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Solvability of normal subgroups and G-class sizes

By ANTONIO BELTRÁN (Castellón) and MARÍA JOSÉ FELIPE (Valencia)

Abstract. We study the solvability of a normal subgroup N of a finite group G

having exactly three G-conjugacy class sizes. We show that if the set of G-class sizes of

N is {1,m,mpa}, with p a prime not dividing m, then N is solvable. Thus, we get a

partial extension for normal subgroups on N. Itô’s theorem on the solvability of groups

having exactly three class sizes.

1. Introduction

The most relevant result related to groups with three class sizes is due to

N. Itô, who showed in [13] that such groups are always solvable appealing to the

Feit–Thompson’s theorem and some deep classification theorems by M. Suzuki.

This result was simplified by J. Rebmann in [16] for F -groups (that is, those

groups containing no pair of non-central elements x and y such that the centralizer

of x contains that of y properly). Then he determined the structure of F -groups

by using results of R. Baer and Suzuki about groups with a non-trivial normal

partition. Afterwards, A. R. Camina proved in [7], by using the description of

finite groups with dihedral Sylow 2-subgroups given by D. Gorenstein and J. H.

Walter, that if G does not possess the property F and has three class sizes, then

G is a direct product of an abelian subgroup and a subgroup whose order involves
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no more than two primes. Forty years later, the structure of these groups has

been completely determined (up to nilpotent groups, which in this context are

p-groups) by S. Dolfi and E. Jabara in [8], basing their proof on the solvability

of this type of groups.

Now, we focus our attention to a normal subgroup N of a group G and denote

by csG(N) the set ofG-class sizes of elements inN . It is natural to wonder whether

the cardinality of csG(N), which is not related to the number of class sizes of N ,

may have a similar influence on the structure of N , and in fact, some recent

works have given an affirmative answer. Normal subgroups having exactly two

G-class sizes have been proved to be nilpotent [3]. Also, in [1], the structure of a

normal subgroup with three G-class sizes, under certain arithmetical conditions

on these sizes, is determined. The proof is inspired by a generalization for normal

subgroups of the concept of F -group. The authors classify and determine the

structure of F -normal subgroups, and as a consequence, they obtain the solvability

of F -normal subgroups with three G-class sizes. In particular, they show that

when N is a normal subgroup of G such that csG(N) = {1,m, n}, where m < n

and m does not divide n, then N is solvable and its structure is determined.

We conjecture that the solvability of N holds whenever |csG(N)| = 3, that

is, the case left open in the above work also leads to solvability: If N is normal

in G and csG(N) = {1,m, n}, with m dividing n, then N is solvable. In view of

Camina’s work, the solution of this problem seems more difficult and it needs dif-

ferent techniques from those employed in [1]. In this paper, we show the following

contribution to our conjecture.

Theorem A. Let N be an normal subgroup of G, such that csG(N) =

{1,m,mpa}, with p a prime and (m, p) = 1. Then N is solvable.

In order to prove Theorem A, we will make use of some key results concerning

the nilpotency of normal subgroups with two G-class sizes, which allow us to work

inductively. On the other hand, we will also employ certain result (main theorem

of [2]) about the structure of normal subgroups having two p-regular G-class sizes,

these are the sizes of G-classes whose elements have order not divisible by p. This

will be used when p is the prime appearing in the statement of Theorem A.

Moreover, we develop a general result on the Schur multiplier of a simple group

(Lemma 1), as well as certain properties relating the G-class sizes to the Fitting

subgroup or the center of a normal subgroup, such as Theorems 5 and 7 or the

following theorem, all of which might be useful in demonstrating the mentioned

conjecture.
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Theorem B. If N is a nonabelian normal subgroup of a finite group G and

|csG(N)| = 3, then Z(N) < F(N).

