Publ. Math. Debrecen 45 / 1-2 (1994), 205–211

On some band decompositions of semigroups

By PETAR V. PROTIĆ (Niš)

Abstract. M. S. PUTCHA in [5] described semigroups which are bands of *r*-Archimedean or *t*-Archimedean semigroups. L. N. ŠEVRIN, J. L. GALBIATI, M. L. VERONESI, S. BOGDANOVIĆ and M. ĆIRIĆ described rectangular bands of π -groups. In this paper we characterize some bands of *r*-Archimedean semigroups.

Let \mathbb{N} be the set of all positive integers. A semigroup S is right Archimedean (or r-Archimedean) if, for every $a, b \in S$, there exists $n \in \mathbb{N}$ such that $a^n \in bS$. The dual of a right Archimedean semigroup is a left Archimedean (or l-Archimedean) one. A semigroup S is t-Archimedean if, for every $a, b \in S$, there exists $n \in \mathbb{N}$ for which $a^n \in bS \cap Sb$.

A semigroup B is a band if for each $x \in B$, $x^2 = x$ holds.

A semigroup S is a band Y of semigroups S_{α} if $S = \bigcup_{\alpha \in Y} S_{\alpha}$, Y is a band, $S_{\alpha} \cap S_{\beta} = \emptyset$ for $\alpha, \beta \in Y$ with $\alpha \neq \beta$ and $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$.

A congruence ρ on S is called a *band congruence* if S/ρ is a band.

Theorem 1 [5]. A semigroup S is a band of r-Archimedean semigroups if and only if

(1) $(\forall a \in S)(\forall x, y \in S^1)(\exists i, j \in \mathbb{N})(xay)^i \in xa^2yS, (xa^2y)^j \in xayS.$

In this theorem, it is proved that if (1) holds then the relation ρ defined on S by

 $(2) \qquad a\varrho b \iff (\forall x, y \in S^{1})(\exists i, j \in \mathbb{N})(xay)^{i} \in xbyS, \ (xby)^{j} \in xayS$

is a band congruence on S.

For undefined notions and notations we refer to [1] and [3].

Recall that a band B is a right regular band if ef = fef for every $e, f \in B$.

Supported by Grant 0401A of RFNS through Math. Inst. SANU.

Theorem 2. A semigroup S is a right regular band of r-Archimedean semigroups if and only if

(3)
$$(\forall u, v \in S) (\exists n \in \mathbb{N}) (uv)^n \in vS.$$

PROOF. Let S be a right regular band Y of r-Archimedean semigroups S_{α} . If $u \in S_{\alpha}$, $v \in S_{\beta}$ then $uv \in S_{\alpha\beta} = S_{\beta\alpha\beta}$, $vuv \in S_{\beta\alpha\beta}$. Since $S_{\beta\alpha\beta}$ is r-Archimedean, then there exists $n \in \mathbb{N}$ such that $(uv)^n \in vuvS_{\beta\alpha\beta} \subseteq vS$, and so (3) holds.

Conversely, let statement (3) hold on a semigroup S and let $a \in S$, $x, y \in S^1$. Then, for u = a, v = ayx, there exists $n \in \mathbb{N}$ such that

$$(xa^2y)^{n+1} = (xaay)^{n+1} = x(aayx)^n a^2y \in xayxSa^2y \subseteq xayS.$$

Also, for u = yxayx, v = ayxa there exists $m \in \mathbb{N}$ such that

$$(xay)^{3(m+1)} = (xayxayxay)^{m+1} = xa(yxayxayxa)^m yxayxay$$

$$\in xaayxaSyxayxay \subseteq xa^2 yS.$$

Now, by Theorem 1 we have that S is a band Y of r-Archimedean semigroups S_{α} .

Let $a, b \in S$. Then, by (3), $(ab)^n = bt$ for some $t \in S$ and $n \in \mathbb{N}$. If $a \in S_{\alpha}, b \in S_{\beta}, t \in S_{\gamma}$ then $\alpha\beta = \beta\gamma = \beta\beta\gamma = \beta\alpha\beta$. Hence Y is a right regular band. \Box

Recall that a band B is a right zero band if e = fe for every $e, f \in B$.

