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On the powers of integers and conductors of quadratic fields

By NİHAL BİRCAN (Çankırı, Berlin) and MICHAEL E. POHST (Berlin)

Abstract. We consider non-zero integers of the maximal order O = OF of the

quadratic field F = Q
(√

d
)
where d ∈ Z is square-free. Let p be an odd prime and

0 6= α ∈ OF . Using the embedding into GL(2,R) we obtain bounds for the first ν ∈ N
such that αν ≡ 1 mod p. For a conductor f , we then study the smallest positive integer

n = n(f) such that αn ∈ Of . We obtain bounds for n(f) and for n(fpk). The most

interesting case is where α is the fundamental unit of Q
(√

d
)
.

1. Introduction

We consider quadratic fields F = Q
(√

d
)
where d ∈ Z is square-free. We write

d = 4q + r with r ∈ {1, 2, 3}. The algebraic integers α of Q
(√

d
)
are given by

α =




a+ b

√
d, a, b ∈ Z if r = 2, 3

1

2
(a+ b

√
d ), a, b ∈ Z, a+ b ∈ 2Z if r = 1.

(1.1)

Throughout the paper α denotes a non-zero integer of F . Let p be an odd prime.

First we study the problem to find small exponents n such that αn ≡ 1 mod p.

We will extensively use Legendre symbols.

We adapt the classical Chebyshev polynomials Tn and Un (for detailed in-

formation see [9] Section 5.7, [1] Chapter 22) by defining

tn(x) = tn(x; s) = 2sn/2Tn

(
x

2
√
s

)
, (1.2)
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un(x) = un(x; s) = sn/2Un

(
x

2
√
s

)
(1.3)

for n ∈ N0 where s is the norm of a non-zero integer in the quadratic field F . These

are unimodular polynomials with integer coefficients. For technical reasons we use

this modification of Chebyshev polynomials for treating the cases d ≡ 1 mod 4

and d ≡ 2, 3 mod 4 simultaneously. In Section 6 we present all properties of these

adapted polynomials which we use for proving our results. Then we specialize the

results of the paper [2] about GL(2,Z) to quadratic fields. For previous works on

this subject see e.g. [4], [5], [6].

In Section 2, we consider 2 × 2 matrices over the rational integers and

show how the integers of any quadratic field F = Q
(√

d
)
can be embedded into

GL(2,R). We also prove that αn ≡ 1 mod p holds if and only if An ≡ I mod p

where the matrix A is the image of α. In the next sections we consider non-zero

integers α of F and especially units α. In these sections we apply the results of

[2] to the case of quadratic fields. Let f denote a conductor for F . In Section 5,

we give upper estimates for

n(f) := min{ν ∈ N : αν ∈ Of}
and also for n(fpk) where k ∈ N and p is an odd prime.

2. The embedding of algebraic integers of Q
(√

d
)
into GL(2,R)

Let A ∈ GL(2,C) , that is

A =

(
a b

c d

)
, a, b, c, d ∈ C, ad− bc 6= 0. (2.1)

We always write

x := trA = a+ d, s := detA = ad− bc. (2.2)

Proposition 2.1. For n ∈ N we have

An = un−1(x)A− sun−2(x)I, (2.3)

An =
1

2
tn(x)I + un−1(x)(A− 1

2
xI). (2.4)

This proposition is known in various forms. For instance, (2.3) with s = 1 is

Lemma 3.1.3 in [8] where pn = un−1 and qn = un−2. The last matrix in (2.4) has

zero trace and it follows that

trAn = tn(x). (2.5)
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With the notation (2.1) we can write (2.4) as

An =



1

2
tn(x) +

1

2
(a− d)un−1(x) bun−1(x)

cun−1(x)
1

2
tn(x)− 1

2
(a− d)un−1(x)


 . (2.6)

Now, we consider algebraic integers α of Q
(√

d
)
in the notation (1.1). We define

a homomorphism ϕ of the multiplicative semigroup of non-zero integers α into

GL(2,R). For r = 2, 3 we set (see e.g. [3, p. 38])

ϕ(α) := A =

(
a b

bd a

)
(2.7)

whereas for r = 1 we set

ϕ(α) := A =



1

2
(a+ b) b

qb
1

2
(a− b)


