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Some remarks on Rizza–Kähler manifolds

By TADASHI AIKOU (Kagoshima)

Dedicated to the 90th birthday of Professor Lajos Tamássy

Abstract. In the present paper we prove that if an almost complex structure J on

a Finsler manifold (M,L) is parallel with respect to the Berwald connection D of (M,L),

then (M,L) is a Berwald space. Furthermore, in this case, the Berwald connection D is

induced from the Levi–Civita connection of a Kähler metric on M .

1. Introduction

Let M be an n-dimensional smooth manifold, and π : TM → M its tangent

bundle. We denote by V := ker{dπ : TTM → TM} the vertical subbundle over

TM . Since the quotient bundle TTM/V is isomorphic to the pull-back bundle

π∗TM , we obtain the following short exact sequence of vector bundles:

O −−−−→ V
ι−−−−→ TTM

d̃π−−−−→ π∗TM −−−−→ O, (1.1)

where ι : V ↪→ TTM is the inclusion, and d̃π := (π, dπ).

Let y ∈ TxM be a tangent vector at x ∈ M , where TxM = π−1(x) is the

tangent space at x ∈ M . Then the pair v = (x, y) denotes a point in TM .

Since every subspace of TvTM complementary to the fibre Vv at v ∈ TM is

mapped isomorphically onto the tangent space Tπ(v)M , there is no canonical

choice of a subspace Hv complementary to Vv. Thus we shall fix a complementary

subspace at each point v ∈ TM . An Ehresmann connection for TM is a subbundle

H ⊂ TTM complementary to V .
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Definition 1.1. An Ehresmann connection H of a vector bundle TM is called

a nonlinear connection for TM if it satisfies the following conditions:

(1) The distribution H : TM 3 v 7−→ Hv ⊂ TvTM is smooth on TM\{0M} and

is continuous on the whole of TM , where 0M is the zero section of TM .

(2) The distribution H is invariant under the action m of R on TM defined by

mλ(v) := (x, λ · y), i.e.,
dmλ(Hv) = Hmλ(v) (1.2)

for any λ ∈ R and v = (x, y) ∈ TM .

Remark 1.1. If H is smooth on the whole of TM , then it is called linear.

Alternatively, a non-linear connection is defined as a V -valued 1-form θ on

TM satisfying θ(Z) = Z for any section Z of V . Thus θ is a splitting of the exact

sequence (1.1):

O V TTM π∗TM O.- -¾ - -
ι

θ

d̃π

The Ehresmann connection H = ker(θ) is also called a horizontal subbundle of

TTM .

The action m of R on TM induces the so-called Liouville vector field E by

Ev(f) := d

dλ

∣∣∣
λ=0

f(meλ(v)), f ∈ C∞(TM). (1.3)

Considering E as a section of V , we call it the tautological section of V .

Let θ be a nonlinear connection for TM . A vector field X in M is parallel

along a regular curve c : [a, b] → M with respect to θ if it satisfies the ordinary

differential equation

(X ◦ c)∗θ = 0, (1.4)

or, equivalently, its velocity vector field (X ◦ c)′ is always horizontal, i.e.,
(X ◦ c)′(t) ∈ H(X◦c)(t) for all t ∈ [a, b]. Equation (1.4) has a unique solution Xv

for each initial value v ∈ T(c(a)M , on which it depends smoothly. The parallel

transport Pc(t) : Tc(a)M → Tc(t)M defined by

Pc(t)(v) = Xv(t) (1.5)

has the homogeneity property

Pc(t)(λ · v) = λ · Pc(t)(v) (1.6)

for any v ∈ TMc(a) and λ ∈ R, where we write λ · v := mλ(v) for simplicity. The

parallel transport Pc(t) is a diffeomorphism between the fibres, but not a linear

isomorphism in general. A nonlinear connection is linear if and only if Pc(t) is

a linear isomorphism between the fibres for every curve c : [a, b] → M and all

t ∈ [a, b].
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2. Canonical connection

Let in the sequel Ak(F ) be the space of all k-forms with values in a vector

bundle F . Then, in particular, A0(F ) = Γ (F ) denotes the space of all smooth

sections of F .

If a nonlinear connection θ is specified in TM , then there exists a partial

connection δ : Γ (V ) → Γ (V ⊗H∗) along H = ker(θ) in the bundle V , where H∗

is the dual bundle of H. Moreover, any partial connection δ can be extended to

a connection D : Γ (V ) → Γ (V ⊗ T ∗TM) so that the diagram

Γ (V ) Γ (V ⊗ T ∗TM)

Γ (V ⊗H∗)

@
@
@
@
@@R ?

-

δ

D

1⊗p
©

is commutative, where p : T ∗TM → H∗ is the natural projection and T ∗TM is

the dual bundle of TTM (see [Ba-Bo]).

We suppose that a nonlinear connection θ is given in TM . Since we do

not assume the differentiability of θ over 0M , the parallel translation Pc along

any curve c in M is compatible only with the scalar multiplication, but not

with the addition in general. Therefore we can not define a connection ∇ on

TM from a nonlinear connection θ in general, however, we can show that any θ

induces a connection D on the vertical subbundle V as the extension of a partial

connection δ.