Theorem 3. A semigroup S is a right zero band of r-Archimedean semigroups if and only if

(4)
$$(\forall u, v \in S)(\exists m, n \in \mathbb{N})(uv)^m \in vS, v^n \in uvS.$$

PROOF. Let S be a right zero band Y of r-Archimedean semigroups $S_{\alpha}, \alpha \in Y$. If $u \in S_{\alpha}, v \in S_{\beta}$ then $uv \in S_{\alpha\beta} = S_{\beta}$. As S_{β} is r-Archimedean, statement (4) holds.

Conversely, let statement (4) hold on a semigroup S. Then, by Theorem 2, it follows that S is a right regular band Y of r-Archimedean semigroups S_{α} , $\alpha \in Y$. Let $a \in S_{\alpha}$, $b \in S_{\beta}$. Then by (4) there exists $t \in S_{\gamma}$ such that $b^n = abt$ whence $\beta = \alpha\beta\gamma = \alpha\beta\alpha\beta\gamma = \alpha\beta\beta = \alpha\beta$. Thus Y is a right zero band and so the semigroup S is a right zero band Y of r-Archimedean semigroups S_{α} , $\alpha \in Y$. \Box

Recall that a band B is a left normal band if efg = egf for every $e, f, g \in B$.

Theorem 4. A semigroup S is a left normal band of r-Archimedean semigroups if and only if

(5)
$$(\forall u, v, w \in S) (\exists n \in \mathbb{N}) (uvw)^n \in uwvS.$$

PROOF. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ where Y is a left normal band and S_{α} are r-Archimedean semigroups for every $\alpha \in Y$. If $u \in S_{\alpha}$, $v \in S_{\beta}$, $w \in S_{\gamma}$ then $uvw \in S_{\alpha\beta\gamma} = S_{\alpha\gamma\beta}$. Since $uwv \in S_{\alpha\gamma\beta}$ and since $S_{\alpha\gamma\beta}$ is r-Archimedean we have that (5) holds.

Conversely, let statement (5) hold on a semigroup S. If $a \in S$ and $x, y \in S^1$ then by (5) for u = xa, v = a, $w = yxa^2y$ there exists $n \in \mathbb{N}$ such that

$$(xa^2y)^{2n} = (xaayxa^2y)^n \in xayxa^2yaS \subseteq xayS.$$

Also, for u = xa, v = yxayx, w = ay there exists $m \in \mathbb{N}$ such that

$$(xay)^{3m} = (xayxayxay)^m \in xaayyxayxS \subseteq xa^2yS.$$

By Theorem 1 it follows that S is a band of r-Archimedean semigroups. Now we shall prove that the congruence ρ defined by (2) is a left normal band congruence on S. Let $a, b, c \in S$ and $x, y \in S^1$. For u = xa, v = b, w = cy by (5) there exists $n \in \mathbb{N}$ such that $(xabcy)^n \in xacybS$. Hence $(xabcy)^n = xacybs$ for some $s \in S$ and $(xabcy)^{n+1} = xacybsxabcy$. By (5) for u = xac, v = ybsxa, w = bcy there exists $m \in \mathbb{N}$ such that $(xacybsxabcy)^m \in xacbcyybsxaS$. Now, $(xacybsxabcy)^m = xacbcyyt$ for some $t \in bsxaS$. By (5) for u = xacb, v = cy, w = yt there exists $p \in \mathbb{N}$ such that $(xacbcyyt)^p \in xacbytcyS \subseteq xacbyS$. Hence

$$(xabcy)^{(n+1)mp} = (xacybsxabcy)^{mp} = (xacbcyyt)^p \in xacbyS.$$

Similarly we prove that there exist $q, r, l \in \mathbb{N}$ such that $(xacby)^{(q+1)rl} \in xabcyS$. Hence abcgacb and ρ is a left normal band congruence on S. It follows that S is a left normal band of r-Archimedean semigroups. \Box

Recall that a band B is a right quasinormal band if efg = egfg for every $e, f, g \in B$.

