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Cubic Thue inequalities with positive discriminant

By SHABNAM AKHTARI (Eugene)

Abstract. We will give an explicit upper bound for the number of solutions to

cubic inequality |F (x, y)| ≤ h, where F (x, y) is a cubic binary form with integer coef-

ficients and positive discriminant D. Our upper bound is independent of h, provided

that h is smaller than D1/4.

1. Introduction

Let F (x, y) be a binary form with integral coefficients. Also assume that the

maximal number of pairwise non-proportional linear forms over C dividing F is

at least 3. For positive integer h consider the following Thue inequality

0 < |F (x, y)| ≤ h. (1)

This inequality can be considered as a finite number of Thue equations

F (x, y) = m, (2)

where 0 < |m| ≤ h. By a well-known result of Thue [12], the equation (2) has

only finitely many solutions in integers x and y. From this, one can easily deduce

that inequality (1) has only finitely many solutions in integers x and y.

In this manuscript, we will study the inequality |F (x, y)| ≤ h where h is a pos-

itive integer smaller thanD1/4. Our goal is to give an upper bound for the number

of solutions to the above inequality. For a treatment of cubic Thue inequalities

with negative discriminant, we refer the reader to a work of Wakabayashi [14],

where Padé approximations and Ricket’s integrals are used. In general, upper
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bounds for the number of solutions to a Thue equation F (x, y) = m, depend on

the number of prime factors of m (see [10], [2] and [13]). The problem of counting

the number of solutions of Thue inequalities F (x, y) ≤ h and obtaining upper

bounds independent of the value of h for “small” integers h has been studied

by many mathematicians. In 1929, Siegel [11], by means of an approximation

method in which hypergeometric functions are used, showed that the number of

solutions of the cubic inequality

1 ≤ F (x, y) ≤ h

in integers x, y with gcd(x, y) = 1, y > 0 or (x, y) = (1, 0), is at most 18 if

D > 4.3107h30. In 1949, A. E. Gel’man showed, by refining Siegel’s estimates,

that 18 can be replaced by 10 if one assumes that D > ch36, where c is an absolute

constant (we refer the reader to Chapter 5 of [5] for a proof). The following are

our main theorems.

Theorem 1.1. Let F (x, y) be a binary cubic form with positive discrimi-

nant D. Suppose h is an integer and satisfies h = 1
2π (3D)1/4−ϵ for a positive

value ϵ < 1/4. Then the inequality

|F (x, y)| ≤ h

has at most 9 +
log( 3

8ϵ+
1
2 )

log 2 solutions in coprime integers x and y with y ̸= 0.

The upper bound in Theorem 1.1 gets larger as ϵ approaches 0. It turns out

that we can get a better upper bound if we use the value of discriminant in our

upper bound; in other words, if we are willing to have more dependence on our

form F in the upper bound.

Theorem 1.2. Let F (x, y) be a binary cubic form with positive discrimi-

nant D. Suppose h is an integer satisfying h = 1
2π (3D)1/4−ϵ with 0 < ϵ < 1/4.

Then the inequality

|F (x, y)| ≤ h

has at most 12 + 3
log 2 log

3

8
((

3
2

)
ϵ+ log 2

log(3D)

) solutions in coprime integers x and y

with y ̸= 0.

Note that our bound in the above theorem can be seen as an absolute bound,

as the number of conjugacy classes of cubic binary forms with bounded discrimi-

nant is finite.

It is worth to mention here that in order to have our upper bounds inde-

pendent of h, we must take h smaller than D1/4, and therefore, in some sense
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the dependence of h on D is sharp in Theorems 1.1 and 1.2. A cubic form of

discriminant D looks generically like

G(x, y) = l0D
1/4x3 + l1D

1/4x2y + l2D
1/4xy2 + l3D

1/4y3, (3)

where li are small numbers (see the formula for discriminant in (5) ). Now consider

the inequality

G(x, y) ≤ k.