Throughout this paper all groups are finite. If x is any element of a group G,

we denote by xG the conjugacy class of x in G and |xG| is called the G-conjugacy

class size of x or the index of x in G. If p is a prime number and n is an integer, we

use the notation np for the p-part of n, and π(n) for the set of primes dividing n.

For the rest of notation, we will follow [12].

2. Preliminaries

In this section, we develop the results we are are going to use. The first

lemma concerns to simple groups.

Lemma 1. A finite nonabelian simple group does not have a nontrivial

conjugacy class whose size divides the order of its Schur multiplier.

Proof. Let M(S) denote the Schur multiplier of a simple group S (the

reader is referred to Chapter 5 of [9] for a definition). We also follow this reference

to compute the conjugacy class sizes of certain simples groups. First, notice that

simple groups do not have conjugacy classes of prime power size distinct from 1

by Burnside’s theorem [11, 15.2], so we only have to analyze those simple groups

whose Schur multiplier does not have prime power order. This can only occur at

most for the groups that belong to the following list (see Chapter 5 of [14]).

i) Certain linear groups: M(A1(3
2)) of order 6; M(A2(2

2)) of order 48; and

M(An(q)) for (n, q) ̸= (1, 4), (1, 9), (2, 2), (2, 4), (3, 2), that has order gcd(n+

1, q− 1). In the first two cases the corresponding group does not have conju-

gacy classes of size dividing 6 and 48, respectively. In the latter case, if such a

simple linear group S has a conjugacy class whose size divides gcd(n+1, q−1),

then S certainly has a subgroup of index dividing q − 1. This implies that

|S| must divide (q − 1)!. However, this cannot happen because the order of

An(q) = PSL(n+ 1, q), which is

(qn+1 − 1)(qn+1 − q) . . . (qn+1 − qn)

(q − 1)(n+ 1, q − 1)
,

does not divide (q − 1)!. In order to show it, we argue as follows. Suppose

that q = pf , for a prime p and f ≥ 1, and let E denote the floor function,

that is, E(x) is the largest integer not greater than the real number x. It is

an elementary property that the largest power of p that divides (pf − 1)! is
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E

(
pf − 1

p

)
+ E

(
pf − 1

p2

)
+ . . . E

(
pf − 1

pf−1

)
< pf−1 + pf−2 + . . .+ p+ 1 < pf .

On the other hand, it is clear that qq2 . . . qn = pf
n(n+1)

2 divides |An(q)| and
since pf

n(n+1)
2 ≥ pf , so the claim is proved.

ii) Some unitary groups: M(2A3(3
2)) of order 36, M(2A5(2

2)) of order 12, and

M(2An(q
2)) for (n, q) ̸= (3, 4), (3, 9), (5, 4), which has order gcd(n+1, q+1).

One checks that in the first two cases there is no class size dividing 36 and

12 respectively, while in the latter case one can argue similarly as in case i)

to prove the thesis of the theorem.

iii) Two orthogonal groups: B2(2)
′ ∼= A6 and B3(3), both having Schur multi-

plier of order 6, and with no class size dividing 6.

iv) Three sporadic groups: M22, F i22 and Suz, the sporadic Suzuki group, whose

Schur multipliers have order 12, 6 and 6 respectively. No class size in each

of these groups divides the order of its corresponding Schur multiplier. �

The following definitions and results are inspired by several theorems for

ordinary classes developed by Dolfi and Jabara in [8]. We aim to extend the

corresponding results for G-classes of normal subgroups in a group G.

Definition. Let G be a group, p a prime number and N a normal subgroup

of G. We define

mp,G(N) = max{|CG(x)|p : x ∈ N \ Z(G)}
and

Mp,G(N) = {x ∈ N \ Z(G) : |CG(x)|p = mp,G(N).

Lemma 2. Let N be a normal subgroup of a group G. Denote by G =

G/Op′(N) and use the bar convention. If g ∈ Mp,G(N) and g /∈ Z(G), then

g ∈ Mp,G(N).