Theorem 5. A semigroup S is a right quasinormal band of r-Archimedean semigroups if and only if

(6)
$$(\forall u, v, w \in S) (\exists n \in \mathbb{N}) (uvw)^n \in uwvwS.$$

PROOF. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ where Y is a right quasinormal band and S_{α} are r-Archimedean semigroups for each $\alpha \in Y$. If $u \in S_{\alpha}, v \in S_{\beta}$,

 $w \in S_{\gamma}$, then we have $uvw \in S_{\alpha\beta\gamma} = S_{\alpha\gamma\beta\gamma}$. Since $uwvw \in S_{\alpha\gamma\beta\gamma}$ we have that statement (6) holds.

Conversely, let statement (6) hold on a semigroup S. If $a \in S$, $x, y \in S^1$ then for u = xa, v = a, $w = yxa^2y$ there exists $n \in \mathbb{N}$ such that

$$(xa^2y)^{2n} = (xaayxa^2y)^n \in xayxa^2yayxa^2yS \subseteq xayS$$

Also, for u = xa, v = yxayx, w = ay there exists $m \in \mathbb{N}$ such that

$$(xay)^{3m} = (xayxayxay)^m \in xaayyxayxayS \subseteq xa^2yS$$

Hence, by Theorem 1 the semigroup S is a band of r-Archimedean semigroups.

Let $a, b, c \in S$, $x, y \in S^1$. By (6), for u = xa, v = b, w = cy, there exists $n \in \mathbb{N}$ such that $(xabcy)^n \in xacybcyS$ and so $(xabcy)^n = xacybcyt$ for some $t \in S$.

Using (6) for u = xac, v = ybcytxacy, w = bcyt, there exists $m \in \mathbb{N}$ such that $(xacybcyt)^{2m} = (xacybcytxacybcyt)^m \in xacbcytybcytxacybcytS \subseteq xacbcyS$. Thus

$$(xabcy)^{2nm} = (xacybcyt)^{2m} \in xacbcyS.$$

Similarly, by (6) for u = xa, v = c, w = bcy there exists $p \in \mathbb{N}$ such that

 $(xacbcy)^p \in xabcycbcyS \subseteq xabcyS.$

Hence, by (2) it follows that $abc \rho acbc$ whence ρ is a right quasinormal band congruence on S and S is a right quasinormal band of r-Archimedean semigroups. \Box

Recall that a band B is a right seminormal band if efg = egefg for every $e, f, g \in B$.

Theorem 6. A semigroup S is a right seminormal band of r-Archimedean semigroups if and only if

(7)
$$(\forall u, v, w \in S) (\exists n \in \mathbb{N}) (uvw)^n \in uwS.$$

PROOF. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ where Y is a right seminormal band and S_{α} is an r-Archimedean semigroup for every $\alpha \in Y$. Then, for $u \in S_{\alpha}$, $v \in S_{\beta}$, $w = S_{\gamma}$ we have $uvw \in S_{\alpha\beta\gamma} = S_{\alpha\gamma\alpha\beta\gamma}$. Since $uwuvw \in S_{\alpha\gamma\alpha\beta\gamma}$, there exists $n \in \mathbb{N}$ such that

$$(uvw)^n \in uwuvwS \subseteq uwS$$

and so (7) holds.

208

Conversely, let statement (7) hold on a semigroup S. Let $a \in S$, $x, y \in S^1$. Then for u = xa, v = yxayxay and w = ay there exists $n \in \mathbb{N}$ such that

$$(xay)^{3n} = (xayxayxay)^n \in xaayS = xa^2yS.$$

Also, by (7) for u = xa, v = a and $w = yxa^2y$ there exists $m \in \mathbb{N}$ such that $(xa^2y)^{2m} = (xaayxa^2y)^m \in xayxa^2yS \subseteq xayS$. By Theorem 1 we have that S is a band of r-Archimedean semigroups. Hence, $S = \bigcup_{\alpha \in Y} S_{\alpha}$, Y is a band and S_{α} is an r-Archimedean semigroup for all $\alpha \in S$. If $a \in S_{\alpha}$, $b \in S_{\beta}$, $c \in S_{\gamma}$, then $abc \in S_{\alpha\beta\gamma}$ and by (7) there exists $n \in \mathbb{N}$ such that $(abc)^n \in acS$. Now, there exists $t \in S$ such that $(abc)^n = act$. If $t \in S_{\delta}$ then $\alpha\beta\gamma = \alpha\gamma\alpha\delta = \alpha\gamma\alpha\gamma\delta = \alpha\gamma\alpha\beta\gamma$. Hence, Y is a right seminormal band. \Box

Recall that a band B is a rectangular band if efg = eg for every $e, f, g \in B$.

