Publ. Math. Debrecen
45 /1-2 (1994), 187-203

On generalized metric spaces and their associated Finsler spaces I. Fundamental relations

By TOSHIO SAKAGUCHI (Yokosuka), HIDEO IZUMI (Fujisawa) and MAMORU YOSHIDA (Fujisawa)

Dedicated to Professor Lajos Tamássy on his 70th birthday

§0. Introduction

In a previous paper [3], we have investigated a generalized metric space $M_{n}=\left(M_{T}, g_{i j}(x, y)\right)$. Here let us consider the Finsler space $F_{n}^{*}(g)=$ $\left(M_{T}, F(x, y)\right)$ associated with M_{n}, where its Finsler metric is given by $F(x, y):=\sqrt{g_{i j} y^{i} y^{j}}$.

It is noticed that the metric tensor $g_{i j}(x, y)$ used here is positively homogeneous of degree 0 in y. Sometimes a generalized metric space $M_{n}=\left(M_{T}, g_{i j}(x, y)\right)$ was considered under the supposition that the metric $g_{i j}$ is (a) p-homogeneous, (b) non-homogeneous and (c) irrespective of homogeneity. On the other hand, H. Rund [9] showed, in his book: The Hamilton-Jacobi theory in the calculus of variations, that the case (a) corresponds to Metric Differential Geometry and Relativistic Mechanics and (b) to Geometrical Optics and Non-relativistic Mechanics. So, in the sequel, we shall call M_{n}, for (a) a generalized metric space ([3], [4], [5], [15]), (b) a generalized Lagrange space ([7]) and (c) a generalized Finsler space ([1], [2], [6], [12], [13], [14]).

The geometry of a generalized metric space M_{n} is closely related to that of $F_{n}^{*}(g)$. However, its geometry is in contrast with that of (ordinary) Finsler space $F_{n}:=\left(M_{T}, F(x, y)\right)$. That is, there exist two characteristic tensors $C_{i j}$ and $P^{i}{ }_{j}$. For a given metric tensor $g_{i j}$ in M_{n}, the metric tensor $g^{*}{ }_{i j}$ of its associated Finsler space $F_{n}^{*}(g)$ is related as

$$
\begin{equation*}
g^{*}{ }_{i j}=g_{i j}+C_{i j}, \quad C_{i j}:=y^{h} \dot{\partial}_{j} g_{i h} \quad([3],(2.8)(b)) \tag{0.1}
\end{equation*}
$$

where the tensor $C_{i j}$ satisfies $C_{i j}=C_{i}{ }^{0}{ }_{j}$ and $C_{i j}=C_{j i}([3],(2.9))$. Vanishing of the tensor $C_{i j}$ means that the M_{n} itself reduces to a Finsler space.

To determine the non-linear connection N, we assume that geodesics in M_{n} are coincident with those in $F_{n}^{*}(g)$, that is,
(A0) $\quad 2 G^{i}=N_{j}^{i} y^{j}$.
Therefore another characteristic tensor $P^{i}{ }_{k}$ satisfies the following relations:

$$
\begin{equation*}
N_{k}^{i}=G_{k}^{i}-P_{k}^{i}, \quad P_{0}^{i}=0, \quad C_{i j / 0}=2 g^{*}{ }_{i h} P_{j}^{h}, \quad([3],(2.16)(f)), \tag{0.2}
\end{equation*}
$$

where G_{j}^{i} is a unique non-linear connection of $F_{n}^{*}(g)$ and N_{k}^{i} is an arbitrary non-linear connection in M_{n}. (0.2) shows that the arbitrary tensor $P^{i}{ }_{k}$ has disappeared in Finsler geometry. The fact that some differential equation does not contain the tensor $P^{i}{ }_{j}$ explicitly, implies that the geometrical property described by this equation is free from any choice of the nonlinear connection.

However, examples of a generalized metric space are very few. Let us consider the following metric in an M_{n} :

$$
\begin{equation*}
g_{i j}(x, y)=a_{i j}(x)-\alpha(x, y) h_{i j}(x, y), \quad C_{i j}=\alpha h_{i j} \quad(\mathrm{cf.}[5]) \tag{0.3}
\end{equation*}
$$

where the tensor $a_{i j}(x)$ is a Riemannian metric. This metric defines a generalized metric space M_{n} which is not a Finsler space and its associated Finsler space is a Riemannian space (cf. §3).

It is well known that in a Finsler space $F_{n}^{*}(g)$ we can define three types of connection: $\left[C^{*}\right],\left[R^{*}\right]$ and $\left[B^{*}\right]$ (cf. §2) in a natural way. On the other hand, in a space $M_{n}([3])$ we defined three types of connection: $[C],[R]$ and $[B]$ (cf. §1). However, the connection $[B]$ in M_{n} and the connection $\left[B^{*}\right]$ in $F_{n}^{*}(g)$ are coincident. In a same underlying space M_{T}, we can consider five connections: $[C],[R],[B],\left[C^{*}\right]$ and $\left[R^{*}\right]$ originating from only one structure: the metric tensor $g_{i j}(x, y)$.

One of the purposes of the present paper is to find the relations between $[C]$ in a space M_{n} and $\left[C^{*}\right]$ in a space $F_{n}^{*}(g)$. In virtue of these equations, the properties of M_{n} are investigated by means of well-known theorems in a Finsler space $F_{n}^{*}(g)$, which suggest some properties in M_{n}. As we see, the tensor $C_{i j}$ holds a key to investigate the geometry of spaces M_{n}. Especially, the most important fact is that the connection parameters $F_{j}{ }^{i}{ }_{k}$ of $[C]$ and ${ }^{*} \Gamma_{j}{ }^{i}{ }_{k}$ of $\left[C^{*}\right]$ are coincident if and only if $C_{i j / k}=0$ (Theorem 2.4).

Roughly speaking, if a generalized metric space M_{n} itself is a Finsler-, a Riemannian- or a g-Minkowski space, then its associated Finsler space $F_{n}^{*}(g)$ preserves this property. Our interest is in the inverse problem.
$\S 1$ is the summary of results obtained in $M_{n} . \S 2$ is devoted to deriving the relations between $[C]$ and $\left[C^{*}\right]$ in terms of the tensors in M_{n}. In $\S \S 3$, 4, we investigate a generalized metric space whose associated Finsler space is a Riemannian or a Minkowski space. We shall show that
[A] If an $R M_{n}$ space satisfies the condition $C_{i j / k}=0$, then the space M_{n} is a g-Berwald space (Theorem 3.7).
[B] A necessary and sufficient condition for a space M_{n} to be a g-Minkowski space is that the curvature tensors $K_{h}{ }^{i}{ }_{j k}$ and $F_{h}{ }^{i}{ }_{j k}$ vanish (Theorem 4.1).
[C] A necessary and sufficient condition for a space M_{n} to be an $M M_{n}$ space is that the curvature tensors $H_{h}{ }^{i}{ }_{j k}$ and $G_{h}{ }^{i}{ }_{j k}$ vanish (Theorem 4.2). [D] If an $M M_{n}$ space satisfies the condition $C_{i j / k}=0$, then the space is a g-Minkowski space (Theorem 4.4).

We raise or lower the indices by means of $g_{i j}$ only without comment.

\S 1. Preliminaries in M_{n}

The purpose of this section is to summarize the connections in M_{n}.

1.1. Assumptions on the metric tensor $g_{i j}(x, y)$.

Let M be an n-dimensional manifold of class C^{∞} with local coordinates $\left(x^{i}\right)$ and $T(M)$ its tangent vector bundle with local coordinates $\left(x^{i}, y^{i}\right)$. Let us denote by M_{T} a manifold of non-vanishing tangent vectors: $M_{T}:=T(M)-\{0\}$. A generalized metric space is a pair $M_{n}=\left(M_{T}, g_{i j}(x, y)\right)$, where the metric tensor $g_{i j}$ satisfies the following conditions:
(A1) $g_{i j}(x, y)$ is positively homogeneous of degree 0 in y,
(A2) $g_{i j} X^{i} X^{j}$ is positive definite,
(A3) $g^{*}{ }_{i j}:=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} F^{2}$ is non-degenerate, where $F(x, y)=\sqrt{g_{i j} y^{i} y^{j}}$ and $\dot{\partial}_{j}:=\partial / \partial y^{j}$.
From conditions (A2) and (A3) a pair $F_{n}^{*}(g)=\left(M_{T}, F(x, y)\right)$ is a Finsler space (called the associated Finsler space of M_{n}). In [3], we introduced the following three types of connection:
$[C]$ the metrical connection $C \Gamma(N): \omega_{j}^{i}=F_{j}{ }^{i}{ }_{k} d x^{k}+C_{j}{ }^{i}{ }_{k} \delta y^{k} ; \delta y^{k}=d y^{k}+$ $N_{h}^{k} d x^{h}$ such that $\delta g_{i j}=d g_{i j}-\omega_{i}^{h} g_{h j}-\omega_{j}^{h} g_{i h}=g_{i j / k} d x^{k}+g_{i j /(k)} \delta y^{k}=0$, where