Proof. We claim that for any x ∈ N \Z(G) there exists some y ∈ N \Z(G)

such that y = x and |CG(y)|p = |CG(x)|p. Let D be a subgroup of G such

that D = CG(x) and let P be a Sylow p-subgroup of D. Note that P acts on

N and in particular, acts coprimely on Op′(N), so by Lemma 14.1 of [11] there

exists y ∈ CN (P ) such that y = x. Since P ⊆ CG(y), we can take P1 a Sylow

p-subgroup of CG(y) such that P ⊆ P1. Then P ⊆ P1 ⊆ CG(y) = D and since

P is a Sylow p-subgroup of D, we conclude that P1 = P . Furthermore, since
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|P1| = |P1|, it follows that P1 = P and consequently, |CG(y)|p = |CG(x)|p as we

wanted to prove. Moreover, notice that y /∈ Z(G) because y /∈ Z(G).

Therefore, the above claim implies that mp,G(N) ≤ mp,G(N). Now, let

g ∈ Mp,G(N) such that g /∈ Z(G). Then |CG(g)|p ≤ mp,G(N). If P is a Sylow

p-subgroup of CG(g), then mp,G(N) = |P | = |P |. We know that P ⊆ CG(g), so

mp,G(N) ≤ |CG(g)|p ≤ mp,G(N) ≤ mp,G(N). Thus, the equality holds, whence

g ∈ Mp,G(N). �

Lemma 3. Let G be a finite group and N a normal subgroup of G. Sup-

pose that g ∈ Mp,G(N) and let P0 be a Sylow p-subgroup of CG(g). Then

COp(N)(P0) ⊆ P0.

Proof. Let x ∈ COp(N)(P0). If x ∈ Z(G), then it trivially lies in P0.

So, assume that x ̸∈ Z(G) and consider the subgroup ⟨x, P0⟩ ⊆ CG(x). Then

|⟨x, P0⟩| ≤ mp,G(N) = |P0| and hence x ∈ P0. �

Lemma 4. Let G be a finite group and N a p-solvable normal subgroup of G.

Suppose that g is a p′-element of N such that g ∈ Mp,G(N). Then g ∈ Op′(N).

Proof. We argue by induction on |N |. Assume first that Op′(N) ̸= 1 and

consider G = G/Op′(N). If g ̸∈ Op′(N), then it is clear that g /∈ Z(N) and

consequently, g /∈ Z(G). Then, by Lemma 2, g ∈ Mp,G(N) and by induction

g ∈ Op′(N) = 1, a contradiction. Thus, in this case g ∈ Op′(N).

We assume now that Op′(N) = 1. Let P0 be a Sylow p-subgroup of CG(g)

and consider the action of P0 × ⟨g⟩ on Op(N). By Lemma 3, we know that

COp(N)(P0) ⊆ P0 and then we can apply Thompson’s P × Q-Lemma (see for

instance [12, 4.31]) to obtain g ∈ CN (Op(N)). However, since N is p-solvable

and Op′(N) = 1, we have CN (Op(N)) ⊆ Op(N). This provides a contradiction,

so the proof is finished. �

Theorem 5. Suppose that N is a normal solvable subgroup of a group G

and suppose that m divides s for every s ∈ csG(N), s ̸= 1. If g ∈ N and |gG| = m,

then g ∈ F(N).

Proof. The hypotheses imply that |CG(x)| divides |CG(g)| for every x ∈
N \ Z(G), so by definition we have g ∈ Mp,G(N) for every prime p ∈ π(N).

If |π(N)| = 1, then N is nilpotent and the result is trivial, so we can assume

|π(N)| > 1. Let us consider the primary decomposition of g in N and we show

that if gq denotes the q-part of g, then gq ∈ Oq(N) for every prime q ∈ π(N).

