On some band decompositions of semigroups

By PETAR V. PROTIĆ (Niš)

Abstract

M. S. Putcha in [5] described semigroups which are bands of r Archimedean or t-Archimedean semigroups. L. N. Ševrin, J. L. Galbiati, M. L. Veronesi, S. Bogdanović and M. Ćirić described rectangular bands of π-groups. In this paper we characterize some bands of r-Archimedean semigroups.

Let \mathbb{N} be the set of all positive integers. A semigroup S is right Archimedean (or r-Archimedean) if, for every $a, b \in S$, there exists $n \in \mathbb{N}$ such that $a^{n} \in b S$. The dual of a right Archimedean semigroup is a left Archimedean (or l-Archimedean) one. A semigroup S is t-Archimedean if, for every $a, b \in S$, there exists $n \in \mathbb{N}$ for which $a^{n} \in b S \cap S b$.

A semigroup B is a band if for each $x \in B, x^{2}=x$ holds.
A semigroup S is a band Y of semigroups S_{α} if $S=\bigcup_{\alpha \in Y} S_{\alpha}, Y$ is a band, $S_{\alpha} \cap S_{\beta}=\emptyset$ for $\alpha, \beta \in Y$ with $\alpha \neq \beta$ and $S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}$.

A congruence ϱ on S is called a band congruence if S / ϱ is a band.
Theorem 1 [5]. A semigroup S is a band of r-Archimedean semigroups if and only if

$$
\begin{equation*}
(\forall a \in S)\left(\forall x, y \in S^{1}\right)(\exists i, j \in \mathbb{N})(x a y)^{i} \in x a^{2} y S,\left(x a^{2} y\right)^{j} \in x a y S \tag{1}
\end{equation*}
$$

In this theorem, it is proved that if (1) holds then the relation ϱ defined on S by

$$
\begin{equation*}
a \varrho b \Longleftrightarrow\left(\forall x, y \in S^{1}\right)(\exists i, j \in \mathbb{N})(x a y)^{i} \in x b y S,(x b y)^{j} \in x a y S \tag{2}
\end{equation*}
$$

is a band congruence on S.
For undefined notions and notations we refer to [1] and [3].
Recall that a band B is a right regular band if $e f=f e f$ for every e, $f \in B$.

[^0]Theorem 2. A semigroup S is a right regular band of r-Archimedean semigroups if and only if

$$
\begin{equation*}
(\forall u, v \in S)(\exists n \in \mathbb{N})(u v)^{n} \in v S \tag{3}
\end{equation*}
$$

Proof. Let S be a right regular band Y of r-Archimedean semigroups S_{α}. If $u \in S_{\alpha}, v \in S_{\beta}$ then $u v \in S_{\alpha \beta}=S_{\beta \alpha \beta}$, vuv $\in S_{\beta \alpha \beta}$. Since $S_{\beta \alpha \beta}$ is r-Archimedean, then there exists $n \in \mathbb{N}$ such that $(u v)^{n} \in$ $v u v S_{\beta \alpha \beta} \subseteq v S$, and so (3) holds.

Conversely, let statement (3) hold on a semigroup S and let $a \in S$, $x, y \in S^{1}$. Then, for $u=a, v=a y x$, there exists $n \in \mathbb{N}$ such that

$$
\left(x a^{2} y\right)^{n+1}=(x a a y)^{n+1}=x(a a y x)^{n} a^{2} y \in x a y x S a^{2} y \subseteq x a y S
$$

Also, for $u=y x a y x, v=a y x a$ there exists $m \in \mathbb{N}$ such that

$$
\begin{aligned}
(x a y)^{3(m+1)} & =(\text { xayxayxay })^{m+1}=x a(y x a y x a y x a)^{m} y x a y x a y \\
& \in \text { xaayxaSyxayxay } \subseteq x a^{2} y S .
\end{aligned}
$$

Now, by Theorem 1 we have that S is a band Y of r-Archimedean semigroups S_{α}.

Let $a, b \in S$. Then, by $(3),(a b)^{n}=b t$ for some $t \in S$ and $n \in \mathbb{N}$. If $a \in S_{\alpha}, b \in S_{\beta}, t \in S_{\gamma}$ then $\alpha \beta=\beta \gamma=\beta \beta \gamma=\beta \alpha \beta$. Hence Y is a right regular band.