$$
\begin{array}{ll}
g_{i j / k}:=d_{k} g_{i j}-F_{i}{ }^{h}{ }_{k} g_{h j}-F_{j}{ }^{h}{ }_{k} g_{i h}=0, & d_{k}:=\partial_{k}-N_{k}^{r} \dot{\partial}_{r}, \\
g_{i j /(k)}:=g_{i j(k)}-C_{i}{ }^{h}{ }_{k} g_{h j}-C_{j}{ }^{h}{ }_{k} g_{i h}=0, & g_{i j(k)}:=\dot{\partial}_{k} g_{i j},
\end{array}
$$

and satisfies the following conditions:
(A4)
(a) $N_{k}^{i}=F_{j}{ }^{i}{ }_{k} y^{j}$,
(b) $F_{j}{ }^{i}{ }_{k}=F_{k}{ }^{i}{ }_{j}$,
(c) $C_{j}{ }^{i}{ }_{k}=C_{k}{ }^{i}{ }_{j}$.
$[R]$ the h-metrical connection $R \Gamma(N): \omega_{j}^{i}=F_{j}{ }^{i}{ }_{k} d x^{k}$ so that $g_{i j / k}=0$.
$[B]$ the non-metrical connection $B \Gamma(G): \omega_{j}^{i}=G_{j}{ }^{i}{ }_{k} d x^{k} ; \quad G_{j}{ }^{i}{ }_{k}:=\dot{\partial}_{k} G_{j}^{i}$, where

$$
\begin{aligned}
G_{j}^{i} & :=\dot{\partial}_{j} G^{i}, \quad 4 G^{i}:=g^{* i h}\left(y^{j} \partial_{j} \dot{\partial}_{h} F^{2}-\partial_{h} F^{2}\right), \\
\partial_{h} & =\partial / \partial x^{h}, \quad g^{* i h} g^{*}{ }_{h j}=\delta_{j}^{i} .
\end{aligned}
$$

It is evident that $[B]$ in M_{n} is coincident with $\left[B^{*}\right]$ in $F_{n}^{*}(g)$. However, the general non-linear connection N_{j}^{i} of $[C]$ satisfies (A0) $N_{j}^{i} y^{j}=2 G^{i}$ implicitly. So differentiating this equation, we have

$$
\begin{equation*}
N_{j}^{i}=G_{j}^{i}-P_{j}^{i}, \quad P_{j}^{i}:=\frac{1}{2}\left(y^{h} \dot{\partial}_{j} N_{h}^{i}-N_{j}^{i}\right), \quad P_{0}^{i}:=P^{i}{ }_{j} y^{j}=0, \tag{1.1}
\end{equation*}
$$

where the index 0 means the transvection with y.
The conditions (A1) and (A4)(c) give
(a) $g^{*}{ }_{i j}=g_{i j}+C_{i j}, \quad C_{i j}:=y^{h} \dot{\partial}_{j} g_{i h}=C_{j i} \quad([3],(2.8))$,
(b) $C_{0}{ }^{i}{ }_{k}=C_{j}{ }^{i}{ }_{0}=0$,
(c) $\quad C_{0}{ }^{0}{ }_{k}=\frac{1}{2} g_{h j(k)} y^{h} y^{j}=0$
$([3],(2.3),(2.6))$.
The connection parameters for $C \Gamma(N)$ are given by

$$
\begin{align*}
F_{j}{ }^{i}{ }_{k} & =\frac{1}{2} g^{i h}\left(d_{k} g_{h j}+d_{j} g_{h k}-d_{h} g_{j k}\right), \\
C_{j}{ }^{i}{ }_{k} & =\frac{1}{2} g^{i h}\left(g_{h j(k)}+g_{h k(j)}-g_{j k(h)}\right), \quad C_{i}{ }^{0}{ }_{j}=C_{i j} . \tag{1.3}
\end{align*}
$$

Then we have

$$
\begin{align*}
& \text { (a) } y_{j}=g_{i j} y^{i}=g^{*}{ }_{i j} y^{i}, \quad y^{i}=g^{* i h} y_{h}, \quad y^{i}{ }_{(j)}=y^{i} /(j)=\delta_{j}^{i}, \tag{1.4}\\
& \text { (b) } y_{i(j)}=g^{*}{ }_{i j}, \quad y_{i /(j)}=g_{i j}, \quad y_{i / j}=0 .
\end{align*}
$$

Remark. The homogeneous condition (A1) implies that if there exists a coordinate system such that the metric $g_{i j}$ is expressed by $g_{i j}=$ $e^{2 \sigma(x, y)} a_{i j}(x)([6],[14])$, then the metric itself is Riemannian. In fact, because the scalar $\sigma(x, y)$ must be p-homogeneous of degree 0 in y, the relation $C_{i j}=C_{j i}$ gives $y_{i} \sigma_{(j)}=y_{j} \sigma_{(i)}$. This means $\sigma_{(i)}=0$.

1.2. The curvature and torsion tensors.

For curvature and torsion forms, we defined in [3] as follows:

$$
\begin{align*}
& \text { (a) } \Omega_{j}^{i}:=\left[d \omega_{j}^{i}\right]+\left[\omega_{h}^{i} \omega_{j}^{h}\right] \\
& \text { (b) } \Omega^{(i)}:=\left[\delta \delta y^{i}\right]=\left[d \delta y^{i}\right]+\left[\omega_{h}^{i} \delta y^{h}\right]=\Omega_{0}^{i}, \tag{1.5}\\
& \text { (c) } \Omega^{i}:=\left[\delta d x^{i}\right]=\left[d d x^{i}\right]+\left[\omega_{h}^{i} d x^{h}\right] .
\end{align*}
$$

We shall denote

$$
\begin{aligned}
{[C] \quad C \Gamma(N): } & \Omega_{j}^{i}=-\frac{1}{2} R_{j}{ }^{i}{ }_{k l}[k, l]-P_{j}{ }^{i}{ }_{k l}[k,(l)]-\frac{1}{2} S_{j}{ }^{i}{ }_{k l}[(k),(l)], \\
& \Omega^{(i)}=-\frac{1}{2} R^{i}{ }_{k l}[k, l]-P^{i}{ }_{k l}[k,(l)], \quad \Omega^{i}=-C_{j}{ }^{i}{ }_{k}[j,(k)] ; \\
{[R] \quad R \Gamma(N): } & \Omega_{j}^{i}=-\frac{1}{2} K_{j}{ }^{i}{ }_{k l}[k, l]-F_{j}{ }^{i}{ }_{k l}[k,(l)], \\
& \Omega^{(i)}=-\frac{1}{2} R^{i}{ }_{k l}[k, l]-P^{i}{ }_{k l}[k,(l)], \quad \Omega^{i}=0 ; \\
{[B] \quad B \Gamma(G): } & \Omega_{j}^{i}=-\frac{1}{2} H_{j}{ }^{i}{ }_{k l}[k, l]-G_{j}{ }^{i}{ }_{k l}\left[k,(l)^{*}\right] \\
& \Omega^{(i)}=-\frac{1}{2} H^{i}{ }_{k l}[k, l], \quad \Omega^{i}=0
\end{aligned}
$$

where $[k, l]:=\left[d x^{k}, d x^{l}\right],[k,(l)]:=\left[d x^{k}, \delta y^{l}\right],[(k),(l)]:=\left[\delta y^{k}, \delta y^{l}\right]$ and $\left[k,(l)^{*}\right]:=\left[d x^{k}, \delta^{*} y^{l}\right]=\left[d x^{k}, \delta y^{l}+P^{l}{ }_{h} d x^{h}\right]=[k,(l)]+P^{l}{ }_{h}[k, h]$.

The covariant derivatives for a vector $v^{i}(x, y)$ with respect to x^{k} and y^{k} are defined as follows:

$$
\begin{array}{rlrl}
v^{i} / k:=d_{k} v^{i}+F_{j}{ }^{i}{ }_{k} v^{j}, & v^{i}{ }_{/(k)}:=v^{i}{ }_{(k)}+C_{j}{ }^{i}{ }_{k} v^{j} & & \text { for }[\mathrm{C}],[\mathrm{R}], \\
v^{i}{ }_{/ / k}:=\bar{d}_{k} v^{i}+G_{j}{ }^{i}{ }_{k} v^{j}, & v^{i}{ }_{(k)}:=\dot{\partial}_{k} v^{i} & \text { for }[\mathrm{B}],
\end{array}
$$