The claim is trivial when gq ∈ Z(G), so we assume that gq ̸∈ Z(G). Since

CG(g) ⊆ CG(gq), then the equality of both centralizers holds by applying the
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hypotheses. Therefore, gq ∈ Mp,G(N) for every prime p ∈ π(N) and by applying

Lemma 4, we deduce that

gq ∈
∩
p̸=q

Op′(N) = Oq(N).

As a result, g ∈ F(N). �

The above theorem might be useful to determine the structure of normal

subgroups with three G-class sizes, as it happens in [8] when N = G. On the

other hand, in the proofs of Theorems A and B, we need an application of the

following result on coprime action (relying on the Classification of the Finite

Simple Groups), in order to obtain information on nonsolvable normal subgroups

whose G-class sizes are all divisible by some fixed integer.

Theorem 6. Suppose that A and G are finite groups such that A acts

coprimely on G. If CG(A) is nilpotent, then G is solvable.

Proof. This appears as Theorem B in [5]. �

Theorem 7. Suppose that N is a normal nonsolvable subgroup of a group

G and suppose that an integer m divides |xG| for every x ∈ N \ Z(N). Then m

divides |Z(N)|.

Proof. First, we claim that we can assume π(N) = π(N/Z(N)). If this

does not happen, then N can be factorized as a direct product N = N1×P , with

P a central Sylow subgroup of N and N1 normal in G. Then, if x ∈ N1 \ Z(N1),

it trivially follows that x ∈ N \Z(N) and since N1 is nonsolvable as well, we can

apply induction to get thatm divides |Z(N1)|, which clearly divides |Z(N)|. Thus,
the theorem is proved. Now, if r ∈ π(m) such that r ̸∈ π(N), we take R a Sylow

r-subgroup of G, which certainly acts coprimely on N . From the hypotheses,

we deduce that CN (R) ⊆ Z(N), and in particular, CN (R) is nilpotent, so by

Theorem 6, N would be solvable, a contradiction. Therefore, π(m) ⊆ π(N).

The fact that every element of N \ Z(N) has a G-class size divisible by m

provides the equation

|N | = |Z(N)|+mk, for some integer k,

which can be formulated as

|N/Z(N)| = 1 +mk/|Z(N)|.

Since for every q ∈ π(m) we have q ∈ π(N) = π(N/Z(N)), then mq divides

|Z(N)|q, so m divides |Z(N)|. �
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In dealing with normal subgroups which posses exactly two G-class sizes,

CP-groups appear naturally; these are those groups having all elements of prime-

power order. The same happens for normal subgroups having exactly two G-class

sizes of p-regular elements, for a prime p. We want to remark the usefulness of

the study of the p-regular class sizes to obtain information on ordinary classes

and the structure of a group. We will make use of the following results.

Theorem 8. Suppose that N is a normal subgroup of a group G and that

the size of any G-conjugacy class contained in N is 1 or m, for some integer m.

Then N is nilpotent.

Proof. This is exactly Theorem 8 of [3]. �

Theorem 9. If N is a normal subgroup of a group G having two G-conju-

gacy class sizes of p-regular elements, then either N has abelian p-complements

or all p-regular elements of N/(N ∩ Z(G)) have prime-power order.

Proof. This is Theorem 1 of [2]. �

The structure of finite solvable CP-groups was given by G. Higman fifty years

ago, and here we need the structure of nonsolvable CP-groups. This formerly

appeared in [4] within the framework of locally finite groups, and was given later

by H. Heineken together with the classification of the simple CP-groups.

Theorem 10. If G is a finite, nonsolvable CP-group, then there are normal

subgroups B, C of G such that 1 ⊆ B ⊆ C ⊆ G and B is a 2-group, C/B is

non-abelian and simple, and G/C is a p-group for some prime p and cyclic or

generalized quaternion.

Proof. This is the main part of Proposition 2 of [10]. �

Theorem 11. If G is a finite non-abelian simple CP-group, then G is iso-

morphic to one of the following groups: L2(q), for q = 5, 7, 8, 9, 17, L3(4), Sz(8)

or Sz(32).

