Fixed point theorems on generalized b-metric spaces

By IOAN-RADU PETRE (Cluj-Napoca) and MONICA BOTA (Cluj-Napoca)

Abstract

In this paper we will present some fixed and strict fixed point theorems in generalized b-metric spaces using the Picard and weak Picard operators technique. Also, we give an application for a system of Volterra-type equations.

1. Introduction

The concept of b-metric space or generalizations of it appeared in some works, such as N. Bourbaki [8], I. A. Bakhtin [1], S. Czerwik [9], J. Heinonen [11], etc. Some examples of b-metric spaces and some fixed point theorems in b-metric spaces can also be found in M. Boriceanu, A. Petruşel and I. A. Rus [4], M. Boriceanu [5], [6], M. Bota [7]. The purpose of this paper is to present some fixed and strict fixed point results in generalized b-metric spaces and to give an application for a system of Volterra-type equations.

2. Notations and auxiliary results

The aim of this section is to present some notions and terminology used in the paper. We first give the definition of a generalized b-metric space.

[^0]Definition 2.1. Let X be a set and let $S \geq I$ be a square $m \times m$ matrix of nonnegative real numbers, where I denotes the identity matrix. A functional $d: X \times X \rightarrow \mathbb{R}_{+}^{m}$ is said to be a generalized b-metric if for all $x, y, z \in X$ the following conditions are satisfied:
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$;
(3) $d(x, z) \leq S[d(x, y)+d(y, z)]$.

Then the pair (X, d) is called a generalized b-metric space.
The class of generalized b-metric spaces is larger then the class of generalized metric spaces, since a generalized b-metric space is a generalized metric space when $S=I$ in the third assumption of the above definition. We say that $\|\cdot\|$: $X \rightarrow \mathbb{R}_{+}^{m}$ is a generalized norm if (in a similar way to the generalized metric) it satisfies the classical axioms of a norm. In this case, the pair $(X,\|\cdot\|)$ is called a generalized normed space. If the generalized metric generated by the norm $\|\cdot\|$ (i.e., $d(x, y):=\|x-y\|)$ is complete then the space $(X,\|\cdot\|)$ is called a generalized Banach space. Some examples of b-metric spaces are given by V. Berinde [2], S. Czerwik [9], J. Heinonen [11]. Here we give some examples of generalized b-metric spaces.

Notice that if $A, B \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right), A=\left[a_{i j}\right], B=\left[b_{i j}\right]$, for $i, j \in\{1,2, \ldots, m\}$ then by $A \leq B$ we mean $a_{i j} \leq b_{i j}$, for $i, j \in\{1,2, \ldots, m\}$.

Example 2.2. Let X be a set with the cardinal $\operatorname{card}(X) \geq 3$. Suppose that $X=X_{1} \cup X_{2}$ is a partition of X such that $\operatorname{card}\left(X_{1}\right) \geq 2$. Let $S=\left[\begin{array}{ccc}s_{11} & s_{12} \\ s_{21} & s_{22}\end{array}\right] \geq\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ be a matrix of real numbers. Then, the functional $d: X \times X \rightarrow \mathbb{R}_{+}^{2}$ defined by:

$$
d(x, y):= \begin{cases}{\left[\begin{array}{l}
0 \\
0
\end{array}\right],} & x=y \\
2\left[\begin{array}{l}
s_{11} \\
s_{22}
\end{array}\right], & x, y \in X_{1} \\
{\left[\begin{array}{l}
1 \\
1
\end{array}\right],} & \text { otherwise }\end{cases}
$$

is a generalized b-metric on X.
Example 2.3. The set $\ell^{p}(\mathbb{R})$ (with $0<p<1$), where $\ell^{p}(\mathbb{R}):=\left\{\left(x_{n}\right)_{n \in \mathbb{N}^{*}} \subset\right.$
$\left.\left.\mathbb{R}\left|\sum_{n=1}^{\infty}\right| x_{n}\right|^{p}<\infty\right\}$, together with the functional $d:\left(\ell^{p}(\mathbb{R}) \times \ell^{q}(\mathbb{R})\right)^{2} \rightarrow \mathbb{R}_{+}^{2}$,

$$
d(x, y):=\left[\begin{array}{l}
\left(\sum_{n=1}^{\infty}\left|x_{1 n}-y_{1 n}\right|^{p}\right)^{1 / p} \\
\left(\sum_{n=1}^{\infty}\left|x_{2 n}-y_{2 n}\right|^{q}\right)^{1 / q}
\end{array}\right]
$$

is a generalized b-metric space with $S=\left[\begin{array}{cc}2^{1 / p} & s_{12} \\ s_{12} & 2^{1 / q}\end{array}\right]>\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Notice that the above example holds for the general case $\ell^{p}(X)$ with $0<p<1$, where X is a generalized Banach space.

Example 2.4. The space $L^{p}[0,1]$ (where $0<p<1$) of all real functions $x(t)$, $t \in[0,1]$ such that $\int_{0}^{1}|x(t)|^{p} d t<\infty$, together with the functional

$$
d(x, y):=\left[\begin{array}{l}
\left(\int_{0}^{1}\left|x_{1}(t)-y_{1}(t)\right|^{p} d t\right)^{1 / p} \\
\left(\int_{0}^{1}\left|x_{2}(t)-y_{2}(t)\right|^{q} d t\right)^{1 / q}
\end{array}\right],
$$

is a generalized b-metric space with $S=\left[\begin{array}{cc}2^{1 / p} & 0 \\ 0 & 2^{1 / q}\end{array}\right]$.
Notice that in a generalized b-metric space (X, d) the notions of convergent sequence, Cauchy sequence, completeness are similar to those for usual metric spaces. Since generalized b-metrics do not induce topologies, the notions of open set and closed set should be clearly established in this context.

We consider now the following families of subsets of a generalized b-metric space (X, d) :
$\mathcal{P}(X):=\{Y \mid Y \subset X\} ; \quad P(X):=\{Y \in \mathcal{P}(X) \mid Y \neq \emptyset\} ;$
$P_{b}(X):=\{Y \in P(X) \mid Y$ is bounded $\} ; \quad P_{c p}(X):=\{Y \in P(X) \mid Y$ is compact $\} ;$
$P_{c l}(X):=\{Y \in P(X) \mid Y$ is closed $\} ; \quad P_{b, c l}(X):=P_{b}(X) \cap P_{c l}(X)$.
If (X, d) is a generalized b-metric space with $d(x, y):=\left[d_{1}(x, y) \ldots d_{m}(x, y)\right]$, then we write:

$$
D(A, B)=\left[\begin{array}{c}
D_{d_{1}}(A, B) \\
\cdots \\
D_{d_{m}}(A, B)
\end{array}\right],
$$

where

$$
D_{d_{i}}: P(X) \times P(X) \rightarrow[0,+\infty], \quad D_{d_{i}}(A, B)=\inf \left\{d_{i}(a, b) \mid a \in A, b \in B\right\}
$$

represents the generalized gap functional generated by d_{i}, for $i \in\{1, \ldots, m\}$;

$$
\rho(A, B)=\left[\begin{array}{c}
\rho_{d_{1}}(A, B) \\
\ldots \\
\rho_{d_{m}}(A, B)
\end{array}\right]
$$

where

$$
\rho_{d_{i}}: P(X) \times P(X) \rightarrow[0,+\infty], \quad \rho_{d_{i}}(A, B)=\sup \left\{D_{d_{i}}(a, B) \mid a \in A\right\}
$$

resents the generalized excess functional generated by d_{i}, for $i \in\{1, \ldots, m\}$;

$$
H(A, B)=\left[\begin{array}{c}
H_{d_{1}}(A, B) \\
\ldots \\
H_{d_{m}}(A, B)
\end{array}\right]
$$

where

$$
H_{d_{i}}: P(X) \times P(X) \rightarrow[0,+\infty], \quad H_{d_{i}}(A, B)=\max \left\{\rho_{d_{i}}(A, B), \rho_{d_{i}}(B, A)\right\}
$$

represents the generalized Pompeiu-Hausdorff functional generated by d_{i}, for $i \in$ $\{1, \ldots, m\}$;

$$
\delta(A, B)=\left[\begin{array}{c}
\delta_{d_{1}}(A, B) \\
\ldots \\
\delta_{d_{m}}(A, B)
\end{array}\right]
$$

where

$$
\delta_{d_{i}}: P(X) \times P(X) \rightarrow[0,+\infty], \quad \delta_{d_{i}}(A, B)=\sup \left\{d_{i}(a, b): a \in A, b \in B\right\}
$$

represents the generalized delta functional generated by d_{i}, for $i \in\{1, \ldots, m\}$. In particular, $\delta(A):=\delta(A, A)$ is the diameter of the set A.