 . (2.8)

It can be checked that this indeed defines an injective homomorphism. We have

s = detA = Norm(α) =




a2 − b2d if r = 2, 3

1

4
(a2 − b2d) if r = 1,

(2.9)

x = trA =

{
2a if r = 2, 3

a if r = 1.
(2.10)

Since An = ϕ(αn) and ϕ is injective, it follows from (2.6) that

αn =





1

2
tn(2a) + un−1(2a)b

√
d if r = 2, 3

1

2
tn(a) +

1

2
un−1(a)b

√
d if r = 1.

(2.11)

Proposition 2.2. If p is an odd prime and αk, αm are integers of Q
(√

d
)

then αk ≡ αm mod p if and only if ϕ(αk) ≡ ϕ(αm) mod p.

Proof. We prove only the more complicated case r = 1 (see (1.1)). The

statement can be proved in a similar way for r = 2, 3.
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First we assume αk ≡ αm mod p and we prove ϕ(αk) ≡ ϕ(αm) mod p. For

αk ≡ αm mod p with

αk =
1

2

(
ak + bk

√
d
)
, αm =

1

2

(
am + bm

√
d
)
.

we have ak ≡ am mod p and bk ≡ bm mod p. This implies ak+bk ≡ am+bm mod p

and ak − bk ≡ am − bm mod p. Since p is odd we obtain

1

2
(ak + bk) ≡ 1

2
(am + bm) mod p,

1

2
(ak − bk) ≡ 1

2
(am − bm) mod p.

Then (2.8) yields ϕ(αk) ≡ ϕ(αm) mod p.

Now we assume ϕ(αk) ≡ ϕ(αm) mod p and prove αk ≡ αm mod p. Using

the definition in (2.8) we can write

ϕ(αj) =



1

2
(aj + bj) bj

qbj
1

2
(aj − bj)




for j = k,m. We immediately see that bk ≡ bm mod p, 1
2 (ak + bk) ≡ 1

2 (am +

bm) mod p and 1
2 (ak − bk) ≡ 1

2 (am − bm) mod p and obtain ak ≡ am mod p,

hence αk ≡ αm mod p. ¤
Proposition 2.3. If p - b, p - d then αn ≡ 1 mod p if and only if An ≡

I mod p.

Proof. (a) First, we assume αn ≡ 1 mod p. For r = 2, 3,

αn =
1

2
tn(x) + un−1(x)b

√
d ≡ 1 mod p

with p - b, p - d and x was defined in (2.10). Since un−1(x) ≡ 0 mod p by (2.11)

we get 1
2 tn(x) ≡ 1 mod p. Hence, An = 1

2 tn(x)I + un−1(x)(A− 1
2xI) ≡ I mod p.

For r = 1, namely, αn = 1
2 tn(x) +

1
2un−1(x)b

√
d, the proof is similar.

(b We assume An ≡ I mod p. Then

An =
1

2
tn(x)I + un−1(x)

(
A− 1

2
xI

)
≡ I mod p

and we want to prove αn = 1
2 tn(x)+un−1(x)b

√
d ≡ 1 mod p for r = 2, 3. By (2.6)

we have bun−1(x) ≡ 0 mod p. Because of b 6≡ 0 mod p we get un−1(x)(A− 1
2xI)v ≡

0 mod p and tr(A− 1
2xI) ≡ 0 mod p, hence

un−1(x)

(
∗ b

bd ∗

)
≡ 0 mod p.

This implies un−1(x)b ≡ 0 mod p. From (2.6) we obtain 1
2 tn(x) ≡ 1 mod p for

the cases r = 2, 3 and r = 1, hence αn ≡ 1 mod p. ¤
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3. Non-zero integers α of F

In this section, we specialize the results of [2] to the case of quadratic fields

using the embedding introduced in Section 2. We note that we allow d to be

negative. Again we write d = 4q + r and s = Norm(α) for non-zero integers α of

F = Q
(√

d
)
as in (1.1).