where $\bar{d}_{k}:=\partial_{k}-G_{k}^{h} \dot{\partial}_{h}=d_{k}-P^{h}{ }_{k} \dot{\partial}_{h}$.
We shall list the identities for curvature and torsion tensors in M_{n} :
(a) $C_{0 j}=C_{i 0}=0$, $P_{0}^{i}=P_{k}^{0}=0$,
(b) $g_{i j(k)}=C_{i j k}+C_{j i k}$,
(c) $P^{i}{ }_{0 k}=2 P^{i}{ }_{k}$
([3], Proposition 2.6),
(a) $R_{h}{ }^{i}{ }_{j k}=K_{h}{ }^{i}{ }_{j k}+C_{h}{ }^{i}{ }_{r} R^{r}{ }_{j k}, \quad F_{h}{ }^{i}{ }_{j k}:=\dot{\partial}_{k} F_{h}{ }^{i}{ }_{j}$, $P_{h}{ }^{i}{ }_{j k}=F_{h}{ }^{i}{ }_{j k}-C_{h}{ }^{i}{ }_{k / j}+C_{h}{ }^{i}{ }_{m} P^{m}{ }_{j k}, \quad P^{i}{ }_{j k}=N_{j(k)}^{i}-F_{k}{ }^{i}{ }_{j}$,
(b) $R_{0}{ }^{i}{ }_{j k}=K_{0}{ }^{i}{ }_{j k}=R^{i}{ }_{j k}, \quad H_{0}{ }^{i}{ }_{j k}=H^{i}{ }_{j k}$, $P_{0}{ }^{i}{ }_{j k}=F_{0}{ }^{i}{ }_{j k}=F_{j}{ }^{i}{ }_{0 k}=P^{i}{ }_{j k}, \quad S_{0}{ }^{i}{ }_{j k}=0$,
(c) $\quad R^{0}{ }_{j k}=0, \quad P^{0}{ }_{j k}=0, \quad P^{i}{ }_{j 0}=0, \quad H^{0}{ }_{j k}=0$,
(d) $\quad R_{h}{ }^{0}{ }_{j k}=-g_{h r} R^{r}{ }_{j k}, \quad K_{h}{ }^{0}{ }_{j k}=-g^{*}{ }_{h r} R^{r}{ }_{j k}$, $H_{h}{ }^{0}{ }_{j k}=-g^{*}{ }_{h r} H^{r}{ }_{j k}, \quad F_{h}{ }^{0}{ }_{j k}=C_{h k / j}-g^{*}{ }_{h r} P^{r}{ }_{j k}$, $S_{h}{ }^{0}{ }_{j k}=C_{h j(k)}+C_{h j k}-j \mid k=0$,
(a) $\quad R_{h i j k}+R_{i h j k}=0, \quad P_{h i j k}+P_{i h j k}=0, \quad S_{h i j k}+S_{i h j k}=0$,
(b) $K_{h i j k}+K_{i h j k}=-g_{h i(r)} R^{r}{ }_{j k}$,
(c) $F_{h i j k}+F_{i h j k}=g_{h i(k) / j}-g_{h i(r)} P^{r}{ }_{j k}$,
(a) $C_{h j / k}-C_{h k / j}=g^{*}{ }_{j r} P^{r}{ }_{k h}-g^{*}{ }_{k r} P^{r}{ }_{j h}$,
(b) $g_{h i(k) / 0}=g_{i r} P^{r}{ }_{h k}+g_{h r} P^{r}{ }_{i k}+2 g_{h i(r)} P^{r}{ }_{k}$,
(c) $C_{j k / 0}=2 g^{*}{ }_{j r} P^{r}{ }_{k}=g^{*}{ }_{j r} P^{r}{ }_{k}+g^{*}{ }_{k r} P^{r}{ }_{j}$,
(a) $H^{i}{ }_{j k(h)}=H_{h}{ }^{i}{ }_{j k}$,
(b) $H^{i}{ }_{k(j)}-j \mid k=3 H^{i}{ }_{j k}, \quad H^{i}{ }_{k}:=H^{i}{ }_{0 k}$,
(c) $\quad H_{h j}:=H_{h}{ }^{i}{ }_{j i}=H_{j(h)}, \quad H_{j}:=H^{i}{ }_{j i}$,
where $j \mid k$ means the interchange of the indices j, k in the foregoing terms.
1.3. Relations between [C] and [B]; Difference tensor $D_{j}{ }^{i}{ }_{k}$.

It is easily seen that for a vector v^{i} we find
$v^{i}{ }_{/ / k}=\bar{d}_{k} v^{i}+G_{h}{ }^{i}{ }_{k} v^{h}=v^{i}{ }_{/ k}+D_{h}{ }^{i}{ }_{k} v^{h}-P^{h}{ }_{k} v^{i}{ }_{(h)}, \quad D_{h}{ }^{i}{ }_{k}:=G_{h}{ }^{i}{ }_{k}-F_{h}{ }^{i}{ }_{k}$.
Hence we have for the metric tensor $g_{i j}$
(a) $g_{i j / / k}=-D_{i}{ }^{h}{ }_{k} g_{h j}-D_{j}{ }^{h}{ }_{k} g_{i h}-P^{h}{ }_{k} g_{i j(h)}$,
(b) $-2 D_{j}{ }^{i}{ }_{k}=g^{i h}\left(g_{h j / / k}+g_{h k / / j}-g_{j k / / h}+g_{h j(r)} P^{r}{ }_{k}\right.$ $\left.+g_{h k(r)} P^{r}{ }_{j}-g_{j k(r)} P^{r}{ }_{h}\right)$,
(c) $g_{i j / / 0}=-g_{i h} P^{h}{ }_{j}-g_{j h} P^{h}{ }_{i}$.

Proposition 1.1 ([3], Proposition 3.1). The difference tensor $D_{j}{ }^{i}{ }_{k}$ is expressed by

$$
\begin{equation*}
D_{j}{ }^{i}{ }_{k}=P_{j k}^{i}+P_{j(k)}^{i}=D_{k}{ }_{j}{ }_{j}, \tag{1.13}
\end{equation*}
$$

and satisfies the following relations:

$$
\begin{align*}
& \text { (a) } D_{0}{ }^{i}{ }_{k}=P^{i}{ }_{k}, \quad \text { (b) } \quad D_{j}{ }^{0}{ }_{k}=-g^{*}{ }_{j h} P^{h}{ }_{k}, \tag{1.14}\\
& \text { (c) } D_{j}{ }^{i}{ }_{k(l)}=G_{j}{ }^{i}{ }_{k l}-F_{j}{ }^{i}{ }_{k l}, \quad \text { (d) } \quad D_{j}{ }^{i}{ }_{k(l)} y^{j}=-P_{k l}^{i} .
\end{align*}
$$

The following relations are known:

$$
\begin{equation*}
y^{i} / / k=0, \quad y_{j / / k}=0 \tag{1.15}
\end{equation*}
$$

(a) $H_{h i j k}+H_{i h j k}=-g_{h i / / j / / k}+g_{h i / / k / / j}-g_{h i(r)} H^{r}{ }_{j k}$,
(b) $G_{h}{ }^{0}{ }_{j k}=g^{*}{ }_{h j / / k}=g_{h j / / k}+C_{h j / / k}$,
(c) $\quad G_{h i j k}+G_{i h j k}=-g_{h i / / j(k)}+g_{h i(k) / / j}$,
(a) $H_{h}{ }^{i}{ }_{j k}=K_{h}{ }^{i}{ }_{j k}+E_{h}{ }^{i}{ }_{j k}$,

$$
\begin{equation*}
E_{h}{ }^{i}{ }_{j k}:=D_{h}{ }^{i}{ }_{j / k}+D_{h}{ }^{r}{ }_{j} D_{r}{ }^{i}{ }_{k}-G_{h}{ }^{i}{ }_{j r} P^{r}{ }_{k}-j \mid k, \tag{1.17}
\end{equation*}
$$

(b) $\quad E^{i}{ }_{j k}:=E_{0}{ }^{i}{ }_{j k}=H^{i}{ }_{j k}-R^{i}{ }_{j k}=P^{i}{ }_{j / k}+P^{r}{ }_{j} D_{r}{ }^{i}{ }_{k}-j \mid k$.

1.4. Projection to the indicatrix.

Let us denote by $\mathrm{p} \cdot T$ the projection of a tensor T to the indicatrix, e.g., for a tensor $T^{i}{ }_{j}$, we shall define $\mathrm{p} \cdot T^{i}{ }_{j}:=h_{a}^{i} T^{a}{ }_{b} h_{j}^{b}$. If $\mathrm{p} \cdot T=T$ holds, then the tensor T is called an indicatric tensor. For example, as the torsion vector $C_{j}:=C_{j}{ }^{k}{ }_{k}$ is p-homogeneous of degree -1 , we find

$$
\begin{equation*}
F \mathrm{p} \cdot C_{j /(k)}=F h_{j}^{a} h_{k}^{b} C_{a /(b)}=F C_{j /(k)}+l_{j} C_{k}+l_{k} C_{j} \tag{1.18}
\end{equation*}
$$

Proposition 1.2 (cf. [10], (3.18)). Let $K(x, y)$ be a scalar, p-homogeneous of degree 0 in y, and put $K_{j}:=F K_{(j)}, K_{j k}=K_{k j}:=F \mathrm{p} \cdot K_{j(k)}$ and $K_{h j k}:=F \mathrm{p} \cdot K_{j k(h)}$. Then we have

$$
\begin{equation*}
K_{h j k}+K_{h} h_{j k}^{*}-h \mid j=0, \quad h^{*}{ }_{j k}=h_{j k}+C_{j k} \tag{1.19}
\end{equation*}
$$

Therefore the scalar K is independent of y if $K_{j}=0$ or $K_{j k}=0$ holds.