Let (X, d) be a generalized b-metric space. If $F: X \rightarrow P(X)$ is a multivalued operator, then we denote by $\operatorname{Fix}(F)$ the fixed point set of F, i.e., $\operatorname{Fix}(F):=\{x \in$ $X \mid x \in F(x)\}$ and by $\operatorname{SFix}(F)$ the strict fixed point set of F, i.e., $\operatorname{SFix}(F):=$ $\{x \in X \mid\{x\}=F(x)\}$. The symbol $\operatorname{Graph}(F)$ denotes the graph of F, i.e., $\operatorname{Graph}(F):=\{(x, y) \in X \times X: y \in F(x)\}$.

By definition, a square matrix of real numbers is said to be convergent to zero if $A^{n} \longrightarrow 0$ as $n \rightarrow \infty$ (see R. S. Varga [21]). Some examples of matrices that are convergent to zero can be founded in R. Precup [18].

Lemma 2.5 ([18]). Let $A \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$. Then the following statements are equivalent:
(i) A is a matrix convergent to zero;
(ii) The eigenvalues of A are in the open unit disc, i.e., $|\lambda|<1$, for every $\lambda \in \mathbb{C}$ with $\operatorname{det}(A-\lambda I)=0$;
(iii) The matrix $I-A$ is non-singular and $(I-A)^{-1}=I+A+\cdots+A^{n}+\ldots$;
(iv) The matrix $I-A$ is non-singular and $(I-A)^{-1}$ has nonnegative elements;
(v) $A^{n} q \longrightarrow 0$ and $q A^{n} \longrightarrow 0$ as $n \rightarrow \infty$, for any $q \in \mathbb{R}^{m}$.

3. Main results

The following results are useful for some of the proofs in the paper.
Lemma 3.1. Let (X, d) be a generalized b-metric space and let $A, B \in P(X)$. We suppose that there exists $\eta \in \mathbb{R}_{+}^{m}, \eta>0$ such that:
(i) for each $a \in A$ there is $b \in B$ such that $d(a, b) \leq \eta$;
(ii) for each $b \in B$ there is $a \in A$ such that $d(a, b) \leq \eta$.

Then, $H(A, B) \leq \eta$.
Proof. It follows immediately from the definition of Pompeiu-Hausdorff generalized functional.

Lemma 3.2. Let (X, d) be a generalized b-metric space, $A \in P(X)$ and $x \in X$. Then $D(x, A)=0$ if and only if $x \in \bar{A}$.

Proof. We show that $\bar{A}=\{x \in X \mid D(x, A)=0\}$.
Obviously, $D(x, A)=0$ implies $x \in \bar{A}$. Now, let $x \in \bar{A}$, which means that for any $r \in \mathbb{R}_{+}^{m}, r>0$ we have $A \cap B(x, r) \neq \emptyset$, i.e., for any $r \in \mathbb{R}_{+}^{m}, r>0$, there exists $a \in A$ such that $d(x, a)<r$, i.e., $D(x, A)=0$.

Lemma 3.3. Let (X, d) be a generalized b-metric space and let $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$. Let $S \in M_{m, m}(\mathbb{R})$, with $S \geq I$. Then:

$$
d\left(x_{0}, x_{n}\right) \leq S d\left(x_{0}, x_{1}\right)+\cdots+S^{n-1} d\left(x_{n-2}, x_{n-1}\right)+S^{n-1} d\left(x_{n-1}, x_{n}\right)
$$

Proof. We have

$$
\begin{aligned}
d\left(x_{0}, x_{n}\right) & \leq S d\left(x_{0}, x_{1}\right)+S d\left(x_{1}, x_{n}\right) \leq S d\left(x_{0}, x_{1}\right)+S^{2} d\left(x_{1}, x_{2}\right)+S^{2} d\left(x_{2}, x_{n}\right) \\
& \leq S d\left(x_{0}, x_{1}\right)+\cdots+S^{n-1} d\left(x_{n-2}, x_{n-1}\right)+S^{n-1} d\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

which completes the proof.

Lemma 3.4. Let (X, d) be a generalized b-metric space and let $S \in M_{m, m}(\mathbb{R})$, with $S \geq I$. Then for all $A, B, C \in P(X)$ we have:

$$
H(A, C) \leq S[H(A, B)+H(B, C)]
$$

Proof. We have

$$
d(a, c) \leq S d(a, b)+S d(b, c), \quad \text { for any } a \in A, b \in B, c \in C
$$

Taking $\inf _{c \in C}$ we have

$$
D(a, C) \leq S d(a, b)+S D(b, C), \quad \text { for any } a \in A, b \in B
$$

Thus,

$$
D(a, C) \leq S d(a, b)+S H(B, C), \quad \text { for any } a \in A, b \in B
$$

It follows that

$$
\sup a \in A D(a, C) \leq S H(A, B)+S H(B, C)
$$

and analogously,

$$
\sup c \in C D(c, A) \leq S H(A, B)+S H(B, C)
$$

Hence,

$$
H(A, C) \leq S[H(A, B)+H(B, C)]
$$

which completes the proof.
Lemma 3.5. Let (X, d) be a generalized b-metric space and let $A, B \in$ $P_{c l}(X)$. Then for each $\alpha \in \mathbb{R}_{+}^{m}, \alpha>0$ and for each $b \in B$, there exists $a \in A$ such that

$$
d(a, b) \leq H(A, B)+\alpha
$$

If, moreover, $A, B \in P_{c p}(X)$ and $S \in M_{m, m}(\mathbb{R})$, with $S \geq I$, then for each $b \in B$, there exists $a \in A$ such that

$$
d(a, b) \leq S H(A, B)
$$

Proof. The first statement follows immediately from the definition of Pom-peiu-Hausdorff generalized functional. Now, let $\varepsilon_{n}=\left[\frac{1}{n} \ldots \frac{1}{n}\right], n \in \mathbb{N}^{*}$. Then for each $b \in B$, there exists $a_{n} \in A$ such that

$$
d\left(a_{n}, b\right) \leq H(A, B)+\varepsilon_{n}, \quad n \in \mathbb{N}^{*}
$$

We may assume that $a_{n} \longrightarrow a \in A$. Therefore,

$$
d(a, b) \leq S d\left(a, a_{n}\right)+S d\left(a_{n}, b\right) \leq S d\left(a, a_{n}\right)+S H(A, B)+S \varepsilon_{n}, \quad n \in \mathbb{N}^{*}
$$