Assume k > l0D
1/4 and write k = vl0D

1/4, where v > 1. Then for any integer X

with |X| ≤ v, the pair (X, 0) is a solution to (3). Therefore the number of solutions

depends on v and consequently on k. To avoid only having solutions of the form

(x, 0), we can let SL2(Z) act on the form G and construct non-trivial solutions;

solutions (x, y) with y ̸= 0 (see Section 2 for details on equivalent forms). It is

well-known that a binary cubic form with positive discriminant D is equivalent

to a cubic form, namely a reduced form, with leading coefficient that is bounded

in absolute value by D1/4. Reduced forms are defined in Section 2.

The problem in hand has been studied by Evertse and Győry (see [7] and

[8]) in a general set up; they have considered the Thue inequality

0 < |F (x, y)| ≤ h

for binary forms of arbitrary degree n ≥ 3. Define, for 3 ≤ n < 400

(N(n), δ(n)) =

(
6n7(

n
3),

5

6
n(n− 1)

)
and for n > 400

(N(n), δ(n)) = (6n, 120(n− 1)) .

They prove that if

|D| > hδn exp(80n(n− 1))

then the number of solutions to 0 < |F (x, y)| ≤ h in co-prime integers x and y, is

at most N(n). Further, Győry [9] showed for binary forms F of degree n ≥ 3,

that if 0 < a < 1 and

|D| ≥ nn(3.5nh2)(2(n−1)/(1−a)),

then the number of solutions to 0 < |F (x, y)| ≤ h in co-prime integers x and y is

at most

25n+ (n+ 2)

(
2

a
+

1

4

)
,
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and if F is reducible then at most

5n+ (n+ 2)

(
2

a
+

1

4

)
.

Here we are able to improve these results for the particular case of n = 3.

The cubic equation

|F (x, y)| = 1 (4)

has been very well studied. Evertse [6] refined the techniques used in [11] to

show for irreducible cubic form F of positive discriminant, that equation (4)

has at most 12 solutions in integers x and y. Later, Bennett [1] improved this

upper bound to 10. Here we will appeal to methods that deal with the equation

|F (x, y)| = 1, particularly those from [6], to prove similar upper bounds for the

number of solutions to (1), when h = 1
2π (3D)1/4−ϵ for a positive value of ϵ.

Throughout this manuscript, by a solution (x, y), we mean x, y ∈ Z, y ̸= 0

and gcd(x, y) = 1.

2. Invariants and covariants of binary cubic forms

Let F = ax3 + bx2y + cxy2 + dy3 be an irreducible binary cubic form. The

discriminant of F is

D = 18abcd+ b2c2 − 27a2d2 − 4ac3 − 4b3d = a4
∏
i,j

(αi − αj)
2, (5)

where α1, α2 and α3 are the roots of polynomial F (x, 1).

For the cubic form F , we define an associated quadratic form, the Hessian

H = HF , and a cubic form G = GF , by

H(x, y) = −1

4

(
δ2F

δx2

δ2F

δy2
−
(

δ2F

δxδy

)2
)

= Ax2 +Bxy + Cy2

and

G(x, y) =
δF

δx

δH

δy
− δF

δy

δH

δx
.

These forms satisfy a covariance property; i.e.

HF◦γ = HF ◦ γ and GF◦γ = GF ◦ γ

for all γ ∈ GL2(Z).
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We call forms F1 and F2 equivalent if they are equivalent under GL2(Z)-
action; i.e. if there exist integers a1 , a2 , a3 and a4 such that

F1(a1x+ a2y, a3x+ a4y) = F2(x, y)

for all x, y , where a1a4 − a2a3 = ±1.

We denote by NF the number of solutions in coprime integers x and y of

inequality F (x, y) ≤ h. If F1 and F2 are equivalent, then NF1 = NF2 and DF1 =

DF2 .

For F (x, y) = ax3 + bx2y + cxy2 + dy3 with discriminant D, it follows by

routine calculation that

A = b2 − 3ac, B = bc− 9ad, C = c2 − 3bd

and

B2 − 4AC = −3D.

Note that if F has positive discriminant then H is positive definite.

Further, these forms are related to F (x, y) via the identity

4H(x, y)3 = G(x, y)2 + 27DF (x, y)2. (6)

Binary cubic form F is called reduced if the Hessian

H(x, y) = Ax2 +Bxy + Cy2

of F satisfies

C ≥ A ≥ |B|.
It is a basic fact (see [5]) that every cubic form of positive discriminant is equiv-

alent to a reduced form F (x, y) .