$\S 2$. The associated Finsler space $F_{n}^{*}(g)$ of M_{n}

In this section, we shall find the relations in which the connections and curvature and torsion tensors of $F_{n}^{*}(g)$ are expressed in terms of M_{n}.

2.1. Connection parameters of $\left[C^{*}\right]$ and $[C]$.

As usual, we can define the connections in $F_{n}^{*}(g)$.
$\left[C^{*}\right]$ the metrical connection $C F^{*}(G): \omega^{* i}{ }_{j}:={ }^{*} \Gamma_{j}{ }^{i}{ }_{k} d x^{k}+C^{*}{ }_{j}{ }^{i}{ }_{k} \delta^{*} y^{k}$,
$\delta^{*} y^{k}:=\delta y^{k}+P^{k}{ }_{h} d x^{h}$ such that $\delta^{*} g^{*}{ }_{i j}=0$,
${ }^{*} \Gamma_{j}{ }^{i}{ }_{k}={ }^{*} \Gamma_{k}{ }_{k}{ }_{j}, \quad C^{*}{ }_{j}{ }^{i}{ }_{k}=\frac{1}{2} g^{* i h} g^{*}{ }_{h j}(k)$.
[R^{*}] the h-metrical connection $R F^{*}(G): \omega_{j}^{* i}:={ }^{*} \Gamma_{j}{ }^{i}{ }_{k} d x^{k}, \quad g^{*}{ }_{i j}{ }^{*} k=0$.
Let us put

$$
\omega^{* i}{ }_{j}=\omega_{j}^{i}+t_{j}^{i}, \quad t_{j}^{i}:=A_{j}{ }^{i}{ }_{k} d x^{k}+B_{j}{ }^{i}{ }_{k} \delta y^{k} .
$$

Accordingly we have

$$
\begin{equation*}
\text { (a) }{ }^{*} \Gamma_{j}{ }^{i}{ }_{k}=F_{j}{ }^{i}{ }_{k}+A_{j}{ }^{i}{ }_{k}-C^{*}{ }_{j}{ }^{i}{ }_{h} P^{h}{ }_{k}, \quad \text { (b) } \quad C^{*}{ }_{j}{ }^{i}{ }_{k}=C_{j}{ }^{i}{ }_{k}+B_{j}{ }^{i}{ }_{k}, \tag{2.1}
\end{equation*}
$$

and using the symmetric property of ${ }^{*} \Gamma_{j}{ }^{i}{ }_{k}, F_{j}{ }^{i} k, C^{*}{ }_{j}{ }^{i}{ }_{k}$ and $C_{j}{ }^{i}{ }_{k}$, we see

$$
\begin{align*}
& A_{j}{ }^{i}{ }_{k}+A_{k}{ }^{i}{ }_{j}=2\left({ }^{*} \Gamma_{j}{ }^{i}{ }_{k}-F_{j}{ }^{i}{ }_{k}\right)+C^{*}{ }_{j}{ }^{i}{ }_{h} P^{h}{ }_{k}+C^{*}{ }_{k}{ }^{i}{ }_{h} P^{h}{ }_{j}, \tag{2.2}\\
& A_{j}{ }^{i}{ }_{k}-A_{k}{ }^{i}{ }_{j}=C^{*}{ }_{j}{ }^{i}{ }_{h} P^{h}{ }_{k}-C^{*}{ }_{k}{ }^{i}{ }_{h} P^{h}{ }_{j}, \quad B_{j}{ }^{i}{ }_{k}=B_{k}{ }^{i}{ }_{j} .
\end{align*}
$$

To determine the tensors $A_{j}{ }^{i}{ }_{k}$ and $B_{j}{ }^{i}{ }_{k}$, we give
Lemma 2.1. The form t_{j}^{i} satisfies the following relation:

$$
\begin{equation*}
\delta C_{i j}=t_{i}^{h} g^{*}{ }_{h j}+t_{j}^{h} g^{*}{ }_{h i} \tag{2.3}
\end{equation*}
$$

Proof. Because both connections are metrical, we see

$$
\begin{aligned}
0=\delta^{*} g^{*}{ }_{i j} & =d g^{*}{ }_{i j}-\omega_{i}^{*} g^{*}{ }_{h j}-\omega_{j}^{* h} g^{*}{ }_{h i} \\
& =d g_{i j}+d C_{i j}-\left(\omega_{i}^{h}+t_{i}^{h}\right)\left(g_{h j}+C_{h j}\right)-\left(\omega_{j}^{h}+t_{j}^{h}\right)\left(g_{h i}+C_{h i}\right) \\
& =\delta g_{i j}+\delta C_{i j}-t_{i}^{h} g^{*}{ }_{h j}-t_{j}^{h} g^{*}{ }_{h i} .
\end{aligned}
$$

Hence the condition $\delta g_{i j}=0$ gives (2.3).
From (2.3) we see

$$
\begin{equation*}
C_{i j / k}=A_{i}{ }_{k}{ }_{k} g^{*}{ }_{h j}+{A_{j}}^{h}{ }_{k} g^{*}{ }_{h i}, \quad C_{i j /(k)}={B_{i}}^{h}{ }_{k} g^{*}{ }_{h j}+B_{j}{ }^{h}{ }_{k} g^{*}{ }_{h i} \tag{2.4}
\end{equation*}
$$

Now, applying the Christoffel process to (2.4) and using (2.2), we obtain

Proposition 2.2. Two tensors $A_{j}{ }^{i}{ }_{k}$ and $B_{j}{ }^{i}{ }_{k}$ are given by
(a) $\quad A_{j}{ }^{i}{ }_{k}=\frac{1}{2} g^{* i h}\left(C_{h j / k}+C_{h k / j}-C_{j k / h}\right)-C^{*}{ }_{k}{ }^{i}{ }_{r} P^{r}{ }_{j}+g^{* i h} C^{*}{ }_{j k r} P^{r}{ }_{h}$,
(b) $\quad B_{j}{ }^{i}{ }_{k}=\frac{1}{2} g^{* i h}\left(C_{h j /(k)}+C_{h k /(j)}-C_{j k /(h)}\right)$,
and satisfy the following relations:
(a) $A_{0}{ }^{i}{ }_{k}=A_{k}{ }^{i}{ }_{0}=P^{i}{ }_{k}, \quad A_{j}{ }^{0}{ }_{k}=-\frac{1}{2} C_{j k / 0}=-g^{*}{ }_{j h} P^{h}{ }_{k}$,
(b) $B_{0}{ }^{i}{ }_{k}=B_{k}{ }^{i}{ }_{0}=0, \quad B_{j}{ }^{0}{ }_{k}=-C_{j k}$,
(c) $\quad t_{0}^{i}=P_{k}^{i} d x^{k}$.

We shall prove
Proposition 2.3. In a generalized metric space, we have that
(a) $A_{j}{ }^{i}{ }_{k}=0$ is equivalent to $C_{i j / k}=0$,
(b) $B_{j}{ }^{i}{ }_{k}=0$ is equivalent to $C_{i j /(k)}=0$,
(c) $C_{i j /(k)}=0$ is equivalent to $C_{i j}=0$.

Proof. If $A_{j}{ }^{i}{ }_{k}=0$ or $B_{j}{ }^{i}{ }_{k}=0$, we have from (2.4) $C_{i j / k}=0$ or $C_{i j /(k)}=0$, respectively. The inverse of (a) is obvious from (1.9)(c) and $(2.5)(a) .(b)$ and (c) are evident.

By means of $C_{j k / 0}=2 g^{*}{ }_{j r} P^{r}{ }_{k}$ and (2.5)(a), the relation (2.1)(a) shows the following

Theorem 2.4. A necessary and sufficient condition for the connection parameters $F_{j}{ }^{i}{ }_{k}$ of $[C]$ and ${ }^{*} \Gamma_{j}{ }^{i}{ }_{k}$ of $\left[C^{*}\right]$ to be coincident is that the condition $C_{i j / k}=0$ holds.