Letting $n \rightarrow \infty$, we get that

$$
d(a, b) \leq S H(A, B)
$$

which is the desired conclusion.
Lemma 3.6. Let (X, d) be a generalized b-metric space and let $A, B \in$ $P_{c l}(X)$. For each $q>1$ and for all $a \in A$, there exists $b \in B$ such that:

$$
d(a, b) \leq q H(A, B)
$$

Proof. We may assume that $A \neq B$. Then $H_{d_{i}}(A, B)>0$, for all $i \in$ $\{1, \ldots, m\}$. We suppose that there exists $q>1$ and there exists $a \in A$ such that for all $b \in B$, we have $d(a, b) \not \leq q H(A, B)$. That is, there exists $j \in\{1, \ldots, m\}$ such that

$$
d_{j}(a, b)>q H_{d_{j}}(A, B)
$$

Taking inf $b \in B$ we have

$$
D_{d_{j}}(a, B) \geq q H_{d_{j}}(A, B)
$$

Hence, we get the contradiction

$$
H_{d_{j}}(A, B) \geq D_{d_{j}}(A, B) \geq q H_{d_{j}}(A, B)>H_{d_{j}}(A, B)
$$

which completes the proof.
Lemma 3.7. Let (X, d) be a generalized b-metric space and let $A, B \in$ $P_{b}(X)$. For each $q>1$ and for all $a \in A$, there exists $b \in B$ such that:

$$
\delta(A, B) \leq q d(a, b)
$$

Proof. We may assume that $A \neq B$. Then $\delta_{d_{i}}(A, B)>0$, for all $i \in$ $\{1, \ldots, m\}$. We suppose that there exists $q>1$ and there exists $a \in A$ such that for all $b \in B$, we have $\delta(A, B) \not \leq q d(a, b)$. That is, there exists $j \in\{1, \ldots, m\}$ such that

$$
\delta_{d_{j}}(A, B)>q d_{j}(a, b)
$$

Taking $\sup _{b \in B}$ we have

$$
\delta_{d_{j}}(A, B) \geq q \delta_{d_{j}}(a, B)
$$

Hence, we get the contradiction

$$
\delta_{d_{j}}(A, B) \geq q \delta_{d_{j}}(A, B)>\delta_{d_{j}}(A, B),
$$

which completes the proof.

Lemma 3.8. Let $A \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$be a matrix convergent to zero. Then, there exists $Q>1$ such that for any $q \in(1, Q)$ we have that $q A$ is convergent to 0 .

Proof. Since A is convergent to zero, we have that the spectral radius $\rho(A)<1$. Next, since $q \rho(A)=\rho(q A)<1$, we can choose $Q:=\frac{1}{\rho(A)}>1$ and hence, the conclusion follows.

Definition 3.9. Let (X, d) be a generalized b-metric space and let $f: X \rightarrow X$ be a singlevalued operator. Then, f is called a left A-contraction if there exists a matrix $A \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$convergent to zero such that

$$
d[f(x), f(y)] \leq A d(x, y), \quad \text { for any } x, y \in X
$$

Definition 3.10. Let (X, d) be a generalized b-metric space. Then $f: X \rightarrow X$ is a Picard operator (briefly $P O$), if we have that:
(i) $\operatorname{Fix}(f)=\left\{x^{*}\right\}$ for some x^{*} in X;
(ii) for each $x_{0} \in X$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}\left(\right.$ where $\left.x_{n}=f^{n}\left(x_{0}\right)\right)$, converges to x^{*}.

Definition 3.11. Let (X, d) be a generalized b-metric space and let $f: X \rightarrow X$ be a $P O$. Then f is a M-Picard operator (briefly $M P O)$ if $M \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and there exists the operator $f^{\infty}: X \rightarrow X, f^{\infty}(x)=\lim _{n \rightarrow \infty} f^{n}\left(x_{0}\right)$ such that $d\left(x_{0}, f^{\infty}\left(x_{0}\right)\right) \leq M d\left(x_{0}, f\left(x_{0}\right)\right)$, for each $x_{0} \in X$.

Now we present some fixed point theorems in generalized b-metric spaces for singlevalued operators.

Theorem 3.12. Let (X, d) be a complete generalized b-metric space with $S \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right), S \geq I$ and let $f: X \rightarrow X$ be a left A-contraction such that $A S=S A$ and $S A<\bar{I}$. Then f is a $(I-S A)^{-1} S$-Picard operator.

Proof. Let $x_{0} \in X$. Inductively, for any $n \in \mathbb{N}$ and $p \in \mathbb{N}^{*}$, we have

$$
\begin{aligned}
& d\left(x_{n}, x_{n+p}\right) \\
& \quad \leq S d\left(x_{n}, x_{n+1}\right)+\cdots+S^{p-1} d\left(x_{n+p-2}, x_{n+p-1}\right)+S^{p-1} d\left(x_{n+p-1}, x_{n+p}\right) \\
& \quad \leq S A^{n} d\left(x_{0}, x_{1}\right)+\cdots+S^{p-1} A^{n+p-2} d\left(x_{0}, x_{1}\right)+S^{p-1} A^{n+p-1} d\left(x_{0}, x_{1}\right) \\
& \quad \leq S A^{n}\left(I+S A+\cdots+S^{p-2} A^{p-2}+S^{p-2} A^{p-1}\right) d\left(x_{0}, x_{1}\right) \\
& \quad \leq S A^{n}\left(I+S A+\cdots+S^{p-2} A^{p-2}+S^{p-1} A^{p-1}+\ldots\right) d\left(x_{0}, x_{1}\right) \\
& \quad \leq S A^{n}(I-S A)^{-1} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy in X. By comp-
leteness of X, it follows that there exists $x^{*} \in X$ such that for any $x_{0} \in X$, the sequence $\left(x_{n}\right) \longrightarrow x^{*}$ when $n \rightarrow \infty$. We have

$$
d\left[x^{*}, f\left(x^{*}\right)\right] \leq S d\left(x^{*}, x_{n+1}\right)+S d\left[x_{n+1}, f\left(x^{*}\right)\right] \leq S d\left(x^{*}, x_{n+1}\right)+S A d\left(x_{n}, x^{*}\right)
$$

and thus, x^{*} is a fixed point of f in X.
For the uniqueness, we suppose that $y^{*} \in X$ is another fixed point of f with $y^{*} \neq x^{*}$. Then

$$
d\left(y^{*}, x^{*}\right)=d\left[f\left(y^{*}\right), f\left(x^{*}\right)\right] \leq \operatorname{Ad}\left(y^{*}, x^{*}\right)
$$

It follows that

$$
(I-A) d\left(y^{*}, x^{*}\right) \leq 0
$$

Since $(I-A) \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $(I-A) \neq 0$, we have the only one possibility $d\left(y^{*}, x^{*}\right)=0$ and thus, $y^{*}=x^{*}$.

Since in a generalized b-metric space d is not continuous in general, we will use the following error estimate for the fixed point

$$
d\left(x_{n}, x^{*}\right)=d\left[f^{n}\left(x_{0}\right), f^{n}\left(x^{*}\right)\right] \leq A^{n} d\left(x_{0}, x^{*}\right), \quad \text { for any } n \in \mathbb{N}
$$

We have

$$
d\left(x_{0}, x^{*}\right) \leq S d\left(x_{0}, x_{1}\right)+S d\left(x_{1}, x^{*}\right) \leq S d\left(x_{0}, x_{1}\right)+S A d\left(x_{0}, x^{*}\right)
$$

and thus,

$$
d\left(x_{0}, x^{*}\right) \leq(I-S A)^{-1} S d\left(x_{0}, x_{1}\right)
$$

Since $S A \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $S A<I$ it follows that $S A$ is a matrix convergent to zero and since $S \geq I$, it follows that $(I-S A)^{-1} S$ has nonnegative elements.

Hence, f is a $(I-S A)^{-1} S$-Picard operator.
Our Theorem 3.12 can be used, for example, to establish the existence and the uniqueness of the solution for a system of integral equations. In this respect, let us consider the case of two Volterra-type equations system (see the following result).

Theorem 3.13. Let $I=[0, a]$ (with $a>0$) be an interval of the real axis and consider the following system of integral equations in $C\left(I, X_{1}\right) \times C\left(I, X_{2}\right)$:

$$
\left\{\begin{array}{l}
x_{1}(t)=\lambda_{1} \int_{0}^{t} k_{1}\left(t, s, x_{1}(s), x_{2}(s)\right) d s \tag{3.1}\\
x_{2}(t)=\lambda_{2} \int_{0}^{t} k_{2}\left(t, s, x_{1}(s), x_{2}(s)\right) d s
\end{array}\right.
$$

for $t \in I$, where $\lambda_{i} \in \mathbb{R}$, for $i \in\{1,2\}$.
We assume that:
i) $k_{1} \in C\left(I^{2} \times X_{1} \times X_{2}, X_{1}\right), k_{2} \in C\left(I^{2} \times X_{1} \times X_{2}, X_{2}\right)$;
ii) there exist the matrices $A=\left[\begin{array}{ccc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right], Q=\left[\begin{array}{ll}q & 0 \\ 0 & q\end{array}\right] \in \mathcal{M}_{2,2}\left(\mathbb{R}_{+}\right)$with $q>1$ such that

$$
\begin{aligned}
& \left\|k_{i}\left(t, s, u_{1}, u_{2}\right)-k_{i}\left(t, s, v_{1}, v_{2}\right)\right\|_{X_{i}} \leq q\left(a_{i 1}\left\|u_{1}-v_{1}\right\|_{X_{1}}+a_{i 2}\left\|u_{2}-v_{2}\right\|_{X_{2}}\right) \\
& \text { for each }\left(t, s, u_{1}, u_{2}\right),\left(t, s, v_{1}, v_{2}\right) \in I^{2} \times X_{1} \times X_{2}, i \in\{1,2\} .
\end{aligned}
$$

Then, the integral equations system (3.1) has a unique solution $x^{*}:=\left[\begin{array}{l}x_{1}^{*} \\ x_{2}^{*}\end{array}\right]$ in $C\left(I, X_{1}\right) \times C\left(I, X_{2}\right)$.

