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Fixed point theorems on generalized b-metric spaces

By IOAN-RADU PETRE (Cluj-Napoca) and MONICA BOTA (Cluj-Napoca)

Abstract. In this paper we will present some fixed and strict fixed point theorems
in generalized b-metric spaces using the Picard and weak Picard operators technique.
Also, we give an application for a system of Volterra-type equations.

1. Introduction

The concept of b-metric space or generalizations of it appeared in some works,
such as N. Bourbaki [8], I. A. Bakhtin [1], S. Czerwik [9], J. Heinonen [11],
etc. Some examples of b-metric spaces and some fixed point theorems in b-metric
spaces can also be found in M. Boriceanu, A. Petruşel and I. A. Rus [4],
M. Boriceanu [5], [6], M. Bota [7]. The purpose of this paper is to present
some fixed and strict fixed point results in generalized b-metric spaces and to give
an application for a system of Volterra-type equations.

2. Notations and auxiliary results

The aim of this section is to present some notions and terminology used in
the paper. We first give the definition of a generalized b-metric space.
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Definition 2.1. Let X be a set and let S ≥ I be a square m × m matrix
of nonnegative real numbers, where I denotes the identity matrix. A functional
d : X × X → Rm

+ is said to be a generalized b-metric if for all x, y, z ∈ X the
following conditions are satisfied:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x);

(3) d(x, z) ≤ S[d(x, y) + d(y, z)].

Then the pair (X, d) is called a generalized b-metric space.

The class of generalized b-metric spaces is larger then the class of generalized
metric spaces, since a generalized b-metric space is a generalized metric space
when S = I in the third assumption of the above definition. We say that ‖ · ‖ :

X → Rm
+ is a generalized norm if (in a similar way to the generalized metric) it

satisfies the classical axioms of a norm. In this case, the pair (X, ‖ · ‖) is called a
generalized normed space. If the generalized metric generated by the norm ‖ · ‖
(i.e., d(x, y) := ‖x−y‖) is complete then the space (X, ‖·‖) is called a generalized
Banach space. Some examples of b-metric spaces are given by V. Berinde [2],
S. Czerwik [9], J. Heinonen [11]. Here we give some examples of generalized
b-metric spaces.

Notice that if A,B ∈ Mm,m(R+), A = [aij ], B = [bij ], for i, j ∈ {1, 2, . . . ,m}
then by A ≤ B we mean aij ≤ bij , for i, j ∈ {1, 2, . . . ,m}.

Example 2.2. Let X be a set with the cardinal card(X) ≥ 3. Suppose that
X = X1∪X2 is a partition of X such that card(X1) ≥ 2. Let S = [ s11 s12

s21 s22 ] ≥ [ 1 0
0 1 ]

be a matrix of real numbers. Then, the functional d : X ×X → R2
+ defined by:

d(x, y) :=





[
0

0

]
, x = y

2

[
s11

s22

]
, x, y ∈ X1

[
1

1

]
, otherwise

is a generalized b-metric on X.

Example 2.3. The set `p(R) (with 0 < p < 1), where `p(R) := {(xn)n∈N∗ ⊂
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R | ∑∞
n=1 |xn|p < ∞}, together with the functional d : (`p(R)× `q(R))2 → R2

+,

d(x, y) :=




( ∞∑
n=1

|x1n − y1n|p
)1/p

( ∞∑
n=1

|x2n − y2n|q
)1/q




is a generalized b-metric space with S =
[
21/p s12
s12 21/q

]
> [ 1 0

0 1 ]. Notice that the
above example holds for the general case `p(X) with 0 < p < 1, where X is a
generalized Banach space.

Example 2.4. The space Lp[0, 1] (where 0 < p < 1) of all real functions x(t),
t ∈ [0, 1] such that

∫ 1

0
|x(t)|pdt < ∞, together with the functional

d(x, y) :=




(∫ 1

0

|x1(t)− y1(t)|pdt
)1/p

(∫ 1

0

|x2(t)− y2(t)|qdt
)1/q


 ,

for each (x1, y1), (x2, y2) ∈ Lp[0, 1]× Lq[0, 1]

is a generalized b-metric space with S =
[
21/p 0
0 21/q

]
.

Notice that in a generalized b-metric space (X, d) the notions of convergent
sequence, Cauchy sequence, completeness are similar to those for usual metric
spaces. Since generalized b-metrics do not induce topologies, the notions of open
set and closed set should be clearly established in this context.

We consider now the following families of subsets of a generalized b -metric
space (X, d):

P(X) := {Y | Y ⊂ X}; P (X) := {Y ∈ P(X) | Y 6= ∅};
Pb(X) := {Y ∈ P (X) | Y is bounded}; Pcp(X) := {Y ∈ P (X) | Y is compact};
Pcl(X) := {Y ∈ P (X) | Y is closed}; Pb,cl(X) := Pb(X) ∩ Pcl(X).

If (X, d) is a generalized b-metric space with d(x, y) := [d1(x, y) . . . dm(x, y)], then
we write:

D(A,B) =



Dd1 (A,B)

. . .

Ddm (A,B)


 ,
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where

Ddi
: P (X)× P (X) → [0,+∞] , Ddi

(A,B) = inf{di(a, b) | a ∈ A, b ∈ B}

represents the generalized gap functional generated by di, for i ∈ {1, . . . ,m};

ρ(A,B) =



ρd1 (A,B)

. . .

ρdm
(A,B)


 ,

where

ρdi : P (X)× P (X) → [0,+∞], ρdi(A,B) = sup{Ddi(a,B) | a ∈ A}

resents the generalized excess functional generated by di, for i ∈ {1, . . . ,m};

H(A,B) =



Hd1 (A,B)

. . .