2.2. Curvature forms of $\left[C^{*}\right]$ and $[C]$.

Lemma 2.5. The curvature forms $\Omega^{* i}{ }_{j}$ of $C F^{*}(G)$ and Ω_{j}^{i} of $C \Gamma(N)$ are related as follows:

$$
\begin{equation*}
\Omega_{j}^{* i}=\Omega_{j}^{i}+\left[\delta t_{j}^{i}\right]+\left[t_{h}^{i} t_{j}^{h}\right] . \tag{2.7}
\end{equation*}
$$

Proof. From the definition and the relation $\omega^{*}=\omega+t$ (without indices), we see

$$
\begin{aligned}
\Omega^{*} & =\left[d \omega^{*}\right]+\left[\omega^{*} \omega^{*}\right]=[d \omega]+[d t]+[(\omega+t)(\omega+t)] \\
& =[d \omega]+[\omega \omega]+[d t]+[\omega t]+[t \omega]+[t t]=\Omega+[\delta t]+[t t],
\end{aligned}
$$

where we used the matrix product rule.
We remark that

$$
\begin{aligned}
& {[t \omega] }=\left[t_{h}^{i} \omega_{j}^{h}\right]=-\left[\omega_{j}^{h} t_{h}^{i}\right]=-[\omega t] \\
& {\left.\left[\delta t_{j}^{i}\right]:=\left[d t_{j}^{i}\right]+\left[\omega_{h}^{i} h_{j}^{h}\right]-\left[\omega_{j}^{h} t_{h}^{i}\right] \quad \text { (dor the 1-form } t_{j}^{i}\right), } \\
& \text { (definition). }
\end{aligned}
$$

As usual in a Finsler space $F_{n}^{*}(g)$, we put

$$
\Omega_{j}^{* i}=-\frac{1}{2} R^{*}{ }_{j}{ }^{i}{ }_{k l}[k, l]-P^{*}{ }_{j}{ }^{i}{ }_{k l}\left[k,(l)^{*}\right]-\frac{1}{2} S^{*}{ }_{j}{ }^{i}{ }_{k l}\left[(k)^{*},(l)^{*}\right],
$$

where $\left[(k)^{*},(l)^{*}\right]:=[(k),(l)]+P^{k}{ }_{r}[r,(l)]+P^{l}{ }_{r}[(k), r]+P^{k}{ }_{r} P^{l}{ }_{s}[r, s]$. Hence we get

$$
\begin{align*}
\Omega_{j}^{* i}=- & \frac{1}{2}\left(R_{j}^{*}{ }_{j}{ }_{k l}+P^{*}{ }_{j}{ }^{i}{ }_{k r} P^{r}{ }_{l}-P^{*}{ }_{j}{ }^{i}{ }_{l r} P^{r}{ }_{k}+S^{*}{ }_{j}{ }^{i}{ }_{r s} P^{r}{ }_{k} P^{s}{ }_{l}\right)[k, l] \tag{2.8}\\
& -\left(P^{*}{ }_{j}{ }^{i}{ }_{k l}+S^{*}{ }_{j}{ }^{i}{ }_{r l} P^{r}{ }_{k}\right)[k,(l)]-\frac{1}{2} S^{*}{ }_{j}{ }^{k}{ }_{k l}[(k),(l)] .
\end{align*}
$$

Let us now carry out the following calculations:

$$
\begin{align*}
(a) \quad\left[\delta t_{j}^{i}\right]= & {\left[\delta\left(A_{j}{ }^{i}{ }_{k} d x^{k}+B_{j}{ }^{i}{ }_{k} \delta y^{k}\right)\right] } \\
= & {\left[\delta A_{j}{ }^{i}{ }_{k}, d x^{k}\right]+\left[\delta B_{j}{ }^{i}{ }_{k}, \delta y^{k}\right]+A_{j}{ }^{i}{ }_{h}\left[\delta d x^{h}\right]+B_{j}{ }^{i}{ }_{h}\left[\delta \delta y^{h}\right] } \\
= & -\frac{1}{2}\left(A_{j}{ }^{i}{ }_{k / l}-A_{j}{ }^{i}{ }_{l / k}+B_{j}{ }^{i}{ }_{h} R^{h}{ }_{k l}\right)[k, l] \\
& -\left(A_{j}{ }^{i}{ }_{k /(l)}-B_{j}{ }^{i}{ }_{l / k}+A_{j}{ }^{i}{ }_{h} C_{k}{ }^{h}{ }_{l}+B_{j}{ }^{i}{ }_{h} P^{h}{ }_{k l}\right)[k,(l)] \\
& -B_{j}{ }^{i}{ }_{k /(l)}[(k),(l)], \\
(b) \quad\left[t_{h}^{i} t_{j}^{h}\right]= & -A_{j}{ }^{h}{ }_{k} A_{h}{ }^{i}{ }^{l}[k, l]-\left(A_{j}{ }^{h}{ }_{k} B_{h}{ }^{i}{ }_{l}{ }_{l}-B_{j}{ }^{h}{ }_{l} A_{h}{ }^{i}{ }_{k}\right)[k,(l)] \tag{b}\\
& -B_{j}{ }^{h}{ }_{k} B_{h}{ }^{i}{ }^{i}[(k),(l)],
\end{align*}
$$

where we used (1.5)(c) and (b). By means of (2.8) and (2.9), the relation (2.7) gives us the following

Proposition 2.6. In a space M_{n}, the curvature tensors of $C F^{*}(G)$ and $C \Gamma(N)$ are connected by the following relations:
(a) $R^{*}{ }_{j}{ }^{i}{ }_{k l}+P^{*}{ }_{j}{ }^{i}{ }_{k r} P^{r}{ }_{l}-P^{*}{ }_{j}{ }^{i}{ }_{l r} P^{r}{ }_{k}+S^{*}{ }_{j}{ }^{i}{ }_{r s} P^{r}{ }_{k} P^{s}{ }_{l}$

$$
=R_{j}{ }^{i}{ }_{k l}+B_{j}{ }^{i}{ }_{h} R^{h}{ }_{k l}+\left(A_{j}{ }^{i}{ }_{k / l}+A_{j}{ }^{h}{ }_{k} A_{h}{ }^{i}{ }_{l}-k \mid l\right),
$$

(b) $P^{*}{ }_{j}{ }^{i}{ }_{k l}+S^{*}{ }_{j}{ }_{j}{ }_{r l} P^{r}{ }_{k}$

$$
=P_{j}{ }^{i}{ }_{k l}+A_{j}{ }^{i}{ }_{k /(l)}-B_{j}{ }^{i}{ }_{l / k}+A_{j}{ }^{i}{ }_{h} C_{k}{ }^{h}{ }_{l}+B_{j}{ }^{i}{ }_{h} P^{h}{ }_{k l}
$$

$$
+A_{j}{ }^{h}{ }_{k} B_{h}{ }^{i}{ }_{l}-B_{j}{ }^{h}{ }_{l} A_{h}{ }^{i}{ }_{k},
$$

(c) $\quad S^{*}{ }_{j}{ }^{i}{ }_{k l}=S_{j}{ }^{i}{ }_{k l}+\left(B_{j}{ }^{i}{ }_{k /(l)}+B_{j}{ }^{h}{ }_{k} B_{h}{ }^{i}{ }_{l}-k \mid l\right)$.

2.3. Torsion forms of $\left[C^{*}\right]$ and $[C]$.

Lemma 2.7. The torsions $\Omega^{* i}, \Omega^{*(i)}$ of $C F^{*}(G)$ and $\Omega^{i}, \Omega^{(i)}$ of $C \Gamma(N)$ are related as follows:

$$
\begin{align*}
& \text { (a) } \Omega^{* i}=\Omega^{i}+\left[t_{j}^{i} d x^{j}\right] \tag{2.11}\\
& \text { (b) } \Omega^{*(i)}=\Omega^{(i)}+\left[t_{j}^{i} \delta y^{j}\right]+\left[\delta t_{0}^{i}\right]+\left[t_{h}^{i} t_{0}^{h}\right],
\end{align*}
$$

where $\Omega^{* i}:=\left[\delta^{*} d x^{i}\right]$ and $\Omega^{*(i)}:=\left[\delta^{*} \delta^{*} y^{i}\right]=\Omega_{0}^{* i}$.
Proof. For (a), we see

$$
\Omega^{* i}=\left[\delta^{*} d x^{i}\right]=\left[\delta d x^{i}\right]+\left[t_{j}^{i} d x^{j}\right]=\Omega^{i}+\left[t_{j}^{i} d x^{j}\right] .
$$

For (b), we see

$$
\begin{aligned}
\Omega^{*(i)} & =\left[\delta^{*} \delta^{*} y^{i}\right]=\left[\delta \delta^{*} y^{i}\right]+\left[t_{h}^{i} \delta^{*} y^{h}\right]=\left[\delta\left(\delta y^{i}+t_{0}^{i}\right)\right]+\left[t_{h}^{i}\left(\delta y^{h}+t_{0}^{h}\right)\right] \\
& =\Omega^{(i)}+\left[\delta t_{0}^{i}\right]+\left[t_{h}^{i} \delta y^{h}\right]+\left[t_{h}^{i} t_{0}^{h}\right] .
\end{aligned}
$$