Proof. This is Proposition 3 of [10]. �

3. Proofs of Theorems A and B

Proof of Theorem B. Suppose that csG(N) = {1,m, n} with 1 < m < n.

We observe that if m does not divide n then Theorem C of [1] implies that N

is solvable. Hence, as N is nonabelian, we have F(N/Z(N)) > 1 and the result
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follows. Therefore, for the rest of the proof we will assume that m divides n and

we will proceed by induction on the order of N .

Let K/Z(N) be a chief factor of G with K ≤ N . Notice that csG(K) ⊆
{1,m, n}. Moreover, if K is abelian, then Z(N) < K ≤ F(N), and the theorem

is proved. So, without loss we assume that K is nonabelian. On the other hand,

if K is properly contained in N , we can apply induction (appealing also to the

main result of [3], which establishes the nilpotency of those normal subgroups

with exactly two G-class sizes) to get Z(N) ≤ Z(K) < F(K) ≤ F(N) and the

theorem is proved too.

Thus, for the rest we assume K = N , that is, N/Z(N) is a chief factor of G

and we will provide a contradiction in this case. We have that N/Z(N) is a

direct product of isomorphic (nonabelian) simple groups, so we write N/Z(N) =

L1/Z(N) × . . . × Lk/Z(N), where the groups Li/Z(N) are nonabelian simple

and isomorphic. By Remak’s Lemma (see for instance [15, 8.9]) it is known that

the subgroups Li/Z(N) are the only minimal normal subgroups of N/Z(N), and

moreover, since this is a chief factor of G, we have that G acts transitively by

conjugacy on the Li’s. Let L/Z(N) be one of these simple factors, which in

particular is perfect and then L = L′Z(N) and L′ = L′′. Also, observe that

Z(L′) = Z(N) ∩ L′. We will make use of the quasisimple group L′ later.

Now we compute the class size in NG(L
′) of every element in L′ \ Z(L′). In

order to do this we will show first that if x ∈ L′ \ Z(L′) then CG(x) ⊆ NG(L
′).

Assume that there exists g ∈ CG(x) such that g ̸∈ NG(L
′), then L′ ̸= L′g

and L′ ∩ L′g ⊆ Z(N). This containment is deduced from the fact that the Li’s

are conjugate in G, and accordingly, the corresponding derived subgroups are

conjugate as well. Hence,

x = xg ∈ L′ ∩ L′g ⊆ Z(N) ∩ L′ = Z(L′),

which is a contradiction, as we wanted to prove. Therefore, for every x ∈ L′\Z(L′)

we have

|G : CG(x)| = |G : NG(L
′)| |NG(L

′) : CNG(L′)(x)|.

In particular, by applying the hypotheses of the theorem, every element in L′ \
Z(L′) satisfies that its class size in NG(L

′) is equal to m/t or n/t, where t = |G :

NG(L
′)|. We distinguish two possibilities: when there are classes of size m/t and

when there are not.

Assume first that there exists some element x ∈ L′ \ Z(L′) with |xG| = m,

which is the same to say that |xNG(L′)| = m/t. Let us consider the class size of

xZ(L′) in the factor group L′/Z(L′). This class size obviously divides |xL′ | and
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also, this divides |xNG(L′)| = m/t. On the other hand, we know by Theorem 7

that m/t divides |Z(L′)|, which divides the order of the Schur multiplier of the

simple group L′/Z(L′). We conclude then that the simple group L′/Z(L′) has a

conjugacy class whose size divides the order of its Schur multiplier. This cannot

happen by Lemma 1 and this case is finished.

Finally, assume that all elements in L′ \Z(L′) have class size n/t in NG(L
′).