Hdm (A,B)


 ,

where

Hdi : P (X)× P (X) → [0,+∞], Hdi(A,B) = max{ρdi(A,B), ρdi(B,A)}

represents the generalized Pompeiu–Hausdorff functional generated by di, for i ∈
{1, . . . ,m};

δ (A,B) =



δd1 (A,B)

. . .

δdm (A,B)


 ,

where

δdi : P (X)× P (X) → [0,+∞], δdi(A,B) = sup{di(a, b) : a ∈ A, b ∈ B}

represents the generalized delta functional generated by di, for i ∈ {1, . . . ,m}. In
particular, δ(A) := δ(A,A) is the diameter of the set A.

Let (X, d) be a generalized b-metric space. If F : X → P (X) is a multivalued
operator, then we denote by Fix(F ) the fixed point set of F , i.e., Fix(F ) := {x ∈
X | x ∈ F (x)} and by SFix(F ) the strict fixed point set of F , i.e., SFix(F ) :=

{x ∈ X | {x} = F (x)}. The symbol Graph(F ) denotes the graph of F , i.e.,
Graph(F ) := {(x, y) ∈ X ×X : y ∈ F (x)}.

By definition, a square matrix of real numbers is said to be convergent to
zero if An −→ 0 as n → ∞ (see R. S. Varga [21]). Some examples of matrices
that are convergent to zero can be founded in R. Precup [18].
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Lemma 2.5 ([18]). Let A ∈ Mm,m(R+). Then the following statements are
equivalent:

(i) A is a matrix convergent to zero;

(ii) The eigenvalues of A are in the open unit disc, i.e., |λ| < 1, for every λ ∈ C
with det(A− λI) = 0;

(iii) The matrix I −A is non-singular and (I −A)−1 = I +A+ · · ·+An + . . . ;

(iv) The matrix I −A is non-singular and (I −A)−1 has nonnegative elements;

(v) Anq −→ 0 and qAn −→ 0 as n → ∞, for any q ∈ Rm.

3. Main results

The following results are useful for some of the proofs in the paper.

Lemma 3.1. Let (X, d) be a generalized b-metric space and let A,B ∈ P (X).
We suppose that there exists η ∈ Rm

+ , η > 0 such that:

(i) for each a ∈ A there is b ∈ B such that d(a, b) ≤ η;

(ii) for each b ∈ B there is a ∈ A such that d(a, b) ≤ η.

Then, H(A,B) ≤ η.

Proof. It follows immediately from the definition of Pompeiu–Hausdorff
generalized functional. ¤

Lemma 3.2. Let (X, d) be a generalized b-metric space, A ∈ P (X) and
x ∈ X. Then D(x,A) = 0 if and only if x ∈ A.

Proof. We show that Ā = {x ∈ X | D(x,A) = 0}.
Obviously, D(x,A) = 0 implies x ∈ A. Now, let x ∈ A, which means that

for any r ∈ Rm
+ , r > 0 we have A∩B (x, r) 6= ∅, i.e., for any r ∈ Rm

+ , r > 0, there
exists a ∈ A such that d (x, a) < r, i.e., D (x,A) = 0. ¤

Lemma 3.3. Let (X, d) be a generalized b-metric space and let (xn)n∈N ⊂ X.
Let S ∈ Mm,m(R), with S ≥ I. Then:

d(x0, xn) ≤ Sd(x0, x1) + · · ·+ Sn−1d(xn−2, xn−1) + Sn−1d(xn−1, xn).

Proof. We have

d(x0, xn) ≤ Sd(x0, x1) + Sd(x1, xn) ≤ Sd(x0, x1) + S2d(x1, x2) + S2d(x2, xn)

≤ Sd(x0, x1) + · · ·+ Sn−1d(xn−2, xn−1) + Sn−1d(xn−1, xn),

which completes the proof. ¤
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Lemma 3.4. Let (X, d) be a generalized b-metric space and let
S ∈ Mm,m(R), with S ≥ I. Then for all A,B,C ∈ P (X) we have:

H(A,C) ≤ S[H(A,B) +H(B,C)].

Proof. We have

d(a, c) ≤ Sd(a, b) + Sd(b, c), for any a ∈ A, b ∈ B, c ∈ C.

Taking infc∈C we have

D(a,C) ≤ Sd(a, b) + SD(b, C), for any a ∈ A, b ∈ B.

Thus,
D(a,C) ≤ Sd(a, b) + SH(B,C), for any a ∈ A, b ∈ B.

It follows that

sup a ∈ AD(a,C) ≤ SH(A,B) + SH(B,C)

and analogously,

sup c ∈ CD(c, A) ≤ SH(A,B) + SH(B,C).

Hence,
H(A,C) ≤ S[H(A,B) +H(B,C)],

which completes the proof. ¤

Lemma 3.5. Let (X, d) be a generalized b-metric space and let A,B ∈
Pcl(X). Then for each α ∈ Rm

+ , α > 0 and for each b ∈ B, there exists a ∈ A

such that
d(a, b) ≤ H(A,B) + α.

If, moreover, A,B ∈ Pcp(X) and S ∈ Mm,m(R), with S ≥ I, then for each
b ∈ B, there exists a ∈ A such that

d(a, b) ≤ SH(A,B).