Proof. For $i \in\{1,2\}$ and $x:=\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right] \in C\left(I, X_{1}\right) \times C\left(I, X_{2}\right)$, we define

$$
\begin{gathered}
f_{i}: C\left(I, X_{1}\right) \times C\left(I, X_{2}\right) \rightarrow C\left(I, X_{i}\right), \\
x \longmapsto f_{i} x \\
f_{i} x(t):=\lambda_{i} \int_{0}^{t} k_{i}\left(t, s, x_{1}(s), x_{2}(s)\right) d s, \quad \text { for any } t \in I .
\end{gathered}
$$

By i), the operators f_{1}, f_{2} are well defined. Moreover, the system (3.1) can be re-written as a fixed point equation in the following form

$$
x=f(x),
$$

where $f:=\left[\begin{array}{l}f_{1} \\ f_{2}\end{array}\right]$. Obviously, $x^{*}:=\left[\begin{array}{l}x_{1}^{*} \\ x_{2}^{*}\end{array}\right]$ is a solution for (3.1) if and only if x^{*} is a fixed point for the operator f.

We show that f is a left M contraction. Let $x:=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], y:=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right] \in C\left(I, X_{1}\right) \times$ $C\left(I, X_{2}\right)$. For $i \in\{1,2\}$, we have

$$
\begin{aligned}
\| f_{i}(x) & (t)-f_{i}(y)(t) \|_{X_{i}} \\
& \leq\left|\lambda_{i}\right| \int_{0}^{t}\left\|k_{i}\left(t, s, x_{1}(s), x_{2}(s)\right)-k_{i}\left(t, s, y_{1}(s), y_{2}(s)\right)\right\|_{X_{i}} d s \\
& \leq\left|\lambda_{i}\right| \int_{0}^{t} q\left(a_{i 1}\left\|x_{1}(s)-y_{1}(s)\right\|_{X_{1}}+a_{i 2}\left\|x_{2}(s)-y_{2}(s)\right\|_{X_{2}}\right) d s \\
& =\left|\lambda_{i}\right| q\left(a_{i 1}\left\|x_{1}-y_{1}\right\|_{B_{1}} \int_{0}^{t} e^{\tau s} d s+a_{i 2}\left\|x_{2}-y_{2}\right\|_{B_{2}} \int_{0}^{t} e^{\tau s} d s\right) \\
& \leq \frac{\left|\lambda_{i}\right|}{\tau} e^{\tau t} q\left(a_{i 1}\left\|x_{1}-y_{1}\right\|_{B_{1}}+a_{i 2}\left\|x_{2}-y_{2}\right\|_{B_{2}}\right),
\end{aligned}
$$

where $\|u\|_{B}:=\left[\begin{array}{l}\left\|u_{1}\right\|_{B_{1}} \\ \left\|u_{2}\right\|_{B_{2}}\end{array}\right]=\left[\begin{array}{l}\sup _{t \in[0, a]} e^{-\tau t}\left\|u_{1}(t)\right\|_{X_{1}} \\ \sup _{t \in[0, a]} e^{-\tau t}\left\|u_{2}(t)\right\| X_{X_{2}}\end{array}\right], \tau>0$ denotes the Bieleckitype norm on the generalized Banach space $C\left(I, X_{1}\right) \times C\left(I, X_{2}\right)$.

Thus, we obtain that

$$
\left\|f_{i}(x)-f_{i}(y)\right\|_{B_{i}} \leq \frac{\left|\lambda_{i}\right|}{\tau} q\left(a_{i 1}\left\|x_{1}-y_{1}\right\|_{B_{1}}+a_{i 2}\left\|x_{2}-y_{2}\right\|_{B_{2}}\right), \quad \text { for } i \in\{1,2\}
$$

These inequalities can be written in the vector form

$$
\|f(x)-f(y)\|_{B} \leq M\|x-y\|_{B}
$$

where

$$
M=\left[\frac{\left|\lambda_{i}\right| q a_{i j}}{\tau}\right]_{i, j \in\{1,2\}}
$$

Taking $\tau>\max i, j \in\{1,2\}\left|\lambda_{i}\right| q^{2} a_{i j}$, we have that that the matrix M is convergent to zero and thus, f is a left M-contraction. Moreover, $M Q=Q M$ and $Q M<I$. By Theorem 3.12 it follows that there exists a unique fixed point $x^{*}=\left[\begin{array}{l}x_{1}^{*} \\ x_{2}^{*}\end{array}\right]$ in $C\left(I, X_{1}\right) \times C\left(I, X_{2}\right)$ for $f=\left[\begin{array}{l}f_{1} \\ f_{2}\end{array}\right]$.

Definition 3.14. Let (X, d) be a generalized b-metric space and let $f: X \rightarrow X$ be a singlevalued operator. Then, f is called a left (A, B, C)-contraction if there exist the matrices $A, B, C \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$, where A is convergent to zero with $A+B+C<I$ such that

$$
d[f(x), f(y)] \leq A d(x, y)+B d[x, f(x)]+C d[y, f(y)], \quad \text { for any } x, y \in X
$$

Theorem 3.15. Let (X, d) be a complete generalized b-metric space with $S \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right), S \geq I$ and let $f: X \rightarrow X$ be a left (A, B, C)-contraction such that $K S=S K$, where $K:=(I-C)^{-1}(A+B)$ and $S A<I$. Then f is a $(I-S A)^{-1} S(I-B)$-Picard operator.

Proof. Let $x_{0} \in X$. We have

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right)= & d\left[f\left(x_{n-1}\right), f\left(x_{n}\right)\right] \leq A d\left(x_{n-1}, x_{n}\right)+B d\left[x_{n-1}, f\left(x_{n-1}\right)\right] \\
& +C d\left[x_{n}, f\left(x_{n}\right)\right]=(A+B) d\left(x_{n-1}, x_{n}\right)+C d\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

and inductively
$d\left(x_{n}, x_{n+1}\right) \leq(I-C)^{-1}(A+B) d\left(x_{n-1}, x_{n}\right) \leq \cdots \leq\left[(I-C)^{-1}(A+B)\right]^{n} d\left(x_{0}, x_{1}\right)$.
Since $A, B, C \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $A+B+C<I$, we get that $K \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$ and $K<I$. Thus, K is convergent to zero. For any $n \in \mathbb{N}$ and $p \in \mathbb{N}^{*}$, we have

$$
\begin{aligned}
& d\left(x_{n}, x_{n+p}\right) \\
& \quad \leq S d\left(x_{n}, x_{n+1}\right)+\cdots+S^{p-1} d\left(x_{n+p-2}, x_{n+p-1}\right)+S^{p-1} d\left(x_{n+p-1}, x_{n+p}\right) \\
& \quad \leq S K^{n} d\left(x_{0}, x_{1}\right)+\cdots+S^{p-1} K^{n+p-2} d\left(x_{0}, x_{1}\right)+S^{p-1} K^{n+p-1} d\left(x_{0}, x_{1}\right) \\
& \quad \leq S K^{n}\left(I+S K+\cdots+S^{p-2} K^{p-2}+S^{p-2} K^{p-1}\right) d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq S K^{n}\left(I+S K+\cdots+S^{p-2} K^{p-2}+S^{p-1} K^{p-1}+\ldots\right) d\left(x_{0}, x_{1}\right) \\
& \leq S K^{n}(I-S K)^{-1} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain that the sequence $\left(x_{n}\right)$ is Cauchy in X. By completeness of X, it follows that there exists $x^{*} \in X$ such that for any $x_{0} \in X$, the sequence $\left(x_{n}\right) \longrightarrow x^{*}$ when $n \rightarrow \infty$. We have