Let us carry out the following calculations:

$$
\begin{aligned}
& \Omega^{* i}=-C^{*}{ }_{j}{ }_{k}{ }_{k}\left[j,(k)^{*}\right]=-C^{*}{ }_{j}{ }_{h}{ }_{2} P^{h}{ }_{k}[j, k]-C^{*}{ }_{j}{ }_{k}{ }_{k}[j,(k)], \\
& \Omega^{i}+\left[t_{j}^{i} d x^{j}\right]=-C_{j}{ }^{i}{ }_{k}[j,(k)]-A_{j}{ }^{i}{ }_{k}[j, k]-B_{j}{ }^{i}{ }_{k}[j,(k)], \\
& \Omega^{*(i)}=-\frac{1}{2} H^{* i}{ }_{j k}[j, k]-P^{* i}{ }_{j h} P^{h}{ }_{k}[j, k]-P^{* i}{ }_{j k}[j,(k)], \\
& {\left[\delta t_{0}^{i}\right]=\left[\delta P^{i}{ }_{k}, d x^{k}\right]+P^{i}{ }_{h}\left[\delta d x^{h}\right]} \\
& \quad=-P^{i}{ }_{j / k}[j, k]-P^{i}{ }_{j /(k)}[j,(k)]-P^{i}{ }_{h} C_{j}{ }^{h}{ }_{k}[j,(k)], \\
& {\left[t_{j}^{i} \delta y^{j}\right]=A_{k}{ }^{i}{ }_{j}[j,(k)], \quad\left(B_{j}{ }^{i}{ }_{k}=B_{k}{ }^{i}{ }_{j}\right),} \\
& {\left[t_{h}^{i} t_{0}^{h}\right]=-P^{h}{ }_{j} A_{h}{ }^{i}{ }_{k}[j, k]-P^{h}{ }_{j} B_{h}{ }^{i}{ }_{k}[j,(k)] .}
\end{aligned}
$$

Using the above and (2.2), we see from (2.11)

$$
\text { (a) } \begin{aligned}
H^{* i}{ }_{j k} & +\left(P^{* i}{ }_{j h} P^{h}{ }_{k}-j \mid k\right) \\
& =R^{i}{ }_{j k}+\left(P^{i}{ }_{j / k}+P^{h}{ }_{j} A_{h}{ }^{i}{ }_{k}-j \mid k\right), \\
\text { (b) } \quad P^{* i}{ }_{j k} & =P^{i}{ }_{j k}+P^{i}{ }_{j /(k)}-A_{k}{ }^{i}{ }_{j}+P^{i}{ }_{h} C_{j}{ }^{h}{ }_{k}+P^{h}{ }_{j} B_{h}{ }^{i}{ }_{k} \\
& =P^{i}{ }_{j k}+P^{i}{ }_{j(k)}-A_{k}{ }^{i}{ }_{j}+C_{h}{ }^{i}{ }_{k} P^{h}{ }_{j}+P^{h}{ }_{j} B_{h}{ }^{i}{ }_{k} \\
& =D_{j}{ }^{i}{ }_{k}-A_{k}{ }^{i}{ }_{j}+C^{*}{ }_{h}{ }_{k}{ }_{k} P^{h}{ }_{j} \\
& =D_{j}{ }^{i}{ }_{k}-A_{j}{ }^{i}{ }_{k}+C^{*}{ }_{h}{ }^{i}{ }_{j} P^{h}{ }_{k} .
\end{aligned}
$$

If we substitute $P^{* i}{ }_{j h}$ in $(2.12)(b)$ into (a), then we have

$$
\begin{aligned}
H^{* i}{ }_{j k}-R^{i}{ }_{j k} & =P^{i}{ }_{j / k}+P^{h}{ }_{j} A_{h}{ }^{i}{ }_{k}-\left(D_{j}{ }^{i}{ }_{h}-A_{h}{ }^{i}{ }_{j}+C^{*}{ }_{r}{ }_{h}{ }_{h} P^{r}{ }_{j}\right) P^{h}{ }_{k}-j \mid k \\
& =P^{i}{ }_{j / k}+P^{h}{ }_{j} D_{h}{ }^{i}{ }_{k}-j \mid k=E^{i}{ }_{j k}, \quad((1.17)(b)) .
\end{aligned}
$$

Hence we have
Proposition 2.8. In a space M_{n}, the torsion tensors of $C F^{*}(G)$ and $C \Gamma(N)$ are related by the following equations:

$$
\begin{align*}
& \text { (a) } P^{* i}{ }_{j k}=D_{j}{ }^{i}{ }_{k}-A_{j}{ }^{i}{ }_{k}+C^{*}{ }_{j}{ }^{i}{ }_{r} P^{r}{ }_{k}, \\
& \tag{2.13}\\
& { }^{*} \Gamma_{j}{ }^{i}{ }_{k}-F_{j}{ }^{i}{ }_{k}=D_{j}{ }^{i}{ }_{k}-P^{* i}{ }_{j k}=A_{j}{ }^{i}{ }_{k}-C^{*}{ }_{j}{ }^{i}{ }_{r} P^{r}{ }_{k}, \\
& \text { (b) } H^{* i}{ }_{j k}=R^{i}{ }_{j k}+E^{i}{ }_{j k}=H^{i}{ }_{j k} .
\end{align*}
$$

2.4. Curvature tensors of $\left[R^{*}\right]$ and $[R]$.

After the similar calculations of the metrical case, we have for the h-metrical case

Proposition 2.9. In a space M_{n}, the curvature tensors of $R F^{*}(G)$ and $R \Gamma(N)$ are related by the following equations:

$$
\text { (a) } \begin{align*}
& K^{*}{ }_{j}{ }_{k l}+{ }^{*} \Gamma_{j}{ }^{i}{ }_{k h} P^{h}{ }_{l}-{ }^{*} \Gamma_{j}{ }_{j}{ }_{l h} P^{h}{ }_{k} \\
&=K_{j}{ }^{i}{ }_{k l}+\left\{A_{j}{ }^{i}{ }_{k / l}-C^{*}{ }_{j}{ }^{i}{ }_{h / l} P^{h}{ }_{k}-C^{*}{ }_{j}{ }^{i}{ }_{h} P^{h}{ }_{k / l}\right. \tag{2.14}\\
&\left.\quad+\left(A_{j}{ }^{h}{ }_{k}-C^{*}{ }_{j}{ }^{h}{ }_{r} P^{r}{ }_{k}\right)\left(A_{h}{ }^{i}{ }_{l}-C^{*}{ }_{h}{ }^{i}{ }_{r} P^{r}{ }_{l}\right)-k \mid l\right\},
\end{align*}
$$

$$
\text { (b) }{ }^{*} \Gamma_{j}{ }^{i}{ }_{k l}=F_{j}{ }^{i}{ }_{k l}+A_{j}{ }^{i}{ }_{k(l)}-C^{*}{ }_{j}{ }^{i}{ }_{h(l)} P^{h}{ }_{k}-C^{*}{ }_{j}{ }^{i}{ }_{h} P^{h}{ }_{k(l)} .
$$

2.5. The space M_{n} with $C_{i j / k}=0$ or $C_{i j / 0}=0$.

Using Proposition 2.3 and Theorem 2.4, we have from (2.10), (2.12) and (2.14)

Proposition 2.10. In a space M_{n} with $C_{i j / 0}=0$ we have
(a) $\quad P^{i}{ }_{k}=0, \quad A_{j}{ }^{i}{ }_{k}=\frac{1}{2} g^{* i h}\left(C_{h j / k}+C_{h k / j}-C_{j k / h}\right)$,
(b) $R^{*}{ }_{j}{ }^{i}{ }_{k l}=R_{j}{ }^{i}{ }_{k l}+B_{j}{ }^{i}{ }_{h} R^{h}{ }_{k l}+\left(A_{j}{ }^{i}{ }_{k / l}+A_{j}{ }^{h}{ }_{k} A_{h}{ }^{i}{ }_{l}-k \mid l\right)$,
(c) $K^{*}{ }_{j}{ }^{i}{ }_{k l}=K_{j}{ }^{i}{ }_{k l}+\left(A_{j}{ }^{i}{ }_{k / l}+A_{j}{ }^{h}{ }_{k} A_{h}{ }^{i}{ }_{l}-k \mid l\right)$,
(d) $\quad H^{i}{ }_{j k}=R^{i}{ }_{j k}, \quad P^{* i}{ }_{j k}=P^{i}{ }_{j k}-A_{j}{ }^{i}{ }_{k}, \quad E^{i}{ }_{j k}=0$,
(e) ${ }^{*} \Gamma_{j}{ }^{i}{ }_{k l}=F_{j}{ }^{i}{ }_{k l}+A_{j}{ }^{i}{ }_{k(l)}$.

Proposition 2.11. In a space M_{n} with $C_{i j / k}=0$ we have
(a) $R^{*}{ }_{j}{ }^{i}{ }_{k l}=R_{j}{ }^{i}{ }_{k l}+B_{j}{ }^{i}{ }_{h} R^{h}{ }_{k l}$,
(b) $P^{*}{ }_{j}{ }^{i}{ }_{k l}=P_{j}{ }^{i}{ }_{k l}-B_{j}{ }^{i}{ }_{l / k}+B_{j}{ }^{i}{ }_{h} P^{h}{ }_{k l}, \quad P^{* i}{ }_{j k}=P^{i}{ }_{j k}$,
(c) $K^{*}{ }_{j}{ }^{i}{ }_{k l}=K_{j}{ }^{i}{ }_{k l}, \quad{ }^{*} \Gamma_{j}{ }^{i}{ }_{k l}=F_{j}{ }^{i}{ }_{k l}$.