Proof. The first statement follows immediately from the definition of Pom-
peiu–Hausdorff generalized functional. Now, let εn =

[
1
n . . . 1

n

]
, n ∈ N∗. Then for

each b ∈ B, there exists an ∈ A such that

d(an, b) ≤ H(A,B) + εn, n ∈ N∗.
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We may assume that an −→ a ∈ A. Therefore,

d(a, b) ≤ Sd(a, an) + Sd(an, b) ≤ Sd(a, an) + SH(A,B) + Sεn, n ∈ N∗.

Letting n → ∞, we get that

d(a, b) ≤ SH(A,B),

which is the desired conclusion. ¤
Lemma 3.6. Let (X, d) be a generalized b-metric space and let A,B ∈

Pcl(X). For each q > 1 and for all a ∈ A, there exists b ∈ B such that:

d(a, b) ≤ qH(A,B).

Proof. We may assume that A 6= B. Then Hdi(A,B) > 0, for all i ∈
{1, . . . ,m}. We suppose that there exists q > 1 and there exists a ∈ A such that
for all b ∈ B, we have d(a, b) � qH(A,B). That is, there exists j ∈ {1, . . . ,m}
such that

dj(a, b) > qHdj (A,B).

Taking inf b ∈ B we have

Ddj (a,B) ≥ qHdj (A,B).

Hence, we get the contradiction

Hdj (A,B) ≥ Ddj (A,B) ≥ qHdj (A,B) > Hdj (A,B),

which completes the proof. ¤
Lemma 3.7. Let (X, d) be a generalized b-metric space and let A,B ∈

Pb(X). For each q > 1 and for all a ∈ A, there exists b ∈ B such that:

δ(A,B) ≤ qd(a, b).

Proof. We may assume that A 6= B. Then δdi(A,B) > 0, for all i ∈
{1, . . . ,m}. We suppose that there exists q > 1 and there exists a ∈ A such that
for all b ∈ B, we have δ(A,B) � qd(a, b). That is, there exists j ∈ {1, . . . ,m}
such that

δdj (A,B) > qdj(a, b).

Taking supb∈B we have
δdj (A,B) ≥ qδdj (a,B).

Hence, we get the contradiction

δdj (A,B) ≥ qδdj (A,B) > δdj (A,B),

which completes the proof. ¤
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Lemma 3.8. Let A ∈ Mm,m (R+) be a matrix convergent to zero. Then,
there exists Q > 1 such that for any q ∈ (1, Q) we have that qA is convergent
to 0.

Proof. Since A is convergent to zero, we have that the spectral radius
ρ (A) < 1. Next, since qρ (A) = ρ (qA) < 1, we can choose Q := 1

ρ(A) > 1 and
hence, the conclusion follows. ¤

Definition 3.9. Let (X, d) be a generalized b-metric space and let f : X → X

be a singlevalued operator. Then, f is called a left A -contraction if there exists
a matrix A ∈ Mm,m (R+) convergent to zero such that

d [f (x) , f (y)] ≤ Ad (x, y) , for any x, y ∈ X.

Definition 3.10. Let (X, d) be a generalized b-metric space. Then f : X → X

is a Picard operator (briefly PO), if we have that:

(i) Fix(f) = {x∗} for some x∗ in X;

(ii) for each x0 ∈ X, the sequence (xn)n∈N (where xn = fn (x0)), converges to x∗.

Definition 3.11. Let (X, d) be a generalized b-metric space and let f : X → X

be a PO. Then f is a M -Picard operator (briefly MPO) if M ∈ Mm,m(R+) and
there exists the operator f∞ : X → X, f∞(x) = limn→∞ fn(x0) such that
d(x0, f

∞(x0)) ≤ Md(x0, f(x0)), for each x0 ∈ X.

Now we present some fixed point theorems in generalized b-metric spaces for
singlevalued operators.

Theorem 3.12. Let (X, d) be a complete generalized b-metric space with
S ∈ Mm,m (R+) , S ≥ I and let f : X → X be a left A-contraction such that
AS = SA and SA < I. Then f is a (I − SA)

−1
S-Picard operator.

Proof. Let x0 ∈ X. Inductively, for any n ∈ N and p ∈ N∗, we have

d (xn, xn+p)

≤ Sd(xn, xn+1) + · · ·+ Sp−1d (xn+p−2, xn+p−1) + Sp−1d (xn+p−1, xn+p)

≤ SAnd(x0, x1) + · · ·+ Sp−1An+p−2d (x0, x1) + Sp−1An+p−1d (x0, x1)

≤ SAn
(
I + SA+ · · ·+ Sp−2Ap−2 + Sp−2Ap−1

)
d (x0, x1)

≤ SAn
(
I + SA+ · · ·+ Sp−2Ap−2 + Sp−1Ap−1 + . . .

)
d (x0, x1)

≤ SAn (I − SA)
−1

d (x0, x1) .

Letting n → ∞, we obtain that the sequence (xn)n∈N is Cauchy in X. By comp-
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leteness of X, it follows that there exists x∗ ∈ X such that for any x0 ∈ X, the
sequence (xn) −→ x∗ when n → ∞. We have

d[x∗, f(x∗)] ≤ Sd(x∗, xn+1) + Sd[xn+1, f(x
∗)] ≤ Sd(x∗, xn+1) + SAd(xn, x

∗)

and thus, x∗ is a fixed point of f in X.
For the uniqueness, we suppose that y∗ ∈ X is another fixed point of f with

y∗ 6= x∗. Then
d (y∗, x∗) = d [f (y∗) , f (x∗)] ≤ Ad (y∗, x∗) .