Recall that a band B is a right zero band if $e=f e$ for every $e, f \in B$.
Theorem 3. A semigroup S is a right zero band of r-Archimedean semigroups if and only if

$$
\begin{equation*}
(\forall u, v \in S)(\exists m, n \in \mathbb{N})(u v)^{m} \in v S, v^{n} \in u v S \tag{4}
\end{equation*}
$$

Proof. Let S be a right zero band Y of r-Archimedean semigroups $S_{\alpha}, \alpha \in Y$. If $u \in S_{\alpha}, v \in S_{\beta}$ then $u v \in S_{\alpha \beta}=S_{\beta}$. As S_{β} is r Archimedean, statement (4) holds.

Conversely, let statement (4) hold on a semigroup S. Then, by Theorem 2, it follows that S is a right regular band Y of r-Archimedean semigroups $S_{\alpha}, \alpha \in Y$. Let $a \in S_{\alpha}, b \in S_{\beta}$. Then by (4) there exists $t \in S_{\gamma}$ such that $b^{n}=a b t$ whence $\beta=\alpha \beta \gamma=\alpha \beta \alpha \beta \gamma=\alpha \beta \beta=\alpha \beta$. Thus Y is a right zero band and so the semigroup S is a right zero band Y of r-Archimedean semigroups $S_{\alpha}, \alpha \in Y$.

Recall that a band B is a left normal band if efg $=\operatorname{egf}$ for every $e, f, g \in B$.

Theorem 4. A semigroup S is a left normal band of r-Archimedean semigroups if and only if

$$
\begin{equation*}
(\forall u, v, w \in S)(\exists n \in \mathbb{N})(u v w)^{n} \in u w v S . \tag{5}
\end{equation*}
$$

Proof. Let $S=\bigcup_{\alpha \in Y} S_{\alpha}$ where Y is a left normal band and S_{α} are r-Archimedean semigroups for every $\alpha \in Y$. If $u \in S_{\alpha}, v \in S_{\beta}$, $w \in S_{\gamma}$ then $u v w \in S_{\alpha \beta \gamma}=S_{\alpha \gamma \beta}$. Since $u w v \in S_{\alpha \gamma \beta}$ and since $S_{\alpha \gamma \beta}$ is r-Archimedean we have that (5) holds.

Conversely, let statement (5) hold on a semigroup S. If $a \in S$ and $x, y \in S^{1}$ then by (5) for $u=x a, v=a, w=y x a^{2} y$ there exists $n \in \mathbb{N}$ such that

$$
\left(x a^{2} y\right)^{2 n}=\left(x a a y x a^{2} y\right)^{n} \in x a y x a^{2} y a S \subseteq x a y S
$$

Also, for $u=x a, v=y x a y x, w=a y$ there exists $m \in \mathbb{N}$ such that

$$
(x a y)^{3 m}=(x a y x a y x a y)^{m} \in x a a y y x a y x S \subseteq x a^{2} y S .
$$

By Theorem 1 it follows that S is a band of r-Archimedean semigroups. Now we shall prove that the congruence ϱ defined by (2) is a left normal band congruence on S. Let $a, b, c \in S$ and $x, y \in S^{1}$. For $u=x a, v=b$, $w=c y$ by (5) there exists $n \in \mathbb{N}$ such that $(x a b c y)^{n} \in x a c y b S$. Hence $(x a b c y)^{n}=x a c y b s$ for some $s \in S$ and $(x a b c y)^{n+1}=x a c y b s x a b c y$. By (5) for $u=x a c, v=y b s x a, w=b c y$ there exists $m \in \mathbb{N}$ such that $(x a c y b s x a b c y)^{m} \in x a c b c y y b s x a S$. Now, $(x a c y b s x a b c y)^{m}=$ xacbcyyt for some $t \in b s x a S$. By (5) for $u=x a c b, v=c y, w=y t$ there exists $p \in \mathbb{N}$ such that $(\text { xacbcyyt })^{p} \in$ xacbytcy $S \subseteq$ xacby S. Hence

$$
(x a b c y)^{(n+1) m p}=(x a c y b s x a b c y)^{m p}=(x a c b c y y t)^{p} \in x a c b y S .
$$

Similarly we prove that there exist $q, r, l, \in \mathbb{N}$ such that $(\text { xacby })^{(q+1) r l} \in$ $x a b c y S$. Hence $a b c \varrho a c b$ and ϱ is a left normal band congruence on S. It follows that S is a left normal band of r-Archimedean semigroups.

Recall that a band B is a right quasinormal band if efg $=e g f g$ for every $e, f, g \in B$.