By Theorem 7, we have that n/t divides |Z(L′)| and using the same argument in

the above paragraph we get a contradiction by appealing again to Lemma 1. �

Proof of Theorem A. We argue by induction on the order of N and di-

vide the proof into the following steps.

Step 1. We can assume that Oq(N) = Z(N)q for every prime q ∈ π(m).

Furthermore, F(N) = Op(N)× Z(N)p′ , with Op(N) > Z(N)p.

Suppose that there is a prime q ∈ π(m) such that Oq(N) > Z(N)q. Let

x ̸∈ Z(G) be an r-element of N for some prime r ̸= q and let Q be a Sylow

q-subgroup of CG(x). Notice that Q × ⟨x⟩ acts on Oq(N) and we show that

COq(N)(Q) ⊆ COq(N)(x). In fact, if z ∈ COq(N)(Q) is noncentral in G, then

⟨Q, z⟩ ⊆ CG(z). However, the hypotheses imply that |CG(z)|q = |CG(x)|q, so
z ∈ Q and consequently, z ∈ Q∩Oq(N) ⊆ COq(N)(x), as we wanted to prove. By

applying Thompson’s P ×Q-Lemma, we obtain x ∈ CN (Oq(N)). Therefore, we

have proved that |N : CN (Oq(N))| is a q-power, and on the other hand, notice

that CN (Oq(N)) is solvable by induction (and Theorem 8), so we conclude that

N is solvable too. The first statement of the step is proved.

Now, by Theorem B we can assume that there is a prime r dividing the

order of G such that Or(N) > Z(N)r. However, notice that r = p, otherwise, it

follows that r does not divide any class size in N , and thereby, N has a central

Sylow r-subgroup, and the theorem follows by induction. Therefore, F(N) =

Op(N)× Z(N)p′ .

Step 2. Every element in N of index m lies in F(N).

Let x ∈ N be an element of index m. Since p does not divide m, then CG(x)

contains some Sylow p-subgroup of G. In particular, Op(N) ⊆ CN (x), which

means that x ∈ CN (Op(N)) < N . By induction (and Theorem 8), this centralizer

is solvable, and by applying Theorem 5, we get x ∈ F(CN (Op(N))) ⊆ F(N).

Step 3. There are no π(m)-elements in N of index m. As a consequence, we

can assume that every p′-element of N/(Z(G) ∩ N)) has prime power order. In

particular, every p′-element of N/Z(N) has prime power order.

Suppose that w is a π(m)-element in N of index m. We can assume that
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w has prime power order by the maximality of its centralizer, say for instance,

that w is an r-element for some prime r ∈ π(m). By Step 2, we have w ∈ F(N),

so w ∈ Z(N) by Step 1. Now, we observe that any r′-element of N has index

1 or pa in CG(w). This is because if y is an r′-element of N , then CG(wy) =

CG(w) ∩CG(y) and hence

|G : CG(wy)| = |G : CG(w)| |CG(w) : CG(w) ∩CG(y)|.

In particular, the index in N of any r′-element of N (notice that N ⊆ CG(w))

is an r′-number as claimed, and by an elementary result (see for instance [6]), N

factorizes as a direct product of an r-group R and an r′-group H. Notice that

H EG, so by applying induction, H is solvable, whence N is solvable too.

Thus, we have just proved that any p′-element of N has index 1 or mpa in

G. By applying Theorem 9, either N has abelian p-complements (and thus N is

solvable) or every p′-element of N/(Z(G) ∩N)) has prime power order.

Step 4. N/F(N) is a CP-group.