It follows that
(I −A) d (y∗, x∗) ≤ 0

Since (I −A) ∈ Mm,m (R+) and (I −A) 6= 0, we have the only one possibility
d (y∗, x∗) = 0 and thus, y∗ = x∗.

Since in a generalized b-metric space d is not continuous in general, we will
use the following error estimate for the fixed point

d(xn, x
∗) = d[fn(x0), f

n(x∗)] ≤ And(x0, x
∗), for any n ∈ N.

We have

d(x0, x
∗) ≤ Sd(x0, x1) + Sd(x1, x

∗) ≤ Sd(x0, x1) + SAd(x0, x
∗)

and thus,
d(x0, x

∗) ≤ (I − SA)−1Sd(x0, x1).

Since SA ∈ Mm,m(R+) and SA < I it follows that SA is a matrix convergent to
zero and since S ≥ I, it follows that (I − SA)−1S has nonnegative elements.

Hence, f is a (I − SA)−1S-Picard operator. ¤

Our Theorem 3.12 can be used, for example, to establish the existence and
the uniqueness of the solution for a system of integral equations. In this respect,
let us consider the case of two Volterra-type equations system (see the following
result).

Theorem 3.13. Let I = [0, a] (with a > 0) be an interval of the real axis
and consider the following system of integral equations in C(I,X1)× C(I,X2):




x1 (t) = λ1

∫ t

0
k1 (t, s, x1 (s) , x2 (s)) ds

x2 (t) = λ2

∫ t

0
k2 (t, s, x1 (s) , x2 (s)) ds

(3.1)

for t ∈ I, where λi ∈ R, for i ∈ {1, 2}.
We assume that:
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i) k1 ∈ C
(
I2 ×X1 ×X2, X1

)
, k2 ∈ C

(
I2 ×X1 ×X2, X2

)
;

ii) there exist the matrices A = [ a11 a12
a21 a22

], Q =
[ q 0
0 q

] ∈ M2,2 (R+) with q > 1

such that

‖ki (t, s, u1, u2)− ki (t, s, v1, v2) ‖Xi
≤ q(ai1‖u1 − v1‖X1

+ ai2‖u2 − v2‖X2
),

for each (t, s, u1, u2) , (t, s, v1, v2) ∈ I2 ×X1 ×X2, i ∈ {1, 2}.

Then, the integral equations system (3.1) has a unique solution x∗ :=
[
x∗
1

x∗
2

]

in C (I,X1)× C (I,X2).

Proof. For i ∈ {1, 2} and x := [ x1
x2

] ∈ C(I,X1)× C(I,X2), we define

fi : C(I,X1)× C(I,X2) → C(I,Xi),

x 7−→ fix

fix(t) := λi

∫ t

0

ki(t, s, x1(s), x2(s))ds, for any t ∈ I.

By i), the operators f1, f2 are well defined. Moreover, the system (3.1) can be
re-written as a fixed point equation in the following form

x = f(x),

where f :=
[
f1
f2

]
. Obviously, x∗ :=

[
x∗
1

x∗
2

]
is a solution for (3.1) if and only if x∗ is

a fixed point for the operator f .
We show that f is a left M contraction. Let x := [ x1

x2 ], y := [ y1
y2 ] ∈ C(I,X1)×

C(I,X2). For i ∈ {1, 2}, we have

‖fi (x) (t)− fi (y) (t) ‖Xi

≤ |λi|
∫ t

0

‖ki (t, s, x1 (s) , x2 (s))− ki (t, s, y1 (s) , y2 (s)) ‖Xids

≤ |λi|
∫ t

0

q (ai1‖x1 (s)− y1 (s) ‖X1 + ai2‖x2 (s)− y2 (s) ‖X2) ds

= |λi| q
(
ai1‖x1 − y1‖B1

∫ t

0

eτsds+ ai2‖x2 − y2‖B2

∫ t

0

eτsds

)

≤ |λi|
τ

eτtq (ai1‖x1 − y1‖B1 + ai2‖x2 − y2‖B2) ,

where ‖u‖B :=
[ ‖u1‖B1

‖u2‖B2

]
=

[
supt∈[0,a] e

−τt‖u1(t)‖X1

supt∈[0,a] e
−τt‖u2(t)‖X2

]
, τ > 0 denotes the Bielecki-

type norm on the generalized Banach space C(I,X1)× C(I,X2).
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Thus, we obtain that

‖fi(x)− fi(y)‖Bi
≤ |λi|

τ
q(ai1‖x1 − y1‖B1

+ ai2‖x2 − y2‖B2
), for i ∈ {1, 2}.

These inequalities can be written in the vector form

‖f (x)− f (y) ‖B ≤ M‖x− y‖B ,
where

M =

[ |λi| qaij
τ

]

i,j∈{1,2}
.

Taking τ > max i, j ∈ {1, 2}|λi|q2aij , we have that that the matrix M is con-
vergent to zero and thus, f is a left M -contraction. Moreover, MQ = QM and
QM < I. By Theorem 3.12 it follows that there exists a unique fixed point
x∗ =

[
x∗
1

x∗
2

]
in C(I,X1)× C(I,X2) for f =

[
f1
f2

]
. ¤

Definition 3.14. Let (X, d) be a generalized b-metric space and let f : X → X

be a singlevalued operator. Then, f is called a left (A,B,C)-contraction if there
exist the matrices A,B,C ∈ Mm,m (R+), where A is convergent to zero with
A+B + C < I such that

d [f (x) , f (y)] ≤ Ad (x, y) +Bd [x, f (x)] + Cd [y, f (y)] , for any x, y ∈ X.

