2 = β5 <

β4 and in view of our actual case β1 < β4 holds. Hence, by (3) we deduce that

either β1 = β6 or β1 = β3, which yields either s5|s6 or s3|s5.
The next case is β2 = β5 = β1 − 1. First note that α1 = α6 = α2 − 1 cannot

hold since s1 > s2 would mean a contradiction. Therefore we may assume that
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α1 = α6 ≤ 1. Since the case β2 = β5 ≤ 1 has already been treated, we deduce

from Proposition 2 that β2 = β5 = β1 − 1 = β3 − 1 and either α3 = α4 ≤ 1 or

α3 = α4 = α2 − 1.

When β = β2 = β5 = β1 − 1 = β3 − 1, α1 = α6 = 0 and α3 = α4 = 1,

by a|s3 − s1 and Lemma 3 we have a < p and since ab + 1 = qβ+1 we deduce

on the one hand b < qβ+1 and on the other hand b > qβ+1

p > qβ . Moreover,

we have s2 < s3 and so pα2−1 < q and ac + 1 < pqβ+1, i.e. c < pqβ+1. The

bounds for b and c yield pqβ4 = bc + 1 < pq2β+2, i.e. β4 ≤ 2β + 1. Now we

consider the pairs (s4, s1) and (s4, s2) in view of Lemma 3. From the first pair

we obtain b|pqβ4−β−1 − 1, hence β4 = 2β + 1 because b > qβ . Then the second

pair yields c|qβ+1− pα2−1, i.e. c ≤ qβ+1. Moreover since s4 = ad+1 = pqβ+1 and

d < pqβ+1 we get qβ6 = cd + 1 < pq2β+2 which results in β6 = 2β + 2. Now the

pair (s6, s4) yields a new bound for c, namely c < q and together with a < p we

have qβ+1 = ab+ 1 < ac+ 1 < pq and therefore β = 0. Now we consider the pair

(s3, s6) and obtain d|q − p. Thus q2 = cd+ 1 < q2 is a contradiction finally.

Only the case β = β2 = β5 = β1 − 1 = β3 − 1, α′ = α1 = α6 ≤ 1 and

α = α3 = α4 = α2 − 1 is still open. Note that α > α′. We know that

Z 3 p(bc+ 1)

ac+ 1
=

pb

a
− 1

a
·

θ︷ ︸︸ ︷
p(b− a)

ac+ 1
.

If |θ| < 1 we obtain a similar contradictory argument as in Lemma 2. Therefore

c > b > pαqβ follows. From the inequlity pαqβ < b < s1 < s2 we get pα−α′
< q <

pα+1−α′
. Using this inequality in c < ac+ 1 = pα+1qβ we get c < qβ+1pα

′+1 and

d < qβ+2pα
′
. Thus

pα
′
qβ6 = cd+ 1 < p1+2α′

q2β+3

and β6 ≤ 2β + 3 + e. Using the upper bound b < ab + 1 = pα
′
qβ+1 we similarly

obtain

pαqβ4 = bc+ 1 < p1+2α′
q2β+2

hence β4 ≤ 2β + 2 + e. We apply Lemma 3 to the pair (s4, s1) and obtain

pαqβ < b < pα−α′
qβ4−β−1 < qβ4−β

which yields pα
′
< qβ4−2β−1. Thus β4 = 2β + 2 if α′ = 0 and β4 = 2β + 2 or

β4 = 2β + 3 if α′ = 1. We consider the pair (s6, s4) and obtain an upper bound

c < q if α′ = 0 and c < q2 if α′ = 1. But

p1−α′
qβ+1 < pαqβ < b < c < q1+α′
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is a contradiction unless β = 0, α′ = 1, β6 = 4 and β4 = 2. Since in any other case

we would obtain the sharper bound c < q. We remind that d < qβ+2pα
′
= pq2,

thus pq4 = cd+ 1 < pq4 is a contradiction.