Let z ∈ N such that z = zF(N) has composite order in N/F(N), so zZ(N)

is also a composite element in N/Z(N). By Step 3, there exists only one prime

q ̸= p such that zZ(N) is a {p, q}-element. This means that when we consider

the primary decomposition of z, then the p-part and the q-part of z, say zp and

zq, are the only factors that do not belong to Z(N). Since q divides m, by Step 3

we have that zq has index mpa. Therefore, CG(z) = CG(zq) ⊆ CG(zp) and two

possibilities arise. Suppose first that CG(zq) = CG(zp). Then, by Thompson’s

P × Q-Lemma, we obtain zq ∈ T := CN (Op(N)). Now, the normal subgroup

T is solvable by induction (and Theorem 8). Notice that Op(T ) ⊆ Op(N), so

in particular zq ∈ CN (Op(T )). Since F(T ) ⊆ F(N) = Op(N) × Z(N)p′ , we

have zq ∈ CT (F(T )) ⊆ F(T ) because T is solvable, and this implies that z̄ is

a p-element, a contradiction. The other case is when CG(zq) < CG(zp), which

forces that zp has index m. By Step 2, zp ∈ F(N) and thus, z̄ has q-order, a

contradiction too.

Step 5. Conclusion

We work by contradiction and it is assumed that N is nonsolvable. By

applying Theorem 10 to N/F(N) and taking into account that N is a perfect

group (otherwise, by inductionN ′ would be solvable), just one of the two following

possibilities occurs:

i) O2(N/F(N)) > 1 and (N/F(N))/O2(N/F(N)) is simple. Let M/F(N) :=

O2(N/F(N)). We can assume that p ̸= 2, since if p = 2, then by Step 1

M = F(N), a contradiction. Thereby, we can take S a Sylow s-subgroup of
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N , for some prime s ∈ π(N/F(N)) distinct from p and 2, and we notice that

S acts coprimely on M/Z(N). By coprime action properties, there exists a Sy-

low 2-subgroup of M/Z(N), say T/Z(N), such that S/Z(N)s acts coprimely on

T/Z(N). Furthermore, as every p′-element of N/F(N) has prime power order by

Step 3, then the above action is fixed point free. Then, as s is odd, S/Z(N)s must

be cyclic, and so S is abelian. We can apply Taunt’s theorem (see for instance [11,

17.7]) in these cases so as to obtain that s does not divide |N ′ ∩Z(N)| = |Z(N)|.
On the other hand, note that s divides m; otherwise, s does not divide any class

size of N and consequently, N would have a central Sylow s-subgroup, which is

not possible. As we know by Theorem 7 that m divides |Z(N)|, this provides a

contradiction.

ii) N/F(N) is a simple CP-group, so it is isomorphic to one of the groups

listed in Theorem 11. Note that all of them except just one, L2(9) ∼= A6 (the

alternating group of degree 6), have cyclic Sylow r-subgroups and s-subgroups

for two distinct odd primes r and s. In particular, they posses cyclic Sylow r-

subgroups for a prime r ̸= p, and by applying Taunt’s theorem again, we can

get a contradiction. Therefore, there is only one simple group to study left: A6.

Recall that the Sylow 5-subgroups of A6 are cyclic, while its Sylow 2-subgroups

and 3-subgroups are not. This implies that we can assume p = 5, since otherwise,

by using the same argument we get a contradiction.

Finally, let us assume that N/F(N) ∼= A6 and p = 5, and let us consider the

factor group N/O5(N). Note that by Step 1

F(N)/O5(N) ⊆ Z(N/O5(N)) ⊆ N/O5(N)

and

N/O5(N)

F(N)/O5(N)
∼= N/F(N),

which is simple. Then Z(N/O5(N)) = F(N)/O5(N) ∼= Z(N)5′ . As N is perfect,

we have that N/O5(N) is a quasisimple group (with associated simple group A6).

Then the order of its center, that is, |Z(N)5′ | must divide the order of the Schur

multiplier of A6, which is 6. On the other hand, from the fact that every class

size of N/F(N) (which are {1, 40, 45, 72, 90}) divides some class size of N , and

consequently, divides 5am, we deduce that 360 divides 5am. So, in particular, 72

divides m. However, by Theorem 7 we know that m divides |Z(N)| and this leads

to a contradiction. �
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