Theorem 3.15. Let (X, d) be a complete generalized b-metric space with
S ∈ Mm,m(R+), S ≥ I and let f : X → X be a left (A,B,C)-contraction such
that KS = SK, where K := (I − C)−1(A + B) and SA < I. Then f is a
(I − SA)−1S(I −B)-Picard operator.

Proof. Let x0 ∈ X. We have

d (xn, xn+1) = d [f (xn−1) , f (xn)] ≤ Ad (xn−1, xn) +Bd [xn−1, f (xn−1)]

+ Cd [xn, f (xn)] = (A+B) d (xn−1, xn) + Cd (xn, xn+1)

and inductively

d(xn, xn+1) ≤ (I−C)−1(A+B)d(xn−1, xn) ≤ · · · ≤ [
(I−C)−1(A+B)

]n
d(x0, x1).

Since A,B,C ∈ Mm,m (R+) and A + B + C < I, we get that K ∈ Mm,m (R+)

and K < I. Thus, K is convergent to zero. For any n ∈ N and p ∈ N∗, we have

d (xn, xn+p)

≤ Sd(xn, xn+1) + · · ·+ Sp−1d (xn+p−2, xn+p−1) + Sp−1d (xn+p−1, xn+p)

≤ SKnd(x0, x1) + · · ·+ Sp−1Kn+p−2d (x0, x1) + Sp−1Kn+p−1d (x0, x1)

≤ SKn
(
I + SK + · · ·+ Sp−2Kp−2 + Sp−2Kp−1

)
d (x0, x1)
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≤ SKn
(
I + SK + · · ·+ Sp−2Kp−2 + Sp−1Kp−1 + . . .

)
d (x0, x1)

≤ SKn (I − SK)
−1

d (x0, x1) .

Letting n → ∞, we obtain that the sequence (xn) is Cauchy in X. By comp-
leteness of X, it follows that there exists x∗ ∈ X such that for any x0 ∈ X, the
sequence (xn) −→ x∗ when n → ∞. We have

d [x∗, f (x∗)] ≤ Sd (x∗, xn+1) + Sd [xn+1, f (x∗)]

≤ Sd (x∗, xn+1) + SAd (xn, x
∗) + SBd (xn, xn+1) + SCd [x∗, f (x∗)]

≤ Sd (x∗, xn+1) + SAd (xn, x
∗) + SBKnd (x0, x1) + SCd [x∗, f (x∗)]

and thus,

d [x∗, f (x∗)] ≤ (I − SC)
−1

Sd (x∗, xn+1) + (I − SC)
−1

SAd (xn, x
∗)

+ (I − SC)
−1

SBKnd (x0, x1) .

Letting n → ∞, we get that x∗ is a fixed point of f in X.
For the uniqueness, we suppose that y∗ ∈ X is another fixed point of f with

y∗ 6= x∗. Then

d (y∗, x∗) = d [f (y∗) , f (x∗)] ≤ Ad (y∗, x∗) +Bd [y∗, f (y∗)] + Cd [x∗, f (x∗)] .

It follows that
(I −A) d (y∗, x∗) ≤ 0.

Since (I − A) ∈ Mm,m(R+) and (I − A) 6= 0, we have the only one possibility
d(y∗, x∗) = 0 and thus, y∗ = x∗.

Since in a generalized b-metric space d is not continuous in general, we will
use the following error estimate for the fixed point. For any n ∈ N∗, we have

d (xn, x
∗) = d [f (xn−1) , f (x∗)] ≤ Ad (xn−1, x

∗) +Bd [xn−1, xn] + Cd [x∗, f (x∗)]

≤ Ad (xn−1, x
∗) +BKn−1d (x0, x1)

≤ A [Ad (xn−2, x
∗) +Bd (xn−2, xn−1)] +BKn−1d (x0, x1)

≤ A2d (xn−2, x
∗) +ABKn−2d (x0, x1) +BKn−1d (x0, x1)

≤ · · · ≤ And (x0, x
∗) +

n−1∑

i=0

AiBKn−i−1d (x0, x1) .

Then

d (x0, x
∗) ≤ Sd (x0, x1) + Sd (x1, x

∗) ≤ Sd (x0, x1) + SAd (x0, x
∗) + SBd (x0, x1)
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and thus,
d (x0, x

∗) ≤ (I − SA)
−1

S (I −B) d (x0, x1) .

Since SA ∈ Mm,m(R+) and SA < I it follows that SA is a matrix convergent
to zero and since S ≥ I, 0 ≤ B < I, it follows that (I − SA)−1S(I − B) has
nonnegative elements.

Hence, f is a (I − SA)−1S(I −B)-Picard operator. ¤

It is known (see Czerwik [9]) that if (X, d) is a generalized b-metric space,
then the functional H : Pb,cl(X)× Pb,cl(X) → [0,+∞]

m is a generalized b-metric
in Pb,cl(X). Also, if (X, d) is a complete generalized b-metric space, we have that
(Pb,cl(X), H) is a complete generalized b-metric space. Notice that a generali-
zed Pompeiu–Hausdorff functional H : Pb,cl (X) × Pb,cl (X) → [0,+∞]

m can be
introduced in the setting of generalized b-metric spaces (Hi is the vector-valued
Pompeiu–Hausdorff metric on Pb,cl (X) generated by di, where i ∈ {1, . . . ,m})
and thus, the concept of a multivalued left A-contraction in Nadler’s sense can
be formulated.

Definition 3.16. Let Y ⊂ X be a nonempty set and let F : Y → Pcl (X)

be a multivalued operator. Then, F is called a multivalued left A-contraction in
Nadler’s sense if A ∈ Mm,m (R+) is a matrix convergent to zero and

H [F (x) , F (y)] ≤ Ad (x, y) , for any x, y ∈ Y.