§3. A generalized metric space whose associated Finsler space is a Riemannian space

If the metric $g_{i j}$ is independent of $y: C_{j}{ }^{i}{ }_{k}=0$, then the space M_{n} itself is a Riemannian space and then its associated Finsler space is also a Riemannian space from the definition.

Definition. A generalized metric space M_{n} whose associated Finsler space $F_{n}^{*}(g)$ is a Riemannian space $\left(C^{*}{ }_{j}{ }^{i}{ }_{k}=0\right)$ is called an $R M_{n}$ space (abbreviation). If the Riemannian space is of constant curvature, then the space M_{n} is called an $R c c M_{n}$ space.

By means of (2.1)(b) and Proposition 2.3, we see
Theorem 3.1. If an $R M_{n}$ space satisfies the condition $C_{i j /(k)}=0$, then the space is a Riemannian space.

From $(2.1)(b)$ and $(2.5)(b)$ we see

$$
\begin{equation*}
3 C^{*}{ }_{i j k}=C_{i j k}+C_{j k i}+C_{k i j}+\frac{1}{2}\left(C_{i j(k)}+C_{j k(i)}+C_{k i(j)}\right) \tag{3.1}
\end{equation*}
$$

Hence we have the following
Theorem 3.2. A space M_{n} reduces to an $R M_{n}$ space if the following condition holds:

$$
C_{i j k}+C_{j k i}+C_{k i j}+\frac{1}{2}\left(C_{i j(k)}+C_{j k(i)}+C_{k i(j)}\right)=0
$$

S. Numata proved the following theorem ([8],Theorem 2): A Landsberg space (in the sense of Finsler geometry) of scalar curvature K is a Riemannian space of constant curvature provided $K \neq 0$. Hence we have

Theorem 3.3. An $L M_{n}$ space (cf. §5) of scalar curvature K is an $R c c M_{n}$ space.
C. Shibata proved the following theorem ([11], Theorem 4): If a Finsler space of scalar curvature satisfies the condition $P^{i}{ }_{h j / k}-j \mid k=0$ (in the notation of ordinary Finsler geometry), then the space is a Riemannian space of constant curvature. Hence we have

Theorem 3.4. If the Finsler space $F_{n}^{*}(g)$ of scalar curvature K satisfies the condition $P^{* i}{ }_{h j}{ }^{*} k-j \mid k=0$, then the space is an $R c c M_{n}$ space.

From the theory of Finsler spaces, we see that in an $R M_{n}$ space we have the following relations:
(a) ${ }^{*} \Gamma_{j}{ }^{i}{ }_{k}=G^{*}{ }_{j}{ }^{i}{ }_{k}=G_{j}{ }^{i}{ }_{k}=\left\{{ }_{j}{ }^{i}{ }_{k}\right\}$,
(b) $\quad P^{* i}{ }_{j k}=0, \quad P^{*}{ }_{j}{ }^{i}{ }_{k l}={ }^{*} \Gamma_{j}{ }^{i}{ }_{k l}=G^{*}{ }_{j}{ }^{i}{ }_{k l}=G_{j}{ }^{i}{ }_{k l}=S^{*}{ }_{j}{ }^{i}{ }_{k l}=0$,
(c) $R^{*}{ }_{j}{ }^{i}{ }_{k l}=K^{*}{ }_{j}{ }^{i}{ }_{k l}=H^{*}{ }_{j}{ }^{i}{ }_{k l}=H_{j}{ }^{i}{ }_{k l}(x)$,
where $\left\{{ }_{j}{ }^{i} k\right.$ is the Christoffel symbol with respect to $g^{*}{ }_{i j}(x)$.
Using (2.10), (2.12), (2.13), (2.14) and (3.2), we have
Proposition 3.5. In an $R M_{n}$ space, we have

$$
\begin{align*}
& \text { (a) } \quad A_{j}{ }^{i}{ }_{k}=D_{j}{ }^{i}{ }_{k}=\frac{1}{2} g^{* i h}\left(C_{h j / k}+C_{h k / j}-C_{j k / h}\right), \\
& \\
& F_{j}{ }^{i}{ }_{k}=\left\{j_{j}{ }^{i}{ }_{k}\right\}-A_{j}{ }^{i}{ }_{k}, \quad C_{j}{ }^{i}{ }_{k}=-B_{j}{ }^{i}{ }_{k}, \\
& P^{i}{ }_{k l}=A_{k}{ }^{i}{ }_{l}-P^{i}{ }_{k(l)}, \tag{3.3}\\
& \text { (b) } \quad H_{j}{ }^{i}{ }_{k l}(x)=K_{j}{ }^{i}{ }_{k l}+E_{j}{ }^{i}{ }_{k l}, \quad H^{i}{ }_{j k}=R^{i}{ }_{j k}+E^{i}{ }_{j k}, \\
& \\
& E_{j}{ }^{i}{ }_{k l}=A_{j}{ }^{i}{ }_{k / l}+A_{j}{ }^{h}{ }_{k} A_{h}{ }^{i}{ }_{l}-k \mid l, \\
& \\
& E^{i}{ }_{j k}=P^{i}{ }_{j / k}+P^{h}{ }_{j} A_{h}{ }^{i}{ }_{k}-j \mid k, \\
& \text { (c) } \quad P_{j}{ }^{i}{ }_{k l}=-A_{j}{ }^{i}{ }_{k(l)}-C_{j}{ }^{i}{ }_{l / k}+C_{j}{ }^{i}{ }_{h} P^{h}{ }_{k l}, \\
& \\
& F_{j}{ }^{i}{ }_{k l}=-A_{j}{ }^{i}{ }_{k(l)}, \quad G_{j}{ }^{i}{ }_{k l}=0 .
\end{align*}
$$

Because of $g^{* i h}{ }_{(k)}=0$, Proposition 2.3 and $(3.2)(a)$, we can easily prove

Lemma 3.6. In an $R M_{n}$ space, the following four conditions are equivalent:
(a) $A_{j}{ }^{i}{ }_{k}=0$,
(b) $C_{h j / k}=0$,
(c) $A_{j}{ }^{i} k(l)=0$,
(d) $\quad C_{h j / k(l)}=0$.

Theorem 3.7. If an $R M_{n}$ space satisfies the condition $C_{h j / k}=0$, then the space M_{n} is a g-Berwald space $\left(F_{j}{ }^{i} k l=0\right.$, cf. $\left.\S 5\right)$.

§4. A generalized metric space whose associated Finsler space is a Minkowski space

Definition. If there exists a coordinate system such that the metric tensor $g_{i j}$ is independent of $x: g_{i j}(y)$ and $P^{i}{ }_{k}=0$, then the space M_{n}
is called a g-Minkowski space. If $C_{i j}=0$, then the g-Minkowski space is called a Minkowski space.

Definition. A generalized metric space M_{n} whose associated Finsler space $F_{n}^{*}(g)$ is a Minkowski space is called an $M M_{n}$ space (abbreviation).

Remark. From the definition $g^{*}{ }_{i j}(y)=\dot{\partial}_{i} \dot{\partial}_{j}\left(g_{h k}(y) y^{h} y^{k}\right) / 2$, a g-Minkowski space is an $M M_{n}$ space. However, from the relation: $g^{*}{ }_{i j}(y)=$ $g_{i j}(x, y)+C_{i j}(x, y)$, being an $M M_{n}$ space $\left(\partial_{k} g^{*}{ }_{i j}=0\right)$ does not mean that the space M_{n} is a g-Minkowski space $\left(\partial_{k} g_{i j}=0\right)$.

Theorem 4.1 (cf. [6],[12]). A necessary and sufficient condition for a generalized metric space M_{n} to be a g-Minkowski space is that the curvature tensors $K_{j}{ }^{i}{ }_{k l}$ and $F_{j}{ }^{i}{ }_{k l}$ vanish $\left(\Omega_{j}^{i}=0\right.$ for $\left.R \Gamma(G)\right)$.