5.3.2. The subcase when β1 = β5 is minimal. Since the case above we have

β2 > β5 and from Proposition 2 we deduce α2 = α5. Then s2 > s5, which is

impossible.

5.3.3. The subcase when β1 = β2 is minimal. Now α1 = α6 ≤ α5 implies β1 =

β2 ≤ β5 < β6, and Proposition 1 yields β := β2 = β1 = β5−1. Note that the case

β2 = β5 was treated above. Therefore we have α2 = α5 = 1, α1 = α6 = 0 and

β3 = β4 < β2 = β1 by Proposition 2 and our assumptions. Considering b|s5 − s1,

we obtain b|qp−1. Similarly, by a|s2−s1 we gain a|p−1. Thus ab+1 = qβ < p2q,

hence β ≤ 2. If β = 2 then we have b|qp− 1 and b|q2 − 1 = s1 − 1, and we obtain

b|q − p, i.e. q2 > b2 > ab + 1 = q2, a contradiction. Therefore we have β = 1

leading to qβ6 = cd + 1 < (ac + 1)(bd + 1) = p2q3 < q5, i.e β6 = 3, 4. Note that

β6 ≤ 2 would yield s5 > s6. If we suppose β6 = 3 we obtain, by d|s6 − s5 that

d|q−p and hence q3 = cd+1 < q2 is a contradiction. Similarly, we obtain d|q2−p

in the case β6 = 4, hence q4 = cd + 1 < q4 is also impossible. Note that β = 0

yields β3 < 0, which is again a contradiction.

5.4. The case when α2 = α5 is minimal. By Proposition 2 we have α2 =

α5 ≤ 1. Obviously, the relations β1 < β2 < β5 hold since otherwise it would

lead to s1 < s2 < s5. Therefore we conclude β1 = β6, and by Proposition 1

β1 = β6 = β2 − 1 or β1 = β6 ≤ 1 follows. The case β1 = β6 ≤ 1, together with

Proposition 2 yields the cases II and III. On the other hand, β1 = β6 = β2 − 1,

together with the second case of Proposition 2 immediately yields a contradiction.

The remaining case α2 = α5 ≤ 1, β1 = β6 = β2 − 1 and β3 = β4 ≤ 1 provides

β3 = β4 < β1 = β6. But this implies α1 < α6 < α3. Therefore we obtain, in view

of equation (3) and Proposition 1 that α1 = α4. Consequently, β1 < β4, which

contradicts β3 < β1.

5.5. The case when α2 = α6 is minimal. Because of s1 < s2, s6 and α1 ≥
α2, α6 we gain β1 < β2, β6. Therefore we have β1 = β5 ≤ β2 < β6 and α2 = α6 <

α1 < α5. Now, by Proposition 1, α2 = α6 = α1 − 1 and β1 = β5 = β2 − 1 follow.

Note that β1 = β5 = β2 would imply the contradiction s2 < s1. Since β2 6= β5

we deduce α2 = α5 and therefore in the actual case α5 = α6 holds. But s5|s6 is

a contradiction again.
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6. The unit equation (3)

In this section we concentrate on the equation

pα1+α6qβ1+β6 − pα3+α4qβ3+β4 = pα1qβ1 + pα6qβ6 − pα3qβ3 − pα4qβ4 . (15)

As earlier, we have to distinguish several cases.

6.1. The case when α1 = α3 is minimal. Obviously, we have β1 < β3, there-

fore either β1 = β4 or β1 = β6 or β4 = β6 holds. But, both the cases β1 = β4 and

β4 = β6 give case I in Proposition 3 since otherwise s3|s6. But case I contradicts

our assumption α1 = α3, since othewise s3|s6 again.

Therefore we may assume β1 = β6 and either case II or III holds. Since by

assumption β4 ≥ β6 we deduce that α1 = α3 ≤ α4 ≤ α6. Therefore Proposition 1

results in α1 = α3 = α4 − 1 or α1 = α3 = α4.