Definition 3.17. Let (X, d) be a generalized b-metric space. Then F : X →
P (X) is a multivalued weak Picard operator (briefly MWP operator), if for each
x ∈ X and y ∈ F (x), there exists a sequence (xn)n∈N such that:

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ F (xn);

(iii) the sequence (xn)n∈N is convergent to a fixed point of F .

Definition 3.18. Let (X, d) be a generalized b-metric space and let F :

X → P (X) be a MWP operator. Then we define the multivalued operator
F∞ : Graph (F ) → P (Fix (F )) by the formula {F∞(x, y)= z ∈ Fix(F ) : there
exists a sequence of successive approximations of F starting from (x, y) that con-
verges to z}.

Definition 3.19. Let X, Y be two nonempty sets and let F : X → P (Y ) be
a multivalued operator. Then a singlevalued operator f : X → Y is a selection
for F if f (x) ∈ F (x), for any x ∈ X.
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Definition 3.20. Let (X, d) be a generalized b-metric space and let F : X →
P (X) be a MWP operator. Then F is a M -multivalued weak Picard operator
(briefly M -MWP operator) if M ∈ Mm,m (R+) and there exists a selection f∞

of F∞ such that d (x, f∞ (x, y)) ≤ Md (x, y), for all (x, y) ∈ Graph (F ).

Now we present some fixed point theorems in generalized b-metric spaces for
multivalued operators.

Theorem 3.21. Let (X, d) be a complete generalized b-metric space with
S ∈ Mm,m (R+) , S ≥ I and let F : X → Pcl(X) be a multivalued left A-
contraction in Nadler’s sense such that AS = SA and SA < I. Then F is a
(I − SA)

−1
S-multivalued weak Picard operator.

Proof. Let x0 ∈X such that x1 ∈F (x0). Let q ∈
(
1, 1

ρ(A)

)
. For F (x0), F (x1)

and for x1 ∈ F (x0), by Lemma 3.6, it follows that there exists x2 ∈ F (x1) such
that

d (x1, x2) ≤ qH [F (x0) , F (x1)] ≤ qAd (x0, x1) .

For F (x1) , F (x2) and for x2 ∈ F (x1), there exists x3 ∈ F (x2) such that

d (x2, x3) ≤ qH [F (x1) , F (x2)] ≤ qAd (x1, x2) ≤ (qA)
2
d (x0, x1) .

Inductively, there exists the sequence (xn) ∈ X such that xn+1 ∈ F (xn) and

d (xn, xn+1) ≤ (qA)
n
d (x0, x1) , for any n ∈ N∗.

For any n ∈ N and p ∈ N∗, we have

d (xn, xn+p)

≤ Sd(xn, xn+1) + · · ·+ Sp−1d (xn+p−2, xn+p−1) + Sp−1d (xn+p−1, xn+p)

≤ S (qA)
n
[
I + · · ·+ Sp−2 (qA)

p−2
+ Sp−2 (qA)

p−1
]
d (x0, x1)

≤ S (qA)
n (

I + · · ·+ qp−2Sp−2Ap−2 + qp−1Sp−1Ap−1
)
d (x0, x1)

≤ S (qA)
n (

I + · · ·+ qp−2Sp−2Ap−2 + qp−1Sp−1Ap−1 + . . .
)
d (x0, x1)

≤ S (qA)
n
(I − qSA)

−1
d (x0, x1) .

Letting n → ∞ and using Lemma 3.8, we obtain that the sequence (xn)n∈N is
Cauchy in X. By completeness of X, it follows that there exists x∗ ∈ X such
that for any x0 ∈ X, the sequence (xn) −→ x∗ when n → ∞.
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We have

D [x∗, F (x∗)] ≤ Sd (x∗, xn+1) + SD [xn+1, F (x∗)]

≤ Sd (x∗, xn+1) + SH [F (xn) , F (x∗)] ≤ Sd (x∗, xn+1) + SAd (xn, x
∗)

and letting n → ∞, we get that D [x∗, F (x∗)] = 0. By Lemma 3.2, it follows that
x∗ ∈ F (x∗). Hence, x∗ ∈ F (x∗).

Since in a generalized b-metric space d is not continuous in general, we will
use the following error estimate for the fixed point. For any n ∈ N∗, we have

d (xn, x
∗) = qH [F (xn−1) , F (x∗)] ≤ qAd (xn−1, x

∗) ≤ · · · ≤ (qA)
n
d (x0, x

∗) .

Then

d (x0, x
∗) ≤ Sd (x0, x1) + Sd (x1, x

∗) ≤ Sd (x0, x1) + qSAd (x0, x
∗)

and thus,
d (x0, x

∗) ≤ (I − qSA)
−1

Sd (x0, x1) .

Letting q ↘ 1, we get that

d (x0, x
∗) ≤ (I − SA)

−1
Sd (x0, x1) .

Since SA ∈ Mm,m (R+) and SA < I it follows that SA is a matrix convergent to
zero and since S ≥ I, it follows that (I − SA)

−1
S has nonnegative elements.

