Year: 2013 | Vol.: 83 | Fasc.: 1-2

Title: On the powers of integers and conductors of quadratic fields

Author(s): Nihal Bircan and Michael E. Pohst

We consider non-zero integers of the maximal order $\mathcal{O} = O_F$ of the quadratic field $F = \mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ is square-free. Let p be an odd prime and $0 \neq \alpha \in O_F$. Using the embedding into $\operatorname{GL}(2,\mathbb{R})$ we obtain bounds for the first $\nu \in \mathbb{N}$ such that $\alpha^{\nu} \equiv 1 \mod p$. For a conductor f, we then study the smallest positive integer n = n(f) such that $\alpha^n \in \mathcal{O}_f$. We obtain bounds for n(f) and for $n(fp^k)$. The most interesting case is where α is the fundamental unit of $\mathbb{Q}(\sqrt{d})$.

Address:

Nihal Bircan Berlin University of Technology Institute for Mathematics, MA 3-2 Strasse des 17. Juni 136 D-10623 Berlin Germany **Address:** Michael E. Pohst Berlin University of Technology Institute for Mathematics, MA 3-2 Strasse des 17. Juni 136 D-10623 Berlin Germany