Proof. Let us assume that the generalized metric space M_{n} is a g Minkowski space. Then we have $F^{2}(x, y)=\bar{F}^{2}:=\bar{g}_{a b}(\bar{y}) \bar{y}^{a} \bar{y}^{b}$ in some suitable coordinate system, hence $\partial_{c} \bar{F}^{2}=\partial \bar{F}^{2} / \partial \bar{x}^{c}=0$. From the definition in $\S 1$, we find

$$
\begin{aligned}
& 4 \bar{G}^{a}=\bar{g}^{* a b}\left(\bar{y}^{c} \dot{\partial}_{b} \partial_{c} \bar{F}^{2}-\partial_{b} \bar{F}^{2}\right)=0, \quad \dot{\partial}_{b}=\partial / \partial \bar{y}^{b} \\
& \bar{N}_{b}^{a}=\bar{G}_{b}^{a}=0, \quad \partial_{c} \bar{g}_{a b}=0, \quad \bar{F}_{b}{ }^{a}{ }_{c}=0, \quad \bar{F}_{b}{ }^{a}{ }_{c d}=0, \quad \bar{K}_{b}{ }^{a}{ }_{c d}=0 .
\end{aligned}
$$

Conversely, $F_{j}{ }^{i}{ }_{k l}=F_{j}{ }^{i}{ }_{k(l)}=0$ means that the connection parameters $F_{j}{ }^{i}{ }_{k}$ are functions of x^{i} only. Therefore the curvature tensor $K_{j}{ }^{i}{ }_{k l}$ is also a function of x^{i} only. When $K_{j}{ }^{i}{ }_{k l}(x)=0$, we know as in a Riemannian space that there exists a coordinate system $\left(\bar{x}^{a}\right)$ for which the connection parameters $\bar{F}_{b}{ }^{a}{ }_{c}$ vanish, that is,

$$
\begin{equation*}
\bar{g}_{a d} \bar{F}_{b}{ }^{d}{ }_{c}=\frac{1}{2}\left(\partial_{b} \bar{g}_{a c}+\partial_{c} \bar{g}_{a b}-\partial_{a} \bar{g}_{b c}\right)=0, \quad \bar{N}_{c}^{a}=\bar{F}_{b}{ }^{a}{ }_{c} \bar{y}^{b}=0 . \tag{4.1}
\end{equation*}
$$

Making $+a \mid c$ in (4.1), we get $\partial_{a} \bar{g}_{b c}=0$ which means that $\bar{g}_{b c}$ does not contain \bar{x}^{a}. Moreover we get $\bar{P}^{a}{ }_{b}=0$ from (1.1).

Remark. From (1.7)(a), (b) and Theorem 5.14(cf. §5), we see that the conditions in Theorem 4.2 are equivalent to the conditions $R_{j}{ }^{i}{ }_{k l}=0$ and $C_{j}{ }^{i}{ }_{k / l}=0$ for $C \Gamma(N)$.

By virtue of a well known theorem on Finsler spaces, we have

Theorem 4.2. A necessary and sufficient condition for a generalized metric space M_{n} to be an $M M_{n}$ space is that the curvature tensors $H_{j}{ }^{i}{ }_{k l}$ and $G_{j}{ }^{i}{ }_{k l}$ vanish $\left(\Omega_{j}^{i}=0\right.$ for $\left.B \Gamma(G)\right)$.

From the theory of Finsler spaces, in an $M M_{n}$ space, we have

$$
\begin{align*}
& \text { (a) } R^{*}{ }_{j}{ }^{i}{ }_{k l}=K^{*}{ }_{j}{ }^{i}{ }_{k l}=H^{*}{ }_{j}{ }^{i}{ }_{k l}=H_{j}{ }^{i}{ }_{k l}=0, \\
& R^{* i}{ }_{j k}=H^{* i}{ }_{j k}=H^{i}{ }_{j k}=0, \\
& \text { (b) } C^{*}{ }_{j}{ }^{i}{ }_{k}{ }^{*}{ }_{l l}={ }^{*} \Gamma_{j}{ }^{i}{ }_{k l}=G^{*}{ }_{j}{ }^{k}{ }_{k l}=G_{j}{ }^{i}{ }_{k l}=0, \tag{4.2}\\
& \\
& P^{* i}{ }_{j k}=0, \quad P^{*}{ }_{h}{ }^{i}{ }_{j k}=0 .
\end{align*}
$$

Using the relations in $\S 2$ and (4.2), we obtain
Proposition 4.3. In an $M M_{n}$ space, we have
(a) $D_{j}{ }^{i}{ }_{k}=A_{j}{ }^{i}{ }_{k}-C^{*}{ }_{j}{ }^{i}{ }_{h} P^{h}{ }_{k}, \quad R^{i}{ }_{j k}=-E^{i}{ }_{j k}$,
(b) $R_{j}{ }^{i}{ }_{k l}-S^{*}{ }_{j}{ }^{i}{ }_{r s} P^{r}{ }_{k} P^{s}{ }_{l}-B_{j}{ }^{i}{ }_{h} E^{h}{ }_{k l}=-A_{j}{ }^{i}{ }_{k / l}-A_{j}{ }^{h}{ }_{k} A_{h}{ }^{i}{ }_{l}-k \mid l$,
(c) $F_{j}{ }^{i}{ }_{k l}=-A_{j}{ }^{i}{ }_{k(l)}+C^{*}{ }_{j}{ }^{i}{ }_{h(l)} P^{h}{ }_{k}+C^{*}{ }_{j}{ }^{i}{ }_{h} P^{h}{ }_{k(l)}$,
(d) $\quad P_{j}{ }^{i}{ }_{k l}=S^{*}{ }_{j}{ }^{i}{ }_{h l} P^{h}{ }_{k}-A_{j}{ }^{i}{ }_{k /(l)}+B_{j}{ }^{i}{ }_{l / k}-A_{j}{ }^{i}{ }_{h} C_{k}{ }^{h}{ }_{l}-B_{j}{ }^{i}{ }_{h} P^{h}{ }_{k l}$

$$
-A_{j}{ }^{h}{ }_{k} B_{h}{ }^{i}{ }_{l}+B_{j}{ }^{h}{ }_{l} A_{h}{ }^{i}{ }_{k} .
$$

In virtue of Proposition 2.3 and $C_{j k / 0}=2 g^{*}{ }_{j h} P^{h}{ }_{k}$, we have that if an $M M_{n}$ space satisfies the condition $C_{i j / k}=0$, then the following relations hold:

$$
\begin{aligned}
& \text { (a) } D_{j}{ }^{i}{ }_{k}=0, \quad(b) \quad R_{j k}^{i}=-E^{i}{ }_{j k}=0, \quad P_{j k}^{i}=0, \\
& \text { (c) } R_{j}{ }^{i}{ }_{k l}=K_{j}{ }^{i}{ }_{k l}=0, \quad \text { (d) } \quad F_{j}{ }^{i}{ }_{k l}=C_{j}{ }^{i}{ }_{k / l}=0 .
\end{aligned}
$$

Hence we have
Theorem 4.4. If an $M M_{n}$ space satisfies the condition $C_{i j / k}=0$, then the space is a g-Minkowski space.

Acknowledgements. The authors wish to express their hearty thanks to Professor Dr. M. Matsumoto for his valuable advices.

References

[1] M. Hashiguchi, On generalized Finsler spaces, Anal. Şti. Univ. "Al. I. Cuza", s. I a Mate 30 (1984), 69-73.
[2] F. Ikeda, On generalized Finsler spaces whose associated Finsler space is a Riemannian space, Symp. on Finsler Geom. at Kagoshima, 1985.
[3] H. Izumi, On the geometry of generalized metric spaces I. Connections and identities, Publ. Math., Debrecen 39 (1991), 113-134.
[4] H. Izumi and M. Yoshida, On the geometry of generalized metric spaces II. Spaces of isotropic curvature, Publ. Math., Debrecen 39 (1991), 185-197.
[5] H. Izumi, T. Sakaguchi and M. Yoshida, On generalized metric spaces with $C_{i j}=\alpha h_{i j}$ (to appear) .
[6] S. Kikuchi, On metrical Finsler connections of generalized Finsler spaces, Proc. fifth Nat. Sem. Finsler and Lagrange spaces, Braşov, 1988, pp. 197-206.
[7] R. Miron, Metrical Finsler structures and metrical Finsler connections, J. Math. Kyoto Univ. 23 (1983), 219-224.
[8] S. Numata, On Landsberg spaces of scalar curvature, J. Korean Math. Soc. 12 (1975), 97-100.
[9] H. Rund, The Hamilton-Jacobi theory in the calculus of variations, Robert E. Krieger Publ. Co., 1973.
[10] T. Sakaguchi, On Finsler spaces of scalar curvature, Tensor, N. S. 38 (1982), 211-219.
[11] C. Shibata, On the curvature tensor $R_{h i j k}$ of Finsler spaces of scalar curvature, Tensor, N. S. 32 (1978), 311-317.
[12] S. Watanabe and F. Ikeda, On metrical Finsler connections of a metrical Finsler structure, Tensor, N. S. 39 (1982), 37-41.
[13] S. Watanabe, On some properties of generalized Finsler spaces, J. Nat. Acad. Math. India 1 (1983), 79-85.
[14] S. Watanabe, S. Ikeda and F. Ikeda, On a metrical Finsler connection of a generalized Finsler metric $g_{i j}=e^{2 \sigma(x, y)} \gamma_{i j}(x)$, Tensor, N. S. 40 (1983), 97-102.
[15] M. Yoshida, H. Izumi and T. Sakaguchi, On the geometry of generalized metric spaces III. Spaces with special forms of curvature tensors, Publ. Math., Debrecen 42 (1993), 391-396.

```
TOSHIO SAKAGUCHI
DEPARTMENT OF MATHEMATICS,
THE NATIONAL DEFENSE ACADEMY,
YOKOSUKA 239, JAPAN
HIDEO IZUMI
FUJISAWA 2505-165,
FUJISAWA 251, JAPAN
MAMORU YOSHIDA
DEPARTMENT OF MATHEMATICS,
SHONAN INSTITUTE OF TECHNOLOGY,
FUJISAWA 251, JAPAN
```