Hence, F is a (I − SA)
−1

S-multivalued weak Picard operator. ¤

Remark 3.22. In a similar manner with the proof of Theorem 3.13 (using
Theorem 3.21) can be obtained existence results for the following integral inclusion
system in C (I,X1)× C (I,X2):

{
x1 (t) ∈ λ1

∫ t

0
K1 (t, s, x1 (s) , x2 (s)) ds

x2 (t) ∈ λ2

∫ t

0
K2 (t, s, x1 (s) , x2 (s)) ds

(3.2)

for t ∈ I := [0, a] (where λi ∈ R, i ∈ {1, 2}).
Definition 3.23. Let Y ⊂ X be a nonempty set and let F : Y → Pcl (X) be a

multivalued operator. Then, F is called a multivalued left (A,B,C)-contraction
if there exist the matrices A,B,C ∈ Mm,m (R+), where A is convergent to zero
with A+B + C < I such that

H [F (x), F (y)] ≤ Ad(x, y) +BD [x, F (x)] + CD [y, F (y)] , for any x, y ∈ Y.
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Theorem 3.24. Let (X, d) be a complete generalized b-metric space with
S ∈ Mm,m(R+), S ≥ I and let F : X → Pcl(X) be a multivalued left (A,B,C)-
contraction such thatKS = SK, whereK:= (I−qC)−1(A+B), q ∈(1, 1

ρ(A+B+C)

)

and SA < I. Then F is a (I−SA)−1S(I−B)-multivalued weak Picard operator.

Proof. Let x0 ∈ X such that x1 ∈ F (x0). For F (x0) , F (x1) and for
x1 ∈ F (x0), by Lemma 3.6, it follows that there exists x2 ∈ F (x1) such that

d (x1, x2) ≤ qH [F (x0) , F (x1)] ≤ qAd (x0, x1)

+ qBD [x0, F (x0)] + qCD [x1, F (x1)] ≤ q (A+B) d (x0, x1) + qCd (x1, x2) .

Thus,
d (x1, x2) ≤ q (I − qC)

−1
(A+B) d (x0, x1) .

For F (x1) , F (x2) and for x2 ∈ F (x1), there exists x3 ∈ F (x2) such that

d (x2, x3) ≤ qH [F (x1) , F (x2)] ≤ qAd (x1, x2)

+ qBD [x1, F (x1)] + qCD [x2, F (x2)] ≤ q (A+B) d (x1, x2) + qCd (x2, x3) .

Thus,

d(x2, x3) ≤ q(I − qC)−1(A+B)d(x1, x2) ≤
[
q(I − qC)−1(A+B)

]2
d(x0, x1).

Inductively, there exists the sequence (xn) ∈ X such that xn+1 ∈ F (xn) and

d (xn, xn+1) ≤
[
q (I − qC)

−1
(A+B)

]n
d (x0, x1) , for any n ∈ N∗.

For any n ∈ N and p ∈ N∗, we have

d (xn, xn+p)

≤ Sd(xn, xn+1) + · · ·+ Sp−1d (xn+p−2, xn+p−1) + Sp−1d (xn+p−1, xn+p)

≤ S (qK)
n
[
I + · · ·+ Sp−2 (qK)

p−2
+ Sp−2 (qK)

p−1
]
d (x0, x1)

≤ S (qK)
n (

I + · · ·+ qp−2Sp−2Kp−2 + qp−1Sp−1Kp−1
)
d (x0, x1)

≤ S (qK)
n (

I + · · ·+ qp−2Sp−2Kp−2 + qp−1Sp−1Kp−1 + . . .
)
d (x0, x1)

≤ S (qK)
n
(I − qSK)

−1
d (x0, x1) . (∗)

We show that K is convergent to zero and 1
ρ(A+B+C) ≤ 1

ρ(K) .
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Since A,B,C ∈ Mm,m (R+) and A+B +C < I, we have that (A+B + C)

is convergent to zero. It follows that q (A+B + C) is convergent to zero and
thus, q (A+B + C) < I. Then

A+B + qC ≤ q (A+B + C) < I (3.3)
and

0 < I − q (A+B + C) ≤ I − qC (3.4)

By (3.3) it follows that K < I and by (3.4) it follows that K ∈ Mm,m (R+).
Thus, K is convergent to zero.

We observe that
0 ≤ C [I − q (A+B + C)] .

It follows that
A+B ≤ A+B + C − qC (A+B + C)

and thus,
(I − qC)

−1
(A+B) ≤ A+B + C.

By the properties of spectral radius, we get that ρ (K) ≤ ρ (A+B + C) and thus,
1

ρ(A+B+C) ≤ 1
ρ(K) .

Now, letting n → ∞ in (*) and using Lemma 3.8, we obtain that the sequence
(xn) is Cauchy in X. By completeness of X, it follows that there exists x∗ ∈ X

such that for any x0 ∈ X, xn −→ x∗ when n → ∞.
We have

D[x∗, F (x∗)] ≤ Sd(x∗, xn+1) + SD[xn+1, F (x∗)]

≤ Sd(x∗, xn+1) + SH[F (xn), F (x∗)]

≤ Sd(x∗, xn+1)+SAd(xn, x
∗)+SBD[xn, F (xn)] + SCD[x∗, F (x∗)].

Thus,

0 ≤ D [x∗, F (x∗)] ≤ (I − SC)
−1

S [d (x∗, xn+1) +Ad (xn, x
∗) +Bd (xn, xn+1)]

and letting n → ∞, we get that D [x∗, F (x∗)] = 0. By Lemma 3.2, it follows that
x∗ ∈ F (x∗). Hence, x∗ ∈ F (x∗).