Theorem 7. A semigroup S is a rectangular band of r-Archimedean semigroups if and only if

(8)
$$(\forall x, y, z \in S) (\exists n \in \mathbb{N}) (xyz)^n \in xzS, (xz)^n \in xyzS.$$

PROOF. Let Y be a rectangular band, $S = \bigcup_{\alpha \in Y} S_{\alpha}$ and S_{α} an r-Archimedean semigroup for every $\alpha \in Y$. Then for $x, y, z \in S$ there exists $\alpha, \beta, \gamma \in Y$ such that $x \in S_{\alpha}, y \in S_{\beta}, z \in S_{\gamma}$ and $xyz \in S_{\alpha}S_{\beta}S_{\gamma} \subseteq S_{\alpha\beta\gamma} = S_{\alpha\gamma}, xz \in S_{\alpha}S_{\gamma} \subseteq S_{\alpha\gamma}$. Since $S_{\alpha\gamma}$ is an r-Archimedean semigroup, we have that (8) holds.

Conversely, let statement (8) hold on a semigroup S. Let η be the relation on S defined by

(9)
$$a\eta b \iff (\exists n \in \mathbb{N}) \quad a^n \in bS, \ b^n \in aS.$$

From $a^2 \in aS$ it follows that η is a reflexive relation. Clearly, η is a symmetric relation.

Let $a, b, c \in S$ and

$$a\eta b \iff (\exists n \in \mathbb{N})a^n \in bS, \ b^n \in aS,$$

$$b\eta c \iff (\exists m \in \mathbb{N})b^m \in cS, \ c^m \in bS.$$

For $k = \max\{n, m\}$ we have $a^k \in bS$, $b^k \in aS \cap cS$, $c^k \in bS$. Hence, there exist $u, v, w \in S$ such that $a^k = bu$, $b^k = cv$, $c^k = bw$. Now, by (8) for $x = b, z = u, y = b^k$ there exists $p \in \mathbb{N}$ such that

(10)
$$(a^k)^p = (bu)^p \in bb^k uS \subseteq b^k S \subseteq cS.$$

Similarly, by (8) for x = b, z = w, $y = b^k$ there exists $q \in \mathbb{N}$ such that

(11)
$$(c^k)^q = (bw)^q \in bb^k wS \subseteq b^k S \subseteq aS.$$

From (10) and (11) for $r = \max\{p, q\}$ we have $a^{kr} \in cS$, $c^{kr} \in aS$ and so $a\eta c$. Hence, η is a transitive relation and it follows that η is an equivalence relation.

To show that η is right compatible, let $a,b,c\in S$ be arbitrary elements such that

$$a\eta b \iff (\exists n \in \mathbb{N})a^n \in bS, \ b^n \in aS$$

For x = a, z = c and $y = a^n$ there exists (by (8)) $p \in \mathbb{N}$ such that $(ac)^p \in aa^n cS$ and so $(ac)^p = aa^n cu$ for some $u \in S$. Now, since $a^n = bv$ for some $v \in S$ we have

(12)
$$(ac)^p = aa^n cu = a^n acu = bvacu.$$

From (12) for x = b, y = va, z = cu there exists $q \in \mathbb{N}$ such that

(13)
$$(ac)^{pq} = (bvacu)^q \in bcuS \subseteq bcS.$$

Similarly, for x = b, $y = b^n$ and z = c there exists $r \in \mathbb{N}$ such that $(bc)^r \in bb^n cS$ and so $(bc)^r = bb^n cv = b^n bcv$ for some $v \in S$. Now, from $b^n = aw$, for some $w \in S$ we have

(14)
$$(bc)^r = b^n bcv = awbcv.$$

From (8) and (14) for x = a, y = wb and z = cv there exists $j \in \mathbb{N}$ such that

(15)
$$(bc)^{rj} = (awbcv)^j \in acvS \subseteq acS.$$

From (13) and (15) for $i = \max\{pq, rj\}$ we have $ac\eta bc$ and so η is right compatible.