Let p be an odd prime. We assume that p - d, p - b and that

a2 − 4s 6≡ 0 mod p for r = 2, 3, a2 − s 6≡ 0 mod p for r = 1. (3.1)

Throughout the rest of the paper let x be the trace and s be the norm of α

as defined in (2.10) and (2.9). Since tn and un are polynomials with integer

coefficients the identities in Section 6 can be transferred into congruences. We let

` be the Legendre symbol

` :=

(
x2 − 4s

p

)
. (3.2)

Then p− ` becomes = p∓ 1 for ` = ±1.

Theorem 3.1. Let p be an odd prime with p - d, p - b and s = N(α) 6= 0.

Let ` be the Legendre symbol defined above. We set σ = 1 for ` = +1 and σ = s

for ` = −1. Then

tp−`(x) ≡ 2σ mod p, up−`−1(x) ≡ 0 mod p.

We sum up the further results in the following table.

r = 2, 3 r = 1

(
s
p

)
= +1

t p−`
2
(2a)2 ≡ 4σ mod p, t p−`

2
(a)2 ≡ 4σ mod p,

u p−`
2 −1(2a) ≡ 0 mod p u p−`

2 −1(a) ≡ 0 mod p

(
s
p

)
= −1

t p−`
2
(2a) ≡ 0 mod p, t p−`

2
(a) ≡ 0 mod p,

(a2 − s)u p−`
2 −1(2a)

2 ≡ σ mod p (a2 − 4s)u p−`
2 −1(a)

2

≡ 4σ mod p.

This is [2, Theorem 4.1] specialized to our present situation.

The proof in [2] uses Chebyshev polynomials. In the present context of

quadratic fields, many of the previous formulas can be proved by other methods,

see for instance [3], [7, Theorem 1.7].
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4. Units of F

First we consider the case s = Norm(α) = +1. Again we let ` be the Legendre

symbol defined in (3.2), and x is defined in (2.10).

The following results are obtained by specializing the results in Sections 5

and 6 of [2]. The Legendre polynomials tn and un−1 depend only on x and s as

defined in (2.9) and (2.10); the specific form (1.1) of α is not important.

Proposition 4.1. Let k∈N divide p−` and we assume that `=
(
x2−4s

p

) 6= 0.

If x ≡ tk(y) mod p for some y ∈ Z then, with n = p−`
k ,

tn(x) ≡ 2 mod p, un−1(x) ≡ 0 mod p, αn ≡ 1 mod p. (4.1)

For a proof compare [2, Theorem 5.1].

For the special case that k = 2j we can say much more. We construct

x0, . . . , xm recursively by the following rule. Let x0 = x. For
(
x+2
p

)
= −1 we set

m = 0 and stop. Now let
(
x+2
p

)
= +1 and suppose that x0, . . . , xk have already

been constructed such that 2k | (p− `) and

xν−1 ≡ t2(xν) mod p, ((x2
ν − 4)/p) = ` for 1 ≤ ν ≤ k. (4.2)

For 2k+1 - (p − `) or
(
xk+2

p

)
= −1 we set m = k and stop. Otherwise we have

2k+1 | (p − `) and
(
xk+2

p

)
= +1. Then there exists xk+1 subject to xk + 2 ≡

x2
k+1 mod p and thus xk = t2(xk+1). It follows from (4.2) that

((xk − 2)/p) = ((xk + 2)/p)((xk − 2)/p) = ((x2
k − 4)/p) = `

and therefore ((x2
k+1−4)/p) = ((xk−2)/p) = ` . This completes our construction.

We note that 2m | (p− `).

Theorem 4.2. Let N(α) = 1, ` =
(
x2−4

p

) 6= 0 and x0, . . . , xm be constructed

as above. Then
t(p−`)/2k(x) ≡ 2 mod p for k = 0, . . . ,m, (4.3)

t(p−`)/2m+1(x) ≡ −2 mod p or 2m+1 - (p− `). (4.4)

The proof is analogous to that of [2, Theorem 5.4].