Since in a generalized b-metric space d is not continuous in general, we will
use the following error estimate for the fixed point. For any n ∈ N∗, we have

d (xn, x
∗) = qH [F (xn−1) , F (x∗)] ≤ qAd (xn−1, x

∗) + qBd (xn−1, xn)

≤ qAd (xn−1, x
∗) + qBKn−1d (x0, x1)

≤ qA [qAd (xn−2, x
∗) + qBd (xn−2, xn−1)] + qBKn−1d (x0, x1)
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≤ (qA)
2
d (xn−2, x

∗) + q2ABKn−2d (x0, x1) + qBKn−1d (x0, x1)

≤ · · · ≤ (qA)nd (x0, x
∗) +

n−1∑

i=0

qi+1AiBKn−i−1d (x0, x1) .

Then

d(x0, x
∗) ≤ Sd(x0, x1) + Sd(x1, x

∗) ≤ Sd(x0, x1) + qSAd(x0, x
∗) + qSBd(x0, x1)

and thus,
d(x0, x

∗) ≤ (I − qSA)−1S(I −B)d(x0, x1).

Letting q ↘ 1, we get that

d(x0, x
∗) ≤ (I − SA)−1S(I −B)d(x0, x1).

Since SA ∈ Mm,m(R+) and SA < I it follows that SA is a matrix convergent
to zero and since S ≥ I, 0 ≤ B < I, it follows that (I − SA)−1S(I − B) has
nonnegative elements.

Hence, F is a (I − SA)−1S(I −B)-multivalued weak Picard operator. ¤

We give some addition results for the strict fixed point set of F .

Theorem 3.25. If all the assumption of Theorem 3.24 holds and SFix(F )

is nonempty, then:
Fix(F ) = SFix(F ) = {x∗}.

Proof. By Theorem 3.24, it follows that x∗ ∈ Fix (F ). We suppose that
there exists y∗ ∈ Fix (F ) such that y∗ 6= x∗. Then

d (y∗, x∗) = D [y∗, F (x∗)] ≤ H [F (y∗) , F (x∗)]

≤ Ad (y∗, x∗) +BD [y∗, F (y∗)] + CD [x∗, F (x∗)] = Ad (y∗, x∗) .

It follows that
(I −A) d (y∗, x∗) ≤ 0.

Since (I −A) ∈ Mm,m (R+) and (I −A) 6= 0, we have the only one possibility
d (y∗, x∗) = 0 and thus, y∗ = x∗. Hence, Fix (F ) = {x∗}. On the other hand,
since SFix (F ) is nonempty and SFix (F ) ⊂ Fix (F ) = {x∗}, we conclude that
Fix (F ) = SFix (F ) = {x∗}. ¤



Fixed point theorems on generalized b-metric spaces 157

Theorem 3.26. Let (X, d) be a complete generalized b-metric space with
S ∈ Mm,m(R+), S ≥ I and let F : X → Pb(X) be such that A,B,C ∈
Mm,m(R+), where A is convergent to zero with A + B + C < I, KS = SK,
where K := (I − C)−1(A+B), SA < I and

δ [F (x), F (y)] ≤ Ad(x, y) +Bδ [x, F (x)] + Cδ [y, F (y)] , for any x, y ∈ X.

Then SFix (F ) = {x∗}.
Proof. Let q ∈ (

1, 1
ρ(A+B+C)

)
. For {x}, F (x) and for x ∈ X it follows that

there exists a selection f : X → X, f (x) ∈ F (x) such that

δ [x, F (x)] ≤ qd [x, f (x)] .

We have
d [f (x) , f (y)] ≤ δ [F (x) , F (y)] ≤ Ad (x, y)

+Bδ [x, F (x)] + Cδ [y, F (y)] ≤ Ad (x, y) + qBd [x, f (x)] + qCd [y, f (y)] .

Since A,B,C ∈ Mm,m (R+) and A + B + C < I, we have that (A+B + C) is
convergent to zero. It follows that q (A+B + C) is convergent to zero and thus,
q (A+B + C) < I. Then

A+ qB + qC ≤ q (A+B + C) < I.

By Theorem 3.15, it follows that there exists a unique x∗ ∈ X such that x∗ =

f (x∗) ∈ F (x∗), i.e., x∗ ∈ Fix (F ).
We show that x∗ ∈ SFix (F ). We have

0 ≤ δ [x∗, F (x∗)] ≤ δ [F (x∗) , F (x∗)] ≤ Ad (x∗, x∗)

+Bδ [x∗, F (x∗)] + Cδ [x∗, F (x∗)] = (B + C) δ [x∗, F (x∗)] .

It follows that
0 ≤ (I −B − C) δ [x∗, F (x∗)] ≤ 0.

Since (I −B − C) ∈ Mm,m (R+) and (I −B − C) 6= 0, we have the only one
possibility δ [x∗, F (x∗)] = 0 and thus, we obtain that F (x∗) = {x∗}.

For the uniqueness, we suppose that there exists y∗ ∈ SFix (F ) such that
y∗ 6= x∗. Then

d (x∗, y∗) = δ [F (x∗) , F (y∗)]

≤ Ad (x∗, y∗) +Bδ [x∗, F (x∗)] + Cδ [y∗, F (y∗)] = Ad (x∗, y∗) .

It follows that
(I −A) d (x∗, y∗) ≤ 0.

Since (I −A) ∈ Mm,m (R+) and (I −A) 6= 0, we have the only one possibility
d (y∗, x∗) = 0 and thus, y∗ = x∗. Hence, SFix (F ) = {x∗}. ¤
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Remark 3.27. If we choose B = C = 0 in Theorem 3.26 implies that
δ [F (x), F (x)] = 0, for any x ∈ X which yields that F is a singlevalued ope-
rator. Therefore the statement of Theorem 3.26 is nontrivial if B + C > 0.
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