$$
\begin{aligned}
d\left[x^{*}, f\left(x^{*}\right)\right] & \leq S d\left(x^{*}, x_{n+1}\right)+S d\left[x_{n+1}, f\left(x^{*}\right)\right] \\
& \leq S d\left(x^{*}, x_{n+1}\right)+\operatorname{SAd}\left(x_{n}, x^{*}\right)+S B d\left(x_{n}, x_{n+1}\right)+\operatorname{SCd}\left[x^{*}, f\left(x^{*}\right)\right] \\
& \leq S d\left(x^{*}, x_{n+1}\right)+\operatorname{SAd}\left(x_{n}, x^{*}\right)+S B K^{n} d\left(x_{0}, x_{1}\right)+S C d\left[x^{*}, f\left(x^{*}\right)\right]
\end{aligned}
$$

and thus,

$$
\begin{aligned}
d\left[x^{*}, f\left(x^{*}\right)\right] & \leq(I-S C)^{-1} S d\left(x^{*}, x_{n+1}\right)+(I-S C)^{-1} S A d\left(x_{n}, x^{*}\right) \\
& +(I-S C)^{-1} S B K^{n} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get that x^{*} is a fixed point of f in X.
For the uniqueness, we suppose that $y^{*} \in X$ is another fixed point of f with $y^{*} \neq x^{*}$. Then

$$
d\left(y^{*}, x^{*}\right)=d\left[f\left(y^{*}\right), f\left(x^{*}\right)\right] \leq \operatorname{Ad}\left(y^{*}, x^{*}\right)+B d\left[y^{*}, f\left(y^{*}\right)\right]+C d\left[x^{*}, f\left(x^{*}\right)\right]
$$

It follows that

$$
(I-A) d\left(y^{*}, x^{*}\right) \leq 0
$$

Since $(I-A) \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $(I-A) \neq 0$, we have the only one possibility $d\left(y^{*}, x^{*}\right)=0$ and thus, $y^{*}=x^{*}$.

Since in a generalized b-metric space d is not continuous in general, we will use the following error estimate for the fixed point. For any $n \in \mathbb{N}^{*}$, we have

$$
\begin{aligned}
d\left(x_{n}, x^{*}\right) & =d\left[f\left(x_{n-1}\right), f\left(x^{*}\right)\right] \leq A d\left(x_{n-1}, x^{*}\right)+B d\left[x_{n-1}, x_{n}\right]+C d\left[x^{*}, f\left(x^{*}\right)\right] \\
& \leq A d\left(x_{n-1}, x^{*}\right)+B K^{n-1} d\left(x_{0}, x_{1}\right) \\
& \leq A\left[A d\left(x_{n-2}, x^{*}\right)+B d\left(x_{n-2}, x_{n-1}\right)\right]+B K^{n-1} d\left(x_{0}, x_{1}\right) \\
& \leq A^{2} d\left(x_{n-2}, x^{*}\right)+A B K^{n-2} d\left(x_{0}, x_{1}\right)+B K^{n-1} d\left(x_{0}, x_{1}\right) \\
& \leq \cdots \leq A^{n} d\left(x_{0}, x^{*}\right)+\sum_{i=0}^{n-1} A^{i} B K^{n-i-1} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Then
$d\left(x_{0}, x^{*}\right) \leq S d\left(x_{0}, x_{1}\right)+S d\left(x_{1}, x^{*}\right) \leq S d\left(x_{0}, x_{1}\right)+S A d\left(x_{0}, x^{*}\right)+S B d\left(x_{0}, x_{1}\right)$
and thus,

$$
d\left(x_{0}, x^{*}\right) \leq(I-S A)^{-1} S(I-B) d\left(x_{0}, x_{1}\right)
$$

Since $S A \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $S A<I$ it follows that $S A$ is a matrix convergent to zero and since $S \geq I, 0 \leq B<I$, it follows that $(I-S A)^{-1} S(I-B)$ has nonnegative elements.

Hence, f is a $(I-S A)^{-1} S(I-B)$-Picard operator.
It is known (see Czerwik [9]) that if (X, d) is a generalized b-metric space, then the functional $H: P_{b, c l}(X) \times P_{b, c l}(X) \rightarrow[0,+\infty]^{m}$ is a generalized b-metric in $P_{b, c l}(X)$. Also, if (X, d) is a complete generalized b-metric space, we have that $\left(P_{b, c l}(X), H\right)$ is a complete generalized b-metric space. Notice that a generalized Pompeiu-Hausdorff functional $H: P_{b, c l}(X) \times P_{b, c l}(X) \rightarrow[0,+\infty]^{m}$ can be introduced in the setting of generalized b-metric spaces (H_{i} is the vector-valued Pompeiu-Hausdorff metric on $P_{b, c l}(X)$ generated by d_{i}, where $\left.i \in\{1, \ldots, m\}\right)$ and thus, the concept of a multivalued left A-contraction in Nadler's sense can be formulated.

Definition 3.16. Let $Y \subset X$ be a nonempty set and let $F: Y \rightarrow P_{c l}(X)$ be a multivalued operator. Then, F is called a multivalued left A-contraction in Nadler's sense if $A \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$is a matrix convergent to zero and

$$
H[F(x), F(y)] \leq A d(x, y), \quad \text { for any } x, y \in Y
$$

Definition 3.17. Let (X, d) be a generalized b-metric space. Then $F: X \rightarrow$ $P(X)$ is a multivalued weak Picard operator (briefly $M W P$ operator), if for each $x \in X$ and $y \in F(x)$, there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that:
(i) $x_{0}=x, x_{1}=y$;
(ii) $x_{n+1} \in F\left(x_{n}\right)$;
(iii) the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent to a fixed point of F.

Definition 3.18. Let (X, d) be a generalized b-metric space and let F : $X \rightarrow P(X)$ be a $M W P$ operator. Then we define the multivalued operator $F^{\infty}: \operatorname{Graph}(F) \rightarrow P(\operatorname{Fix}(F))$ by the formula $\left\{F^{\infty}(x, y)=z \in \operatorname{Fix}(F)\right.$: there exists a sequence of successive approximations of F starting from (x, y) that converges to $z\}$.

Definition 3.19. Let X, Y be two nonempty sets and let $F: X \rightarrow P(Y)$ be a multivalued operator. Then a singlevalued operator $f: X \rightarrow Y$ is a selection for F if $f(x) \in F(x)$, for any $x \in X$.

Definition 3.20. Let (X, d) be a generalized b-metric space and let $F: X \rightarrow$ $P(X)$ be a $M W P$ operator. Then F is a M-multivalued weak Picard operator (briefly $M-M W P$ operator) if $M \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and there exists a selection f^{∞} of F^{∞} such that $d\left(x, f^{\infty}(x, y)\right) \leq M d(x, y)$, for all $(x, y) \in \operatorname{Graph}(F)$.

Now we present some fixed point theorems in generalized b-metric spaces for multivalued operators.

Theorem 3.21. Let (X, d) be a complete generalized b-metric space with $S \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right), S \geq I$ and let $F: X \rightarrow P_{c l}(X)$ be a multivalued left A contraction in Nadler's sense such that $A S=S A$ and $S A<I$. Then F is a $(I-S A)^{-1} S$-multivalued weak Picard operator.