Lemma 2.1. Let F be an irreducible binary cubic form with positive dis-

criminant D and Hessian H. Assume that F is reduced. For all integer pair

(x1, y1) with y1 ̸= 0, we have H(x1, y1) ≥ 1
2

√
3D.

Proof. This is Lemma 5.1 of [1]. �

3. Reduction to a diagonal form

Let
√
−3D be a fixed choice of the square-root of −3D. we will work in the

number field M = Q(
√
−3D). By syzygy (6), one may write

H(x, y)3 = U(x, y)V (x, y)

where

U(x, y) =
G(x, y) + 3

√
−3DF (x, y)

2
,
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V (x, y) =
G(x, y)− 3

√
−3DF (x, y)

2
.

Then U and V are cubic forms with coefficients belonging to M such that corre-

sponding coefficients of U and V are complex conjugates. Since F must be also

irreducible over M , U and V do not have factors in common. It follows that

U(x, y) and V (x, y) are cubes of linear forms over M , say ξ(x, y) and η(x, y).

Note that ξ(x, y)η(x, y) must be a quadratic form which is cube root of

H(x, y)3 and for which the coefficient of x3 is a positive real number. Hence we

have
ξ(x, y)3 − η(x, y)3 = 3

√
−3DF (x, y), (7)

ξ(x, y)3 + η(x, y)3 = G(x, y), (8)

ξ(x, y)η(x, y) = H(x, y) (9)

and
ξ(x, y)

ξ(1, 0)
and

η(x, y)

η(1, 0)
∈ M.

The reason for the last identity is that for any pair of rational integers x0 , y0,

ξ(x0, y0) and η(x0, y0)

are complex conjugates and the discriminant of H is −3D.

We call a pair of forms ξ and η satisfying the above properties a pair of

resolvent forms. Note that there are exactly three pairs of resolvent forms, given

by

(ξ, η), (ωξ, ω2η), (ω2ξ, ωξ),

where ω is a primitive cube root of unity.

We say that a pair of rational integers (x, y) is related to a pair of resolvent

forms if ∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ = min
0≤k≤2

∣∣∣∣ωk − η(x, y)

ξ(x, y)

∣∣∣∣ . (10)

Theorem 3.1 (Evertse, 1983). Let F be a binary cubic form with inte-

gral coefficients, positive discriminant D and quadratic covariant H. Let k be a

positive integer. Then the number of solutions of the inequality

|F (x, y)| ≤ k

in integers x, y with

H(x, y) ≥ 3

2
(3D)1/2k3, gcd(x, y) = 1, y > 0 or (x, y) = (1, 0)

is at most 9.
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The following is Lemma 1 of [6].

Lemma 3.2. If D > 0 and if F is reduced and irreducible then

H(x, y) ≥ 3

4
D1/2y2 for x, y ∈ Z,

H(x, y) ≥ 3

2
D1/2y2 for x, y ∈ Z with |x| ≥ |2y|.

Evertse [6] uses the properties of a reduced form stated in Lemma 3.2 to

obtain the following:

Theorem 3.3 (Evertse, 1983). Let F be a reduced, irreducible binary

cubic form of positive discriminant with integral coefficients and let k be a positive

integer. Then the inequality

|F (x, y)| ≤ k

has at most nine solutions in integers x, y with gcd(x, y) = 1 and y ≥ 121/4k3/2.

Having Theorem 3.1 in hand and from (9), we conclude that there are at

most 9 solutions (x, y) to inequality |F | ≤ h for which

|ξ(x, y)| ≥
√
3√
2
(3D)1/4h3/2.

All we have to do is to give an upper bound for the number of solutions (x, y) for

which

|ξ(x, y)| <
√
3√
2
(3D)1/4h3/2.