First suppose that case II holds. Then we have β1 = β6 = 0 and β3 = β4 = 1.

Put α = α1 = α3, α
′ = α2 = α5 ≤ 1 and α4 = α+ h with h ∈ {0, 1}, and assume

h = 0. Then, in the virtue of Lemma 4 there does no solution exist. Note that

we may apply Lemma 4 only if β2 > 0, but β2 = 0 means s2 ≤ p ≤ s1. Similarly,

we may also exclude the case h = 1 and α′ = 1. Hence we are reduced to the

possibility h = 1 and α′ = 0. According to Lemma 5, we obtain

pa2 = qβ2−1 − r

with 0 < r < 2p. On the other hand, a|s3 − s1 implies a|q − 1 (Lemma 3), hence

pq2 > pa2 + 2p > qβ2−1. Since β2 > 1 we deduce β2 = 2, 3. Applying the second

part of Lemma 5, after canceling common factors, we get

pα+1 − 2pqβ2−2 < qβ2−1 < pα+1.

Note that pδqε = p = s4
s3

> s4
s2
. In case of β2 = 2 we see from c|s4 − s2 that

c|pα+1 − q (Lemma 3), and from the inequality above that c ≤ pα+1 − q < 2p.

Therefore pα+1q = bc+ 1 < 4p2, subsequently α = 0 and α3 = α5 and s3|s5.
Suppose now that β2 = 3 and pα+1 − 2pq < q2 < pα+1. Evaluating

bd+ 1 =
(s3 − 1)(s4 − 1)

s2 − 1
=

(pα+1q − 1)(pαq − 1)

q3 − 1
+ 1 =

p2α+1

q
+ L

(
2pα+1

q2

)

=
p2α+1

q
+ L

(
2
q2

q2
+ 4

p

q

)
=

p2α+1

q
+ L(6) <

(q2 + 2pq)2

pq
+ 6 < q3,

it leads to a contradiction by β2 = β5 < 3.
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Now let us consider case III. Here we write β′ = β1 = β6 ≤ 1, β = β3 = β4 =

β2 − 1, α = α1 = α3, α4 = α + h with h ∈ {0, 1} and α′ = α2 = α5 ≤ 1. Unless

h = 1 and α′ = β′ = 0 we can apply Lemma 4. Since pδqε = p = s4
s3

< s4
s2

we can

use the second part of Lemma 5 in the remaining case, and we obtain

pα+1 − 2p

qβ−1
< q < pα+1.

But it contradicts the assumption q is odd unless β = β3 = β4 ≤ 1. But this case

has been treated above.

6.2. The case when α1 = α4 is minimal. Observe, that only the cases II and

III may hold under this assumption. By β1 < β4 we have β1 = β3 or β1 = β6. But

the first equality is not possible in the cases II and III. Therefore we may assume

β1 = β6. Since α6 < α3 would imply s3 > s6, we have α1 = α4 ≤ α3 < α6, and

now Proposition 1 yields α1 = α4 = α3 − 1. Note that α1 = α3 has already been

investigated above.

In case II we write α = α1 = α4 = α3− 1 and α′ = α2 = α5 ≤ 1 and we have

β1 = β6 = 0 and β3 = β4 = 1. Therefore Lemma 4 settles this case.

Case III is analogous. Let α = α1 = α4 = α3 − 1 and α′ = α2 = α5 ≤ 1.

Moreover, we have β′ = β1 = β6 ≤ 1 and β = β3 = β4 = β2 − 1. We apply

Lemma 4 again.

6.3. The case when α1 = α6 is minimal. Obviously, only case I may hold.

Therefore we have α1 = α6 = 0, α3 = α4 = 1 and β′ = β2 = β5 ≤ 1. Moreover,

β3 < β1 or β4 < β1 would yield s3 < s1 or s4 < s1, and we obtain either β1 = β3

or β1 = β4. In case of β1 = β4, the application of Lemma 4 gives a contradiction.