Theorem 5. A semigroup S is a right quasinormal band of r-Archimedean semigroups if and only if

$$
\begin{equation*}
(\forall u, v, w \in S)(\exists n \in \mathbb{N})(u v w)^{n} \in u w v w S \tag{6}
\end{equation*}
$$

Proof. Let $S=\bigcup_{\alpha \in Y} S_{\alpha}$ where Y is a right quasinormal band and S_{α} are r-Archimedean semigroups for each $\alpha \in Y$. If $u \in S_{\alpha}, v \in S_{\beta}$,
$w \in S_{\gamma}$, then we have $u v w \in S_{\alpha \beta \gamma}=S_{\alpha \gamma \beta \gamma}$. Since $u w v w \in S_{\alpha \gamma \beta \gamma}$ we have that statement (6) holds.

Conversely, let statement (6) hold on a semigroup S. If $a \in S, x, y \in$ S^{1} then for $u=x a, v=a, w=y x a^{2} y$ there exists $n \in \mathbb{N}$ such that

$$
\left(x a^{2} y\right)^{2 n}=\left(x a a y x a^{2} y\right)^{n} \in x a y x a^{2} y a y x a^{2} y S \subseteq x a y S
$$

Also, for $u=x a, v=y x a y x, w=a y$ there exists $m \in \mathbb{N}$ such that

$$
(x a y)^{3 m}=(x a y x a y x a y)^{m} \in x a a y y x a y x a y S \subseteq x a^{2} y S
$$

Hence, by Theorem 1 the semigroup S is a band of r-Archimedean semigroups.

Let $a, b, c \in S, x, y \in S^{1}$. By (6), for $u=x a, v=b, w=c y$, there exists $n \in \mathbb{N}$ such that $(x a b c y)^{n} \in x a c y b c y S$ and so $(x a b c y)^{n}=x a c y b c y t$ for some $t \in S$.

Using (6) for $u=x a c, v=y b c y t x a c y, w=b c y t$, there exists $m \in \mathbb{N}$ such that $(x a c y b c y t)^{2 m}=(\text { xacybcytxacybcyt })^{m} \in$ xacbcytybcytxacybcyt $S \subseteq$ xacbcyS. Thus

$$
(x a b c y)^{2 n m}=(x a c y b c y t)^{2 m} \in x a c b c y S .
$$

Similarly, by (6) for $u=x a, v=c, w=b c y$ there exists $p \in \mathbb{N}$ such that

$$
(x a c b c y)^{p} \in x a b c y c b c y S \subseteq x a b c y S
$$

Hence, by (2) it follows that abc@acbc whence ϱ is a right quasinormal band congruence on S and S is a right quasinormal band of r-Archimedean semigroups.

Recall that a band B is a right seminormal band if efg=egefg for every $e, f, g \in B$.

Theorem 6. A semigroup S is a right seminormal band of r-Archimedean semigroups if and only if

$$
\begin{equation*}
(\forall u, v, w \in S)(\exists n \in \mathbb{N})(u v w)^{n} \in u w S \tag{7}
\end{equation*}
$$

Proof. Let $S=\bigcup_{\alpha \in Y} S_{\alpha}$ where Y is a right seminormal band and S_{α} is an r-Archimedean semigroup for every $\alpha \in Y$. Then, for $u \in S_{\alpha}$, $v \in S_{\beta}, w=S_{\gamma}$ we have $u v w \in S_{\alpha \beta \gamma}=S_{\alpha \gamma \alpha \beta \gamma}$. Since uwuvw $\in S_{\alpha \gamma \alpha \beta \gamma}$, there exists $n \in \mathbb{N}$ such that

$$
(u v w)^{n} \in u w u v w S \subseteq u w S
$$

and so (7) holds.

Conversely, let statement (7) hold on a semigroup S. Let $a \in S$, $x, y \in S^{1}$. Then for $u=x a, v=y x a y x a y$ and $w=a y$ there exists $n \in \mathbb{N}$ such that

$$
(x a y)^{3 n}=(x a y x a y x a y)^{n} \in x a a y S=x a^{2} y S .
$$

Also, by (7) for $u=x a, v=a$ and $w=y x a^{2} y$ there exists $m \in \mathbb{N}$ such that $\left(x a^{2} y\right)^{2 m}=\left(x a a y x a^{2} y\right)^{m} \in x a y x a^{2} y S \subseteq x a y S$. By Theorem 1 we have that S is a band of r-Archimedean semigroups. Hence, $S=\bigcup_{\alpha \in Y} S_{\alpha}, Y$ is a band and S_{α} is an r-Archimedean semigroup for all $\alpha \in S$. If $a \in S_{\alpha}$, $b \in S_{\beta}, c \in S_{\gamma}$, then $a b c \in S_{\alpha \beta \gamma}$ and by (7) there exists $n \in \mathbb{N}$ such that $(a b c)^{n} \in a c S$. Now, there exists $t \in S$ such that $(a b c)^{n}=a c t$. If $t \in S_{\delta}$ then $\alpha \beta \gamma=\alpha \gamma \delta=\alpha \gamma \alpha \gamma \delta=\alpha \gamma \alpha \beta \gamma$. Hence, Y is a right seminormal band.