In order to prove our main result, in Section 5, we will show

Theorem 3.4. Let F be a reduced, irreducible binary cubic form of positive

discriminant D with integral coefficients. Suppose that h = (3D)
1
4
−ϵ

2π with

0 < ϵ < 1
4 . Then the inequality

0 < |F (x, y)| ≤ h

has at most 3
log( 3

8ϵ+
1
2 )

log 2 solutions in integers x, y with gcd(x, y) = 1 and 0 < y <

121/4h3/2. Moreover, the inequality

0 < |F (x, y)| ≤ h

has at most 3
log 3

8(( 3
2 )ϵ+

log 2
log 3D )

log 2 + 3 solutions in integers x, y with gcd(x, y) = 1

and 0 < y < 121/4h3/2.

Remark. In the above Theorem, two upper bounds are given. The first one

is independent of the discriminant.
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4. Gap principle

Let us fix the resolvent forms (ξ, η). Our aim is to give an upper bound for

the number of primitive solutions (x, y) that are related to (ξ, η). We will first

derive an upper bound for ∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ .
From our definitions, we have∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣ = 3
√
3D|F (x, y)|
ξ(x, y)3

≤ 3
√
3Dh

ξ(x, y)3

and will, in consequence of Lemma 2.1, assume H(x, y) ≥
√
3D
2 , whereby

|ξ(x, y)| ≥ 1√
2
(3D)1/4. (11)

Hence, by (7), we obtain ∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣ ≤ 6
√
2h

(3D)1/4
.

Remark. From here it is obvious that h has to be bounded in terms of D.

Let us define

z(x, y) = 1− η(x, y)3

ξ(x, y)3
.

Since η(x, y)/ξ(x, y) has modulus one, we have

|z| < 2.

Lemma 4.1. Suppose that (x, y) is a solution to |F | ≤ h and is related to a

pair of resolvent form (ξ, η). Let z(x, y) = 1− η(x,y)3

ξ(x,y)3 . We have

∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ < π

6
|z|.

Further, if |z| < 1, we have ∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ < π

9
|z|.
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Proof. Put

3θ = arg

(
η(x, y)3

ξ(x, y)3

)
.

We have

|θ| < π

3
.

Since √
2− 2 cos(3θ) = |z|,

when |z| < 1 we have

|θ| < π

9
.

We have assumed that (x, y) is related to (ξ, η). Therefore∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ ≤ |θ|.

We conclude that∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ ≤ 1

3

|3θ|√
2− 2 cos(3θ)

∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣ .
By differential calculus |3θ|√

2−2 cos(3θ)
= |6θ|

sin 3
2 θ

is increasing on the interval 0 < |θ| <
π
3 and does not exceed π

2 . Therefore∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ < π

6
|z|,

and similarly, when |z| < 1, from the fact that |3θ|√
2−2 cos(3θ)

< π
3 whenever 0 <

|θ| < π
9 , we conclude that ∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ < π

9
|z|,

as desired. �

Suppose that we have distinct solutions to |F (x, y)| ≤ h, related to (ξ, η) and

indexed by i, say (xi, yi), with |ξ(xi+1, yi+1)| ≥ |ξ(xi, yi)|). Let us write

ηi = η(xi, yi)

and

ξi = ξ(xi, yi).
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Since ξ(x, y)η(x, y) = H(x, y) is a quadratic form of discriminant −3D, it follows

that

ξ2η1 − ξ1η2 = ±
√
−3D(x1y2 − x2y1)

and, since (x1, y1), (x2, y2) are distinct solutions to |F (x, y)| ≤ h, we have

√
3D ≤ |ξ2η1 − ξ1η2| ≤ |ξ1||ξ2|

(∣∣∣∣1− η1
ξ1

∣∣∣∣+ ∣∣∣∣1− η2
ξ2

∣∣∣∣) .

By Lemma 4.1, we have

√
3D ≤ |ξ1||ξ2|

3
√
3Dhπ

6

(
1

|ξ1|3
+

1

|ξ2|3

)
.

Since we assume that |ξ2| ≥ |ξ1|,

√
3D ≤ |ξ2|

√
3Dhπ

2

(
2

|ξ1|2

)
.

Therefore,

|ξ2| ≥ |ξ1|2
1

hπ
. (12)

We have h = (3D)1/4−ϵ

2π . From (11), we have |ξ1| > (3D)1/4√
2

. This implies

|ξ2| ≥ (3D)1/4+ϵ.