Proof. Let $x_{0} \in X$ such that $x_{1} \in F\left(x_{0}\right)$. Let $q \in\left(1, \frac{1}{\rho(A)}\right)$. For $F\left(x_{0}\right), F\left(x_{1}\right)$ and for $x_{1} \in F\left(x_{0}\right)$, by Lemma 3.6, it follows that there exists $x_{2} \in F\left(x_{1}\right)$ such that

$$
d\left(x_{1}, x_{2}\right) \leq q H\left[F\left(x_{0}\right), F\left(x_{1}\right)\right] \leq q A d\left(x_{0}, x_{1}\right)
$$

For $F\left(x_{1}\right), F\left(x_{2}\right)$ and for $x_{2} \in F\left(x_{1}\right)$, there exists $x_{3} \in F\left(x_{2}\right)$ such that

$$
d\left(x_{2}, x_{3}\right) \leq q H\left[F\left(x_{1}\right), F\left(x_{2}\right)\right] \leq q A d\left(x_{1}, x_{2}\right) \leq(q A)^{2} d\left(x_{0}, x_{1}\right)
$$

Inductively, there exists the sequence $\left(x_{n}\right) \in X$ such that $x_{n+1} \in F\left(x_{n}\right)$ and

$$
d\left(x_{n}, x_{n+1}\right) \leq(q A)^{n} d\left(x_{0}, x_{1}\right), \quad \text { for any } n \in \mathbb{N}^{*}
$$

For any $n \in \mathbb{N}$ and $p \in \mathbb{N}^{*}$, we have

$$
\begin{aligned}
d\left(x_{n}\right. & \left., x_{n+p}\right) \\
& \leq S d\left(x_{n}, x_{n+1}\right)+\cdots+S^{p-1} d\left(x_{n+p-2}, x_{n+p-1}\right)+S^{p-1} d\left(x_{n+p-1}, x_{n+p}\right) \\
& \leq S(q A)^{n}\left[I+\cdots+S^{p-2}(q A)^{p-2}+S^{p-2}(q A)^{p-1}\right] d\left(x_{0}, x_{1}\right) \\
& \leq S(q A)^{n}\left(I+\cdots+q^{p-2} S^{p-2} A^{p-2}+q^{p-1} S^{p-1} A^{p-1}\right) d\left(x_{0}, x_{1}\right) \\
& \leq S(q A)^{n}\left(I+\cdots+q^{p-2} S^{p-2} A^{p-2}+q^{p-1} S^{p-1} A^{p-1}+\ldots\right) d\left(x_{0}, x_{1}\right) \\
& \leq S(q A)^{n}(I-q S A)^{-1} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ and using Lemma 3.8, we obtain that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy in X. By completeness of X, it follows that there exists $x^{*} \in X$ such that for any $x_{0} \in X$, the sequence $\left(x_{n}\right) \longrightarrow x^{*}$ when $n \rightarrow \infty$.

We have

$$
\begin{gathered}
D\left[x^{*}, F\left(x^{*}\right)\right] \leq S d\left(x^{*}, x_{n+1}\right)+S D\left[x_{n+1}, F\left(x^{*}\right)\right] \\
\leq S d\left(x^{*}, x_{n+1}\right)+S H\left[F\left(x_{n}\right), F\left(x^{*}\right)\right] \leq S d\left(x^{*}, x_{n+1}\right)+S A d\left(x_{n}, x^{*}\right)
\end{gathered}
$$

and letting $n \rightarrow \infty$, we get that $D\left[x^{*}, F\left(x^{*}\right)\right]=0$. By Lemma 3.2, it follows that $x^{*} \in \overline{F\left(x^{*}\right)}$. Hence, $x^{*} \in F\left(x^{*}\right)$.

Since in a generalized b-metric space d is not continuous in general, we will use the following error estimate for the fixed point. For any $n \in \mathbb{N}^{*}$, we have

$$
d\left(x_{n}, x^{*}\right)=q H\left[F\left(x_{n-1}\right), F\left(x^{*}\right)\right] \leq q A d\left(x_{n-1}, x^{*}\right) \leq \cdots \leq(q A)^{n} d\left(x_{0}, x^{*}\right)
$$

Then

$$
d\left(x_{0}, x^{*}\right) \leq S d\left(x_{0}, x_{1}\right)+S d\left(x_{1}, x^{*}\right) \leq S d\left(x_{0}, x_{1}\right)+q S A d\left(x_{0}, x^{*}\right)
$$

and thus,

$$
d\left(x_{0}, x^{*}\right) \leq(I-q S A)^{-1} S d\left(x_{0}, x_{1}\right) .
$$

Letting $q \searrow 1$, we get that

$$
d\left(x_{0}, x^{*}\right) \leq(I-S A)^{-1} S d\left(x_{0}, x_{1}\right)
$$

Since $S A \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $S A<I$ it follows that $S A$ is a matrix convergent to zero and since $S \geq I$, it follows that $(I-S A)^{-1} S$ has nonnegative elements.

Hence, F is a $(I-S A)^{-1} S$-multivalued weak Picard operator.
Remark 3.22. In a similar manner with the proof of Theorem 3.13 (using Theorem 3.21) can be obtained existence results for the following integral inclusion system in $C\left(I, X_{1}\right) \times C\left(I, X_{2}\right)$:

$$
\left\{\begin{array}{l}
x_{1}(t) \in \lambda_{1} \int_{0}^{t} K_{1}\left(t, s, x_{1}(s), x_{2}(s)\right) d s \tag{3.2}\\
x_{2}(t) \in \lambda_{2} \int_{0}^{t} K_{2}\left(t, s, x_{1}(s), x_{2}(s)\right) d s
\end{array}\right.
$$

for $t \in I:=[0, a]\left(\right.$ where $\left.\lambda_{i} \in \mathbb{R}, i \in\{1,2\}\right)$.
Definition 3.23. Let $Y \subset X$ be a nonempty set and let $F: Y \rightarrow P_{c l}(X)$ be a multivalued operator. Then, F is called a multivalued left (A, B, C)-contraction if there exist the matrices $A, B, C \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$, where A is convergent to zero with $A+B+C<I$ such that

$$
H[F(x), F(y)] \leq A d(x, y)+B D[x, F(x)]+C D[y, F(y)], \quad \text { for any } x, y \in Y
$$

Theorem 3.24. Let (X, d) be a complete generalized b-metric space with $S \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right), S \geq I$ and let $F: X \rightarrow P_{c l}(X)$ be a multivalued left (A, B, C) contraction such that $K S=S K$, where $K:=(I-q C)^{-1}(A+B), q \in\left(1, \frac{1}{\rho(A+B+C)}\right)$ and $S A<I$. Then F is a $(I-S A)^{-1} S(I-B)$-multivalued weak Picard operator.

Proof. Let $x_{0} \in X$ such that $x_{1} \in F\left(x_{0}\right)$. For $F\left(x_{0}\right), F\left(x_{1}\right)$ and for $x_{1} \in F\left(x_{0}\right)$, by Lemma 3.6, it follows that there exists $x_{2} \in F\left(x_{1}\right)$ such that

$$
\begin{gathered}
d\left(x_{1}, x_{2}\right) \leq q H\left[F\left(x_{0}\right), F\left(x_{1}\right)\right] \leq q A d\left(x_{0}, x_{1}\right) \\
+q B D\left[x_{0}, F\left(x_{0}\right)\right]+q C D\left[x_{1}, F\left(x_{1}\right)\right] \leq q(A+B) d\left(x_{0}, x_{1}\right)+q C d\left(x_{1}, x_{2}\right) .
\end{gathered}
$$

Thus,

$$
d\left(x_{1}, x_{2}\right) \leq q(I-q C)^{-1}(A+B) d\left(x_{0}, x_{1}\right)
$$

For $F\left(x_{1}\right), F\left(x_{2}\right)$ and for $x_{2} \in F\left(x_{1}\right)$, there exists $x_{3} \in F\left(x_{2}\right)$ such that

$$
\begin{gathered}
d\left(x_{2}, x_{3}\right) \leq q H\left[F\left(x_{1}\right), F\left(x_{2}\right)\right] \leq q A d\left(x_{1}, x_{2}\right) \\
+q B D\left[x_{1}, F\left(x_{1}\right)\right]+q C D\left[x_{2}, F\left(x_{2}\right)\right] \leq q(A+B) d\left(x_{1}, x_{2}\right)+q C d\left(x_{2}, x_{3}\right) .
\end{gathered}
$$