Corollary 4.3. Let s = N(α) = 1, ` =
(
x2−4

p

) 6= 0 and let x0, . . . , xm be

constructed as above. Setting n = (p− `)/2m we have

un−1(x) ≡ 0 mod p, αn ≡ 1 mod p. (4.5)

For 2m+1 | (p− `) we additionally get

un
2 −1(x) ≡ 0 mod p, αn/2 ≡ −1 mod p. (4.6)

These bounds are best possible: 2m+2 | (p− `) implies un
2 −1(x) 6≡ 0 mod p.
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Proof. Because of s = 1 and x2−4 6≡ 0 mod p it follows from (6.1) and (4.3)

that un−1 ≡ 0 mod p and therefore An ≡ I mod p by (2.4). By Proposition 2.3

we have αn ≡ 1 mod p. This proves (4.5). For 2m+1 | (p − `) the congruences

(4.6) follow from (4.4) analogously. Finally, we let 2m+2 | (p − `). Then it

follows from (4.4) that tn/2(x) ≡ −2 mod p so that tn/4(x) ≡ 0 mod p by the

recursion formula for tn(x) which is similar to that for un(x) in Section 6. Hence,

un
4 −1(x) 6≡ 0 mod p. ¤

Now we consider the more complicated case of units with norm −1, i.e.q

tn(x) = tn(x;−1). As before we set ` :=
(
x2−4s

p

)
and assume that (3.1) with

s = −1 holds. We set n = p−`
2 . Because of (−1/p) = (−1)(p−1)/2 Theorem 3.1

(with σ = `) yields

t2n(x) ≡ 2` mod p, tn(x)
2 ≡ 4` mod p, un−1(x) ≡ 0 mod p

for p ≡ 1 mod 4, (4.7)

t2n(x) ≡ 2` mod p, tn(x) ≡ 0 mod p, un−1(x) 6≡ 0 mod p

for p ≡ 3 mod 4. (4.8)

Then (6.3) implies that

t2(p−`)(x) ≡ 2 mod p. (4.9)

Hence, tn(x) ≡ ±2 mod p if and only if p ≡ 1 mod 4 and ` = +1. Assuming the

latter we obtain from (6.7) with t2(x;−1) = x2 + 2 that

t2n(x;−1) = tn(x
2 + 2; 1) for n ∈ N. (4.10)

Because of
(−1

p

)
= +1 there exists j ∈ Z with j2 ≡ −1 mod p. We now assume

that x 6≡ 0 mod p and x 6≡ ±2j mod p. This implies

(x2 + 2)2 − 4 = x2(x2 + 4) 6≡ 0 mod p. (4.11)

Similar to Section 4, we construct numbers y0, . . . , ym subject to the initial condi-

tion y0 = x2+2 instead of x0 = x. It follows from (4.11) that also ((y20−4)/p) = `.

We have y0 + 2 = x2 + 4 and therefore ((y0 + 2)/p) = ` = +1. Hence, the first

step of our construction can always be carried out resulting in m ≥ 1. The

construction stops if ((ym + 2)/p) = −1 or 2m+1 - (p− 1).

Theorem 4.4. Let N(α) = −1, p ≡ 1 mod 4, a2 + 4 6≡ 0 mod p, ` = +1 and

let y0, . . . , ym be constructed as above. Then m ≥ 1 and

t(p−1)/2k(x) ≡ 2 mod p for k = 0, . . . ,m− 1, (4.12)
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t(p−1)/2m(x) ≡
{
−2 mod p for 2m+1 | (p− l),

0 mod p for 2m+1 - (p− `).
(4.13)

See [2, Theorem 6.1] for the proof. The next result is not a surprise because

of N(α2) = 1. The proof is similar to that of Corollary 4.3, so we omit it.

Corollary 4.5. Under the assumptions of Theorem 4.4, we now write n =

(p−`)/2m−1. Then (4.5) holds, and in case 2m+1 | (p−`) then (4.6) is also fulfilled.

These bounds are best possible: For 2m+1 | (p− `) we have un
4 −1(x) 6≡ 0 mod p.