From $a\eta b$ we have $a^n = bs$ for some $s \in S$, and by (8) for $x = c, y = a^n$, z = a and some $m \in \mathbb{N}$ it follows that $(ca)^m \in ca^n aS = cbsaS \subseteq cbS$. Similarly, $(cb)^k \in caS$ for some $k \in \mathbb{N}$. For $r = \max\{m, k\}$ it follows that $ca\eta cb$ and so η is left compatible.

Hence, η is a congruence relation.

From $(a^2)^4 \in aS$ and $a^4 \in a^2S$ we have $a\eta a^2$ and so η is a band congruence relation.

By (8) we conclude that $abc\eta ac$ for every $a, b, c \in S$. Hence it follows that η is a rectangular band congruence on S.

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$, where Y is a rectangular band and S_{α} are η classes. If $a, b \in S_{\alpha}$, then $b^2 \in S_{\alpha}$ and by (8) there exists $n \in \mathbb{N}$ such that

210

 $a^n \in b^2 S$. Now, $a^n = b^2 u$ for some $u \in S$. If $u \in S_\beta$, then $a^{n+1} = bbua \in bS_\alpha S_\beta S_\alpha \subseteq bS_{\alpha\beta\alpha} = bS_\alpha$. Hence, S_α is an *r*-Archimedean semigroup and so the semigroup S is a rectangular band Y of *r*-Archimedean semigroups S_α . \Box

Similarly, the semigroup S is a rectangular band of l-Archimedean semigroups if and only if for every $x, y, z \in S$ there exists $n \in \mathbb{N}$ such that $(xyz)^n \in Sxz, (xz)^n \in Sxyz$. Now, the semigroup S is a rectangular band of t-Archimedean semigroups if and only if for every $x, y, z \in S$ there exists $n \in \mathbb{N}$ such that $(xyz)^n \in xzS \cap Sxz, (xz)^n \in xyzS \cap Sxyx$.

We remark that Theorem 7 can be proved by Theorem 1. It is easy to see that $\eta \subseteq \rho$ where ρ is defined by (2) on S^1 and η is a congruence on S.

Example 1. Let S be a semigroup defined by the following Cayley table:

	a	e	f	g	h
a	е	е	f	е	f
e	e	e	f	е	f
f	e	e	f	е	f
g	g	g	h	g	h
h	g	g	h	g	h

Then $S = S_{\alpha} \cup S_{\beta}$ where $S_{\alpha} = \{a, e, f\}, S_{\beta} = \{g, h\}, S_{\alpha}S_{\beta}S_{\alpha} \subseteq S_{\alpha}, S_{\beta}S_{\alpha}S_{\beta} \subseteq S_{\beta}$ and S_{α} and S_{β} are *r*-Archimedean semigroups. In this example the semigroup S is a left zero band of *r*-Archimedean semigroups.

References

- S. BOGDANOVIĆ, Semigroups with a system of subsemigroups, Inst. of Math., Novi Sad, 1985.
- [2] S. BOGDANOVIĆ and M. ĆIRIĆ, Semigroups Galbiati- Veronesi IV (Bands of nilextensions of groups), *Facta Universitatis (to appear)*.
- [3] J. L. GALBIATI and M. L. VERONESI, Sui semigruppi che sono un band di t-semigrupi, Istituto Lombardo (Rend. Sc.) A114 (1980), 217–234.
- [4] M. PETRICH, Lectures in semigroups, Akad. Verlag, Berlin, 1977.
- [5] M. S. PUTCHA, Band of t-Archimedean semigroups, Semigroup Forum 6 (1973), 232-239.

PETAR PROTIĆ FACULTY OF CIVIL ENGINEERING BEOGRADSKA 14, 18000 NIŠ YOGOSLAVIA

(Received August 11, 1993; revised December 10, 1993)