Therefore Proposition 1 implies β := β1 = β3 = β4−1. Considering now d|s6−s3
and c|s6 − s4, we obtain (by Lemma 3) d < qβ6−β and c < qβ6−β−1. Thus

q2β6−2β−1 > cd+1 > qβ6 , i.e. β6 > 2β +1. On the other hand, ad+1 = pqβ and

therefore c, d < pqβ and qβ6 = cd + 1 < p2q2β < q2β+2 follow, which contradicts

the bound for β6 found before.

6.4. The case when α3 = α4 is minimal. From α = α3 = α4 ≤ α1, α6 we

deduce that β1 < β3, β4 hence β′ = β1 = β6 < β3, β4. Note that only the cases

II and III may hold, hence β = β3 = β4, β
′ ≤ 1 and α′ = α2 = α5 ≤ 1. We

may exclude the case β2 < β4 since otherwise case II would be fulfilled, and

β1 = β6 = β2 = 0 and α1 < α2 ≤ 1 would yield a contradiction by ab + 1 = 1.

Therefore we suppose β4 ≤ β2 and apply Lemma 4.
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6.5. The case when α4 = α6 is minimal. Clearly, under this assumption only

the cases II and III may hold. Thus α4 = α6 ≤ α1, and we obtain β1 < β4, β6,

hence β1 = β3 in the virtue of Proposition 1. But, this contradicts β1 = β6, since

we obtain s3|s6.

7. Open problems and questions

Let s(k) respectively S(k) be the smallestm such that there is no respectively

only finitely many sets of primes S with |S| = k, such that an S-Diophantine m-

tuple exists. If no such k exists set s(k) = ∞ respectively S(k) = ∞. Therefore

the first question arises:

Question 1. Are s(k) and S(k) for any positive integer k finite?

In case of k = 1 Corollary 2 tells us that s(1) = S(1) = 3. In case of k = 2

the statement of Conjecture 1 may be read as s(2) ≤ 4 and S(2) ≤ 4 respectively.

By a simple computer search we obtain the following result:

Lemma 9. Let 1 ≤ a < b < c < d ≤ 1000, then there exist only three

S-Diophantine quadruples with |S| = 3 and no quadruples with |S| = 2, i.e.

s(3) > 4.

Let 1 ≤ a < b < c < d < e ≤ 300, then there exist 32 S-Diophantine

quintuples with |S| = 5 and no quintuples with |S| = 4, i.e. s(4) ≥ 5 and s(5) > 5.

In view of the lemma above we guess that s(3) = 5 and S(3) = 4.

Question 2. Are s(2) = 4, S(4) = 2, s(3) = 5 and S(3) = 4 correct? What

are the values of s(4), S(4) and more generally what are the values of s(k) and

S(k) for k ≥ 5?

Now let us consider m-tuples (a1, . . . , am) ∈ Zm such that they are S-

Diophantine with |S| being small. In order to do so we choose a prime p and

put a1 = 1 and ai = pαi − 1 for i = 2, . . . ,m and some fixed integers α2 < α3 <

· · · < αm such that all the polynomials

Pij(x) = xαi+αj − xαi − xαj + 2

are irreducible. Note that we can always find such α’s due to Schinzel [17][Theo-

rem 5]. It is widely believed that irreducible polynomials take infinitely many

prime values simultaneously (cf. [18][Hypotheses H] and [1]). Seeing the primes

as a model of a randomly distributed sequence of density 1/ logn strongly suggests
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that for infinitely many primes p all the quantities aiaj + 1 with 1 < i < j ≤ m

are primes again. In our context this means that there are infinitely many sets S

with |S| = (
m
2

) − m + 1 =
(
m−1
2

)
such that there is at least one S-Diophantine

m-tuple. This motivates the next question:

Question 3. Is the statement

S(k) ≥
⌊
3 +

√
8k + 1

2

⌋

actually true? Are there better asymptotic estimates? What can be said about

upper bounds?
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