Recall that a band B is a rectangular band if efg $=e g$ for every $e, f, g \in B$.

Theorem 7. A semigroup S is a rectangular band of r-Archimedean semigroups if and only if

$$
\begin{equation*}
(\forall x, y, z \in S)(\exists n \in \mathbb{N})(x y z)^{n} \in x z S, \quad(x z)^{n} \in x y z S \tag{8}
\end{equation*}
$$

Proof. Let Y be a rectangular band, $S=\bigcup_{\alpha \in Y} S_{\alpha}$ and S_{α} an r Archimedean semigroup for every $\alpha \in Y$. Then for $x, y, z \in S$ there exists $\alpha, \beta, \gamma \in Y$ such that $x \in S_{\alpha}, y \in S_{\beta}, z \in S_{\gamma}$ and $x y z \in S_{\alpha} S_{\beta} S_{\gamma} \subseteq S_{\alpha \beta \gamma}=$ $S_{\alpha \gamma}, \quad x z \in S_{\alpha} S_{\gamma} \subseteq S_{\alpha \gamma}$. Since $S_{\alpha \gamma}$ is an r-Archimedean semigroup, we have that (8) holds.

Conversely, let statement (8) hold on a semigroup S. Let η be the relation on S defined by

$$
\begin{equation*}
a \eta b \Longleftrightarrow(\exists n \in \mathbb{N}) \quad a^{n} \in b S, \quad b^{n} \in a S \tag{9}
\end{equation*}
$$

From $a^{2} \in a S$ it follows that η is a reflexive relation. Clearly, η is a symmetric relation.

Let $a, b, c \in S$ and

$$
\begin{aligned}
a \eta b & \Longleftrightarrow(\exists n \in \mathbb{N}) a^{n} \in b S, b^{n} \in a S, \\
b \eta c & \Longleftrightarrow(\exists m \in \mathbb{N}) b^{m} \in c S, c^{m} \in b S .
\end{aligned}
$$

For $k=\max \{n, m\}$ we have $a^{k} \in b S, b^{k} \in a S \cap c S, c^{k} \in b S$. Hence, there exist $u, v, w \in S$ such that $a^{k}=b u, b^{k}=c v, c^{k}=b w$. Now, by (8) for $x=b, z=u, y=b^{k}$ there exists $p \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(a^{k}\right)^{p}=(b u)^{p} \in b b^{k} u S \subseteq b^{k} S \subseteq c S . \tag{10}
\end{equation*}
$$

Similarly, by (8) for $x=b, z=w, y=b^{k}$ theren exists $q \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(c^{k}\right)^{q}=(b w)^{q} \in b b^{k} w S \subseteq b^{k} S \subseteq a S \tag{11}
\end{equation*}
$$

From (10) and (11) for $r=\max \{p, q\}$ we have $a^{k r} \in c S, c^{k r} \in a S$ and so $a \eta c$. Hence, η is a transitive relation and it follows that η is an equivalence relation.

To show that η is right compatible, let $a, b, c \in S$ be arbitrary elements such that

$$
a \eta b \Longleftrightarrow(\exists n \in \mathbb{N}) a^{n} \in b S, b^{n} \in a S
$$

For $x=a, z=c$ and $y=a^{n}$ there exists (by (8)) $p \in \mathbb{N}$ such that $(a c)^{p} \in a a^{n} c S$ and so $(a c)^{p}=a a^{n} c u$ for some $u \in S$. Now, since $a^{n}=b v$ for some $v \in S$ we have

$$
\begin{equation*}
(a c)^{p}=a a^{n} c u=a^{n} a c u=b v a c u . \tag{12}
\end{equation*}
$$

From (12) for $x=b, y=v a, z=c u$ there exists $q \in \mathbb{N}$ such that

$$
\begin{equation*}
(a c)^{p q}=(b v a c u)^{q} \in b c u S \subseteq b c S . \tag{13}
\end{equation*}
$$

Similarly, for $x=b, y=b^{n}$ and $z=c$ there exists $r \in \mathbb{N}$ such that $(b c)^{r} \in b b^{n} c S$ and so $(b c)^{r}=b b^{n} c v=b^{n} b c v$ for some $v \in S$. Now, from $b^{n}=a w$, for some $w \in S$ we have

$$
\begin{equation*}
(b c)^{r}=b^{n} b c v=a w b c v . \tag{14}
\end{equation*}
$$

From (8) and (14) for $x=a, y=w b$ and $z=c v$ there exists $j \in \mathbb{N}$ such that

$$
\begin{equation*}
(b c)^{r j}=(a w b c v)^{j} \in a c v S \subseteq a c S . \tag{15}
\end{equation*}
$$

From (13) and (15) for $i=\max \{p q, r j\}$ we have $a c \eta b c$ and so η is right compatible.