Thus,

$$
d\left(x_{2}, x_{3}\right) \leq q(I-q C)^{-1}(A+B) d\left(x_{1}, x_{2}\right) \leq\left[q(I-q C)^{-1}(A+B)\right]^{2} d\left(x_{0}, x_{1}\right)
$$

Inductively, there exists the sequence $\left(x_{n}\right) \in X$ such that $x_{n+1} \in F\left(x_{n}\right)$ and

$$
d\left(x_{n}, x_{n+1}\right) \leq\left[q(I-q C)^{-1}(A+B)\right]^{n} d\left(x_{0}, x_{1}\right), \quad \text { for any } n \in \mathbb{N}^{*}
$$

For any $n \in \mathbb{N}$ and $p \in \mathbb{N}^{*}$, we have

$$
\begin{align*}
& d\left(x_{n}\right.\left., x_{n+p}\right) \\
& \leq S d\left(x_{n}, x_{n+1}\right)+\cdots+S^{p-1} d\left(x_{n+p-2}, x_{n+p-1}\right)+S^{p-1} d\left(x_{n+p-1}, x_{n+p}\right) \\
& \quad \leq S(q K)^{n}\left[I+\cdots+S^{p-2}(q K)^{p-2}+S^{p-2}(q K)^{p-1}\right] d\left(x_{0}, x_{1}\right) \\
& \quad \leq S(q K)^{n}\left(I+\cdots+q^{p-2} S^{p-2} K^{p-2}+q^{p-1} S^{p-1} K^{p-1}\right) d\left(x_{0}, x_{1}\right) \\
& \leq S(q K)^{n}\left(I+\cdots+q^{p-2} S^{p-2} K^{p-2}+q^{p-1} S^{p-1} K^{p-1}+\ldots\right) d\left(x_{0}, x_{1}\right) \\
& \leq S(q K)^{n}(I-q S K)^{-1} d\left(x_{0}, x_{1}\right) . \tag{*}
\end{align*}
$$

We show that K is convergent to zero and $\frac{1}{\rho(A+B+C)} \leq \frac{1}{\rho(K)}$.

Since $A, B, C \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $A+B+C<I$, we have that $(A+B+C)$ is convergent to zero. It follows that $q(A+B+C)$ is convergent to zero and thus, $q(A+B+C)<I$. Then

$$
\begin{equation*}
A+B+q C \leq q(A+B+C)<I \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
0<I-q(A+B+C) \leq I-q C \tag{3.4}
\end{equation*}
$$

By (3.3) it follows that $K<I$ and by (3.4) it follows that $K \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$. Thus, K is convergent to zero.

We observe that

$$
0 \leq C[I-q(A+B+C)]
$$

It follows that

$$
A+B \leq A+B+C-q C(A+B+C)
$$

and thus,

$$
(I-q C)^{-1}(A+B) \leq A+B+C
$$

By the properties of spectral radius, we get that $\rho(K) \leq \rho(A+B+C)$ and thus, $\frac{1}{\rho(A+B+C)} \leq \frac{1}{\rho(K)}$.

Now, letting $n \rightarrow \infty$ in $\left(^{*}\right)$ and using Lemma 3.8, we obtain that the sequence $\left(x_{n}\right)$ is Cauchy in X. By completeness of X, it follows that there exists $x^{*} \in X$ such that for any $x_{0} \in X, x_{n} \longrightarrow x^{*}$ when $n \rightarrow \infty$.

We have

$$
\begin{aligned}
D\left[x^{*}, F\left(x^{*}\right)\right] & \leq S d\left(x^{*}, x_{n+1}\right)+S D\left[x_{n+1}, F\left(x^{*}\right)\right] \\
& \leq S d\left(x^{*}, x_{n+1}\right)+S H\left[F\left(x_{n}\right), F\left(x^{*}\right)\right] \\
& \leq S d\left(x^{*}, x_{n+1}\right)+S A d\left(x_{n}, x^{*}\right)+S B D\left[x_{n}, F\left(x_{n}\right)\right]+S C D\left[x^{*}, F\left(x^{*}\right)\right] .
\end{aligned}
$$

Thus,

$$
0 \leq D\left[x^{*}, F\left(x^{*}\right)\right] \leq(I-S C)^{-1} S\left[d\left(x^{*}, x_{n+1}\right)+A d\left(x_{n}, x^{*}\right)+B d\left(x_{n}, x_{n+1}\right)\right]
$$

and letting $n \rightarrow \infty$, we get that $D\left[x^{*}, F\left(x^{*}\right)\right]=0$. By Lemma 3.2 , it follows that $x^{*} \in \overline{F\left(x^{*}\right)}$. Hence, $x^{*} \in F\left(x^{*}\right)$.

Since in a generalized b-metric space d is not continuous in general, we will use the following error estimate for the fixed point. For any $n \in \mathbb{N}^{*}$, we have

$$
\begin{aligned}
d\left(x_{n}, x^{*}\right) & =q H\left[F\left(x_{n-1}\right), F\left(x^{*}\right)\right] \leq q A d\left(x_{n-1}, x^{*}\right)+q B d\left(x_{n-1}, x_{n}\right) \\
& \leq q A d\left(x_{n-1}, x^{*}\right)+q B K^{n-1} d\left(x_{0}, x_{1}\right) \\
& \leq q A\left[q A d\left(x_{n-2}, x^{*}\right)+q B d\left(x_{n-2}, x_{n-1}\right)\right]+q B K^{n-1} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq(q A)^{2} d\left(x_{n-2}, x^{*}\right)+q^{2} A B K^{n-2} d\left(x_{0}, x_{1}\right)+q B K^{n-1} d\left(x_{0}, x_{1}\right) \\
& \leq \cdots \leq(q A)^{n} d\left(x_{0}, x^{*}\right)+\sum_{i=0}^{n-1} q^{i+1} A^{i} B K^{n-i-1} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Then

$$
d\left(x_{0}, x^{*}\right) \leq S d\left(x_{0}, x_{1}\right)+S d\left(x_{1}, x^{*}\right) \leq S d\left(x_{0}, x_{1}\right)+q S A d\left(x_{0}, x^{*}\right)+q S B d\left(x_{0}, x_{1}\right)
$$

and thus,

$$
d\left(x_{0}, x^{*}\right) \leq(I-q S A)^{-1} S(I-B) d\left(x_{0}, x_{1}\right)
$$

Letting $q \searrow 1$, we get that

$$
d\left(x_{0}, x^{*}\right) \leq(I-S A)^{-1} S(I-B) d\left(x_{0}, x_{1}\right)
$$

Since $S A \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $S A<I$ it follows that $S A$ is a matrix convergent to zero and since $S \geq I, 0 \leq B<I$, it follows that $(I-S A)^{-1} S(I-B)$ has nonnegative elements.

Hence, F is a $(I-S A)^{-1} S(I-B)$-multivalued weak Picard operator.
We give some addition results for the strict fixed point set of F.
Theorem 3.25. If all the assumption of Theorem 3.24 holds and $\operatorname{SFix}(F)$ is nonempty, then:

$$
\operatorname{Fix}(F)=\operatorname{SFix}(F)=\left\{x^{*}\right\}
$$

Proof. By Theorem 3.24, it follows that $x^{*} \in \operatorname{Fix}(F)$. We suppose that there exists $y^{*} \in \operatorname{Fix}(F)$ such that $y^{*} \neq x^{*}$. Then

$$
\begin{aligned}
d\left(y^{*}, x^{*}\right) & =D\left[y^{*}, F\left(x^{*}\right)\right] \leq H\left[F\left(y^{*}\right), F\left(x^{*}\right)\right] \\
& \leq A d\left(y^{*}, x^{*}\right)+B D\left[y^{*}, F\left(y^{*}\right)\right]+C D\left[x^{*}, F\left(x^{*}\right)\right]=\operatorname{Ad}\left(y^{*}, x^{*}\right) .
\end{aligned}
$$

It follows that

$$
(I-A) d\left(y^{*}, x^{*}\right) \leq 0
$$

Since $(I-A) \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $(I-A) \neq 0$, we have the only one possibility $d\left(y^{*}, x^{*}\right)=0$ and thus, $y^{*}=x^{*}$. Hence, $\operatorname{Fix}(F)=\left\{x^{*}\right\}$. On the other hand, since $\operatorname{SFix}(F)$ is nonempty and $\operatorname{SFix}(F) \subset \operatorname{Fix}(F)=\left\{x^{*}\right\}$, we conclude that $\operatorname{Fix}(F)=\operatorname{SFix}(F)=\left\{x^{*}\right\}$.