Theorem 4.6. Let N(α) = −1 and k be odd with k | (p − `). We put

n = (p− `)/k. If x2 + 4 6≡ 0 mod p and x ≡ tk(y;−1) mod p for some y ∈ Z then

t2n(x) ≡ 2 mod p, tn(x) ≡ 2` mod p, αn ≡ ` mod p. (4.14)

Proof. This was shown more generally in [2]. ¤

5. Estimates for conductors

We continue to study the quadratic field F = Q
(√

d
)
with d > 0 and r ∈

{1, 2, 3}. The order with conductor f ∈ N is

Of =





{a′ + b′f
√
d : a′, b′ ∈ Z} if r = 2, 3,

{
1

2
(a′ + (f − 1)b′) + 1

2b
′f
√
d : a′, b′ ∈ Z, 2 | a′ + b′

}
if r = 1.

(5.1)

We fix an integer α of Q
(√

d
)
with s = N(α) 6= 0. Let x be given by (2.10).

Again we use the notation in (1.1). The most interesting case is that α is the

fundamental unit of Q(
√
d ). Following Halter–Koch we define

n(f) = n(f, α) := min{ν ∈ N : αν ∈ Of}. (5.2)

Lemma 5.1. Let b 6= 0 be given by (1.1) and s, x by (2.9). We write

c := gcd(b, f), b0 := b/c, f0 = f/c. (5.3)

Then we have

n(f) = n(f0) = min{ν ∈ N : uν−1(x; s) ≡ 0 mod f0}. (5.4)
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Proof. By (2.9) and (2.10) we have

αν ∈ Of ⇔ buν−1(x) ≡ 0 mod f.

Since gcd(b0, f0) = 1 it follows by (5.3) that

αν ∈ Of ⇔ b0uν−1(x) ≡ 0 mod f0 ⇔ uν−1(x) ≡ 0 mod f0.

We note that b has not been replaced by b0. Therefore we still have uν−1(x) =

uν−1(x; s) with x and s unchanged. ¤

Let g ∈ N and gcd(b, g) = gcd(f, g) = 1. Then it follows from (5.4) and (6.5)

that un(f)n(g)−1(x; s) ≡ 0 mod lcm(f, g)f . Hence, we get

n(fg) ≤ n(f)n(g) for gcd(f, g) = 1. (5.5)

For an odd prime p we define

q(p) = q(p;α) := min{ν ∈ N : uν−1(x; s) ≡ 0 mod p}. (5.6)

The results of Sections 3 and 4 provide upper estimates for q(p). These results

depend explicitly on x and s, and implicitly on a, b and d in (1.1).

First let ` =
(
x2−4s

p

) 6= 0. For s = 1 it follows from Corollary 4.3 that

q(p) ≤ p− `

2m
, and q(p) ≤ p− `

2m+1
for 2m+1 | (p− `).

If s = −1, p ≡ 1 mod 4 and ` = +1 then it follows from Corollary 4.5 that

q(p) ≤ p− `

2m−1
and q(p) ≤ p− `

2m
for 2m | (p− `).

Now let x2 − 4s ≡ 0 mod p. Then for all ν ∈ N it follows from (6.1) that

2ν−1uν−1(x; s) ≡ νxν−1 mod p. We conclude that q(p) = p for p - s and q(p) = 2

for p | s.
Theorem 5.2. For gcd(f, b) = 1 and p - f we have

n(pkf) ≤ q(p)pk−1n(f) for all k ≥ 1. (5.7)
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Proof. We use induction on k. By (5.4) and (6.5) we have

uq(p)n(f)−1(x; s) ≡ 0 mod f . By (5.6) and (6.5) this congruence also holds mo-

dulo p. Since gcd(f, p) = 1 it follows that the congruence is true also modulo pf .

Hence (5.7) holds for k = 1 in view of (5.4).

Now let (5.7) hold for k. We write ν = q(p)pk−1n(f) and have, by (5.7),

uν−1(x; s) ≡ 0 mod pkf. (5.8)

We apply (6.1) with n = p and with sν instead of s. The binomial coefficients in

the sum are divisible by the prime p. Because of 2p−1 ≡ 1 mod p we get for z ∈ Z
up−1(z; s

ν) ≡ (z2 − 4sν)(p−1)/2 mod p.

For z = tν(x; s) we obtain by (6.2) that

up−1(tν(x; s); s
ν) ≡ [

(x2 − 4s)uν−1(x; s)
] p−1

2 ≡ 0 mod p. (5.9)

Here we used (5.8) for k ≥ 1. Now we apply (6.4) with m = p and n = ν. By

(5.8) and (5.9) we obtain

uq(p)pk−1(x; s) = upν−1(x; s) ≡ 0 mod pk+1f.

