Title: On the powers of integers and conductors of quadratic fields
Author(s): Nihal Bircan and Michael E. Pohst
We consider non-zero integers of the maximal order $\mathcal{O}=O_{F}$ of the quadratic field $F=\mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ is square-free. Let p be an odd prime and $0 \neq \alpha \in O_{F}$. Using the embedding into $\operatorname{GL}(2, \mathbb{R})$ we obtain bounds for the first $\nu \in \mathbb{N}$ such that $\alpha^{\nu} \equiv 1 \bmod p$. For a conductor f, we then study the smallest positive integer $n=n(f)$ such that $\alpha^{n} \in \mathcal{O}_{f}$. We obtain bounds for $n(f)$ and for $n\left(f p^{k}\right)$. The most interesting case is where α is the fundamental unit of $\mathbb{Q}(\sqrt{d})$.

Address:

Nihal Bircan
Berlin University of Technology
Institute for Mathematics, MA 3-2
Strasse des 17. Juni 136
D-10623 Berlin
Germany
Address:
Michael E. Pohst
Berlin University of Technology
Institute for Mathematics, MA 3-2
Strasse des 17. Juni 136
D-10623 Berlin
Germany