Theorem 3.26. Let (X, d) be a complete generalized b-metric space with $S \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right), S \geq I$ and let $F: X \rightarrow P_{b}(X)$ be such that $A, B, C \in$ $\mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$, where A is convergent to zero with $A+B+C<I, K S=S K$, where $K:=(I-C)^{-1}(A+B), S A<I$ and

$$
\delta[F(x), F(y)] \leq A d(x, y)+B \delta[x, F(x)]+C \delta[y, F(y)], \quad \text { for any } x, y \in X
$$

Then $\operatorname{SFix}(F)=\left\{x^{*}\right\}$.
Proof. Let $q \in\left(1, \frac{1}{\rho(A+B+C)}\right)$. For $\{x\}, F(x)$ and for $x \in X$ it follows that there exists a selection $f: X \rightarrow X, f(x) \in F(x)$ such that

$$
\delta[x, F(x)] \leq q d[x, f(x)]
$$

We have

$$
\begin{aligned}
d[f(x), f(y)] & \leq \delta[F(x), F(y)] \leq A d(x, y) \\
+B \delta[x, F(x)]+C \delta[y, F(y)] & \leq A d(x, y)+q B d[x, f(x)]+q C d[y, f(y)]
\end{aligned}
$$

Since $A, B, C \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $A+B+C<I$, we have that $(A+B+C)$ is convergent to zero. It follows that $q(A+B+C)$ is convergent to zero and thus, $q(A+B+C)<I$. Then

$$
A+q B+q C \leq q(A+B+C)<I
$$

By Theorem 3.15, it follows that there exists a unique $x^{*} \in X$ such that $x^{*}=$ $f\left(x^{*}\right) \in F\left(x^{*}\right)$, i.e., $x^{*} \in \operatorname{Fix}(F)$.

We show that $x^{*} \in \operatorname{SFix}(F)$. We have

$$
\begin{gathered}
0 \leq \delta\left[x^{*}, F\left(x^{*}\right)\right] \leq \delta\left[F\left(x^{*}\right), F\left(x^{*}\right)\right] \leq A d\left(x^{*}, x^{*}\right) \\
+B \delta\left[x^{*}, F\left(x^{*}\right)\right]+C \delta\left[x^{*}, F\left(x^{*}\right)\right]=(B+C) \delta\left[x^{*}, F\left(x^{*}\right)\right]
\end{gathered}
$$

It follows that

$$
0 \leq(I-B-C) \delta\left[x^{*}, F\left(x^{*}\right)\right] \leq 0
$$

Since $(I-B-C) \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $(I-B-C) \neq 0$, we have the only one possibility $\delta\left[x^{*}, F\left(x^{*}\right)\right]=0$ and thus, we obtain that $F\left(x^{*}\right)=\left\{x^{*}\right\}$.

For the uniqueness, we suppose that there exists $y^{*} \in \operatorname{SFix}(F)$ such that $y^{*} \neq x^{*}$. Then

$$
\begin{gathered}
d\left(x^{*}, y^{*}\right)=\delta\left[F\left(x^{*}\right), F\left(y^{*}\right)\right] \\
\leq A d\left(x^{*}, y^{*}\right)+B \delta\left[x^{*}, F\left(x^{*}\right)\right]+C \delta\left[y^{*}, F\left(y^{*}\right)\right]=A d\left(x^{*}, y^{*}\right)
\end{gathered}
$$

It follows that

$$
(I-A) d\left(x^{*}, y^{*}\right) \leq 0
$$

Since $(I-A) \in \mathcal{M}_{m, m}\left(\mathbb{R}_{+}\right)$and $(I-A) \neq 0$, we have the only one possibility $d\left(y^{*}, x^{*}\right)=0$ and thus, $y^{*}=x^{*}$. Hence, SFix $(F)=\left\{x^{*}\right\}$.

Remark 3.27. If we choose $B=C=0$ in Theorem 3.26 implies that $\delta[F(x), F(x)]=0$, for any $x \in X$ which yields that F is a singlevalued operator. Therefore the statement of Theorem 3.26 is nontrivial if $B+C>0$.

References

[1] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst. 30 (1989), 26-37.
[2] V. Berinde, Seminar on Fixed Point Theory, Preprint, no. 3, 1993, 3-9.
[3] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford, 1953.
[4] M. Boriceanu, A. Petruşel and I. A. Rus, Fixed point theorems for some multivalued generalized contractions in b-metric spaces, Int. J. Math. Stat. 6 (2010), 65-76.
[5] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math. 3 (2009), 285-301.
[6] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Studia Univ. Babeş-Bolyai, Mathematica 3 (2009), 3-14.
[7] M. Bотa, Dynamical Aspects in the Theory of Multivalued Operators, Cluj University Press, 2010.
[8] N. Bourbaki, Topologie Générale, Herman, Paris, 1974.
[9] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena 46 (1998), 263-276.
[10] M. Fréchet, Les Espaces Abstraits, Gauthier-Villars, Paris, 1928.
[11] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, Berlin, 2001.
[12] J. Jachymski, J. Matkowski and T. Swiatkowski, Nonlinear contractions on semimetric spaces, J. Appl. Anal. 1 (1995), 125-134.
[13] D. O'Regan, R. Precup, Continuation theory for contractions on spaces with two vec-tor-valued metrics, Appl. Anal. 82 (2003), 131-144.
[14] I.-R. Petre, Fixed point theorems in vector metric spaces for single-valued operators, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 9 (2011), 59-80.
[15] I.-R. Petre and A. Petruşel, Krasnoselskii's Theorem in generalized Banach spaces and applications, Electron. J. Qual. Theory Differ. Equ., no. 85 (2012), 1-20.
[16] A. Petruşel, Multivalued weakly Picard operators and applications, Sci. Math. Jpn. 59 (2004), 169-202.
[17] A. Petruşel and I. A. Rus, Fixed point theoy for multivalued operators on a set with two metrics, Fixed Point Theory 8 (2007), 97-104.
[18] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Modelling 49, no. 3-4 (2009), 703-708.
[19] I. A. Rus, Principles and Applications of the Fixed Point Theory, Dacia, Cluj-Napoca, 1979.
[20] S. L. Singh, C. Bhatnagar, Stability of iterative procedures for multivalued maps in metric spaces, Demonstratio Math. 37 (2005), 905-916.
[21] R. S. Varga, Matrix Iterative Analysis, Vol. 27, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2000.

IOAN-RADU PETRE
DEPARTMENT OF APPLIED MATHEMATICS
BABES-BOLYAI UNIVERSITY
1, KOGALNICEANU STR.
400084, CLUJ-NAPOCA
ROMANIA
E-mail: ioan.petre@ubbcluj.ro
MONICA BOTA
DEPARTMENT OF APPLIED MATHEMATICS
BABES-BOLYAI UNIVERSITY
1, KOGALNICEANU STR
400084, CLUJ-NAPOCA
ROMANIA
E-mail: bmonica@math.ubbcluj.ro
(Received May 12, 2012; revised October 11, 2012)

[^0]: Mathematics Subject Classification: 47H10, 54H25.
 Key words and phrases: fixed point, generalized b-metric, generalized b-metric space, Picard operator, strict fixed point, weak Picard operator, Volterra-type equations system.
 The first (corresponding) author wishes to thank for the financial support provided from programs co-financed by The Sectoral Operational Programme Human Resources Development, Contract POSDRU/88/1.5/S/60185 - "Innovative Doctoral Studies in a Knowledge Based Society". The second author is supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