Hence, it follows from (5.4) that n(pk+1f) ≤ q(p)pk. ¤

Theorem 5.3. Let f ∈ N be odd and let f0 be defined as in (5.3). We write

f0 =

µ∏
ν=1

pν
kν (kν ∈ N) (5.10)

with different primes pν . Then

n(f) ≤
µ∏

ν=1

(
q(pν)pν

kν−1
)
. (5.11)

Proof. Let g0 = 1 and for 1 ≤ λ ≤ µ

gλ =

λ∏
ν=1

pν
kν (1 ≤ λ ≤ µ).

Then gλ = pkλgλ−1 and pλ - gλ−1. Hence we obtain from Theorem 5.2 applied to

f0 that

n(fλ) ≤ q(pλ)p
kλ−1n(fλ−1).

Hence, (5.11) with f replaced by f0 follows by induction. Finally, we use that

Lemma 5.1 implies n(f) = n(f0). ¤
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6. Addendum: useful formulas for Chebyshev polynomials

We present several formulas which we need in proving our results. We put

our emphasis on the polynomials un defined in (1.3) (see [9, Section 5.7 ] and [2]).

For odd n and x, s ∈ C, we have

un−1(x; s) =
1

2n−1

(n−3)/2∑

k=0

(
n

2k + 1

)
xn−2k−1(x2−4s)k+

1

2n−1
(x2−4s)

n−1
2 . (6.1)

The recursion formula un+1(x) = xun(x)− sun−1(x) shows that

u0(x) = 1, u1(x) = x, u2(x) = x2 − s, u3(x) = x3 − 2sx,

u4(x) = x4 − 3sx2 + s2, u5(x) = x5 − 4sx3 + 2s2x.

Furthermore, tn(x; s) and un(x; s) are polynomials in Z[x, s]. For n ∈ N we have

(x2 − 4s)un−1(x; s)
2 = tn(x; s)

2 − 4sn (6.2)

tn(x; s)
2 = t2n(x; s) + 2sn. (6.3)

We need a relation for products which involves different parameters.

umn−1(x; s) = um−1(tn(x; s); s
n) un−1(x; s) (m,n ∈ N). (6.4)

It follows that for µ ∈ N and x, s ∈ Z

un−1(x; s) ≡ 0 mod µ ⇒ umn−1(x; s) ≡ 0 mod µ. (6.5)

To prove (6.4) it is sufficient to consider x
2
√
s
= cos θ with real θ. Then it follows

from (1.2), (1.3) and the properties [9, p. 257] of the Tn and Un that

tn(x; s) = 2s
n
2 cos(nθ), um−1(x; s) = s

m−1
2

sin(mθ)

sin θ
. (6.6)

By (1.3) and (1.2) we therefore have

um−1(tn(x; s); s
n) = sn

m−1
2 Um−1

(
1

2sn/2tn(x; s)

)

= sn
m−1

2 Um−1(cos(nθ)) = s
mn−n

2
sin(mnθ)

sinnθ
.
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Now we multiply by un−1(x; s). Using (6.6) we obtain

um−1(tn(x; s); s
n)un−1(x; s) = s

mn−1
2

sin(mnθ)

sinnθ
= umn−1(x; s)

using (6.6) again.

In Section 4 we use the following relation between the polynomials tn(x; s)

with different parameters s. If s 6= 0 and m,n ∈ N then

tmn(x; s) = tn(tm(x; s); sm). (6.7)

Indeed, (1.2) and the composition property Tmn = Tn ◦ Tm imply that

tmn(x; s) = 2(sm)n/2Tn

(
Tm

(
x

2
√
s

))
= tn

(
1

2
√
s
mTm

(
x

2
√
s

)
; sm

)

from which (6.7) follows using (1.2).
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BERLIN UNIVERSITY OF TECHNOLOGY

INSTITUTE FOR MATHEMATICS, MA 3-2

STRASSE DES 17. JUNI 136

D-10623 BERLIN

GERMANY

AND
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