Using (12) for ξ3 and ξ2, we obtain

|ξ3| ≥ |ξ2|2
1

hπ
≥ 2(3D)1/4+3ϵ.

Applying (12) once more, we get |ξ4| ≥ 8(3D)1/4+7ϵ. Generally for k > 2, we

have

|ξk| ≥ 22
k−2−1(3D)1/4+(2k−1−1)ϵ. (13)

5. Counting small solutions

We shall use our gap principle established in the previous section, to detect

an integer k for which

|ξk| >
√
3√
2
(3D)1/4h3/2.
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After finding such k, we can deduce that there can be at most k − 1 solutions

(x, y) related to a a fixed pair of resolvent form (ξ, η) satisfying

|ξ(x, y)| <
√
3√
2
(3D)1/4h3/2.

To find such k, by (13), it is sufficient for k to be large enough to satisfy

22
k−2−1(3D)1/4+(2k−1−1)ϵ ≥

√
3√
2
(3D)1/4h3/2. (14)

The following Lemma, together with Theorem 3.1, gives us our main result,

Theorem 1.2.

Lemma 5.1. Let F be an irreducible binary cubic form of positive discrim-

inant D with integral coefficients. Suppose that h = (3D)
1
4
−ϵ

2π with 0 < ϵ < 1
4 .

Then the inequality

|F (x, y)| ≤ h

has at most 3
log( 3

8ϵ+
1
2 )

log 2 solutions in integers x, y with gcd(x, y) = 1 and 0 <

H(x, y) < 3
2 (3D)1/2h3.

Proof. First we substitute the value of h = (3D)
1
4
−ϵ

2π in equation (14) to get

(3D)(2
k−1− 1

2 )ϵ−
3
8 ≥

√
3√
2π

1

22k−2 . (15)

Note that if (
2k−1 − 1

2

)
ϵ− 3

8
≥ 0

then the inequality (15) will hold. This means there are at most

log
(

3
8ϵ +

1
2

)
log 2

solutions related to each fixed pair of resolvent forms (ξ, η). The statement of the

lemma follows immediately. �

Lemma 5.2. Let F be an irreducible binary cubic form of positive discrim-

inant D with integral coefficients. Suppose that h = (3D)
1
4
−ϵ

2π with 0 ≤ ϵ < 1
4 .

Then the inequality

|F (x, y)| ≤ h

has at most 3

( log 3

8(( 3
2 )ϵ+

log 2
log(3D) )

log 2

)
+3 solutions in integers x, y with gcd(x, y) = 1

and 0 < H(x, y) < 3
2 (3D)1/2h3.
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Proof. Following the proof of Lemma 5.1, we notice that in order to satisfy

inequality (15), it is sufficient to have

2k−2 log 2 + log(3D)

((
2k−1 − 1

2

)
ϵ− 3

8

)
> 0;

which means ((
2k−1 − 1

2

)
ϵ− 3

8

)
log(3D) > −2k−2 log 2.

That is ((
2k−1 − 1

2

)
ϵ− 3

8

)
> −2k−2 log 2

log(3D)
.

From here,

2k−2

((
2− 1

2k−1

)
ϵ+

log 2

log(3D)

)
>

3

8
.

If k ≥ 2 then it suffices to have

2k−2

((
3

2

)
ϵ+

log 2

log(3D)

)
>

3

8

k − 2 >

log 3

8(( 3
2 )ϵ+

log 2
log(3D) )

log 2
.

This means there are at most

log 3

8(( 3
2 )ϵ+

log 2
log(3D) )

log 2
+ 1

solutions with |ξ(x, y)| <
√
3√
2
(3D)1/4h3/2 related to each pair of resolvent form

(ξ, η). Since we have 3 pairs of distinct resolvent forms, our proof is complete. �

Now we can deduce Lemma 3.4 from Lemmata 5.1, 5.2 and 3.2.
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[8] J. H. Evertse and K. Györy, Thue inequalities with a small number of solutions, in:
The mathematical heritage of C. F. Gauss, World Scientific Publ. Co., Singapore, 1991,
204–224.
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