From $a \eta b$ we have $a^{n}=b s$ for some $s \in S$, and by (8) for $x=c, y=a^{n}$, $z=a$ and some $m \in \mathbb{N}$ it follows that $(c a)^{m} \in c a^{n} a S=c b s a S \subseteq c b S$. Similarly, $(c b)^{k} \in c a S$ for some $k \in \mathbb{N}$. For $r=\max \{m, k\}$ it follows that $c a \eta c b$ and so η is left compatible.

Hence, η is a congruence relation.
From $\left(a^{2}\right)^{4} \in a S$ and $a^{4} \in a^{2} S$ we have $a \eta a^{2}$ and so η is a band congruence relation.

By (8) we conclude that $a b c \eta a c$ for every $a, b, c \in S$. Hence it follows that η is a rectangular band congruence on S.

Let $S=\bigcup_{\alpha \in Y} S_{\alpha}$, where Y is a rectangular band and S_{α} are η^{-} classes. If $a, b \in S_{\alpha}$, then $b^{2} \in S_{\alpha}$ and by (8) there exists $n \in \mathbb{N}$ such that
$a^{n} \in b^{2} S$. Now, $a^{n}=b^{2} u$ for some $u \in S$. If $u \in S_{\beta}$, then $a^{n+1}=b b u a \in$ $b S_{\alpha} S_{\beta} S_{\alpha} \subseteq b S_{\alpha \beta \alpha}=b S_{\alpha}$. Hence, S_{α} is an r-Archimedean semigroup and so the semigroup S is a rectangular band Y of r-Archimedean semigroups S_{α}.

Similarly, the semigroup S is a rectangular band of l-Archimedean semigroups if and only if for every $x, y, z \in S$ there exists $n \in \mathbb{N}$ such that $(x y z)^{n} \in S x z,(x z)^{n} \in S x y z$. Now, the semigroup S is a rectangular band of t-Archimedean semigroups if and only if for every $x, y, z \in S$ there exists $n \in \mathbb{N}$ such that $(x y z)^{n} \in x z S \cap S x z,(x z)^{n} \in x y z S \cap S x y x$.

We remark that Theorem 7 can be proved by Theorem 1. It is easy to see that $\eta \subseteq \varrho$ where ϱ is defined by (2) on S^{1} and η is a congruence on S.

Example 1. Let S be a semigroup defined by the following Cayley table:

	a	e	f	g	h
a	e	e	f	e	f
e	e	e	f	e	f
f	e	e	f	e	f
g	g	g	h	g	h
h	g	g	h	g	h

Then $S=S_{\alpha} \cup S_{\beta}$ where $S_{\alpha}=\{a, e, f\}, S_{\beta}=\{g, h\}, S_{\alpha} S_{\beta} S_{\alpha} \subseteq S_{\alpha}$, $S_{\beta} S_{\alpha} S_{\beta} \subseteq S_{\beta}$ and S_{α} and S_{β} are r-Archimedean semigroups. In this example the semigroup S is a left zero band of r-Archimedean semigroups.

References

[1] S. Bogdanović, Semigroups with a system of subsemigroups, Inst. of Math., Novi Sad, 1985.
[2] S. Bogdanović and M. Ćirić, Semigroups Galbiati- Veronesi IV (Bands of nilextensions of groups), Facta Universitatis (to appear).
[3] J. L. Galbiati and M. L. Veronesi, Sui semigruppi che sono un band di t-semigrupi, Istituto Lombardo (Rend. Sc.) A114 (1980), 217-234.
[4] M. Petrich, Lectures in semigroups, Akad. Verlag, Berlin, 1977.
[5] M. S. Putcha, Band of t-Archimedean semigroups, Semigroup Forum 6 (1973), 232-239.

FACULTY OF CIVIL ENGINEERING
BEOGRADSKA 14, 18000 NIS̆
YOGOSLAVIA
(Received August 11, 1993; revised December 10, 1993)

[^0]: Supported by Grant 0401A of RFNS through Math. Inst. SANU.