A connection D in the bundle V is usually defined to be a covariant derivative

in V , i.e., as a homomorphism D : Γ (V ) → A1(V ) satisfying the Leibniz rule

D(f · Z) = df ⊗Z + fDZ
for all f ∈ C∞(TM) and Z ∈ Γ (V ). We shall now introduce a connection D

associated with a given nonlinear connection θ.

Since the vertical subbundle V is isomorphic to the induced bundle π∗TM ,

any vector field X in M is naturally lifted to a section XV ∈ Γ (V ). The section

XV is defined as the vector field which is tangent to the curve c(t) = (x, y+tX(x))

in the fiber TxM at t = 0. The map TxM 3 X(x) 7−→ XV (v) ∈ Vv is an

isomorphism. The vector field XV is called the vertical lift of X. In the sequel,

we use the superscript V for the vertical lifts of vector fields on M .

On the other hand, for any vector field X in M , there exists a section XH

of H such that dπv(X
H) = Xπ(v) at any point v ∈ TM . The vector field XH on
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the total space TM is called the horizontal lift of X. In the sequel, we use the

superscript H for the horizontal lifts of vector fields on M .

Since any vector field Y on M is a smooth map Y : M → TM such that

π ◦ Y = id, its derivative dYx : TxM → TY (x)TM satisfies

dπ

(
dY

(
dc

dt

)
−
(
dc

dt

)H
)

= 0

for any regular curve c in M . Then it is easy to check that

dY

(
dc

dt

)
= L(dc/dt)HY V +

(
dc

dt

)H

holds, where LXH denotes the Lie derivative by XH . Then, since H = ker(θ), we

have

(Y ◦ c)∗θ
(

d

dt

)
= θ

(
L(dc/dt)HY V +

(
dc

dt

)H
)

= θ
(L(dc/dt)HY V

)
,

and thus Y is parallel vector field on M with respect to θ if and only if

θ
(LXHY V

)
= 0

for all X ∈ Γ (TM). Hence, it is natural to define a partial connection δ : Γ (V ) →
Γ (V ⊗H∗) by

δXZ := θ (LXZ) = θ([X ,Z]) (2.1)

for all Z ∈ Γ (V ) and X ∈ Γ (H).

Since the vertical subbundle V is relatively flat, the partial connection δ may

be extended to a connection D of V so that the covariant derivative along V is

flat, i.e.,

DZXV = 0 (2.2)

for all Z ∈ Γ (V ) and X ∈ Γ (TM).

Definition 2.1. The connection D : Γ (V ) → Γ (V ⊗T ∗TM) := A1(V ) defined

by (2.1) and (2.2) is called the canonical connection on V associated with the given

nonlinear connection θ.

From the definition of E and (2.2), we have DZE = Z for all Z ∈ Γ (V ), and

the homogeneity condition (1.2) implies DXE = θ (LXE) = θ (−LEX ) = 0 for all

X ∈ Γ (H). Therefore the given nonlinear connection θ is recovered by D.

Proposition 2.1. The canonical connection D associated with θ satisfies

DE = θ (2.3)

for the tautological section E of V .



Some remarks on Rizza–Kähler manifolds 109

3. Finsler manifolds and Berwald connections

In the sequel of this paper, we use the chart (π−1(U), (xi, yi)1≤i≤n) in TM

induced by a chart (U, (xi))1≤i≤n in M , where y1, . . . , yn are the fibre coordinates

in each TpM , p ∈ U .

Definition 3.1. A function L : TM → R is called a (real) Finsler metric if it

satisfies

(1) L is continuous on the total space TM , and is smooth on the slit tangent

bundle TM\{0M},
(2) L(v) ≥ 0 for every v ∈ TM , and the equality holds if and only if v = 0,

(3) L(λ · v) = λL(v) for every v ∈ TM and λ ∈ R+,

(4) L is strongly convex, i.e., the Hessian (Gij) defined by

Gij =
1

2

∂2L2

∂yi∂yj
(3.1)

is positive definite at each point of π−1(U).

Then the pair (M,L) is called a Finsler manifold. The Minkowski norm of v ∈
TM is measured by ‖v‖ = L(v).

The equation of a geodesic in (M,L) is given by

d2xi

ds2
+ 2Gi

(
x,

dx

ds

)
= 0, (3.2)

where s is the arc-length with respect to the Finsler metric L, and

Gi =
1

4

∑
Gim

(
∂Gjm

∂xk
+

∂Gmk

∂xj
− ∂Gjk

∂xm

)
yjyk.

Then the velocity vector field of the natural lift c̃ = (c, c′) of a geodesic c is given

by

c̃′ =
∑

yj
[

∂

∂xj
−
∑ ∂Gi

∂yj

(
x,

dx

ds

)
∂

∂yi

]
(c, c′).

We define a nonlinear connection θ so that c̃ ′ is horizontal, i.e., by

θ =
∑ ∂

∂yi
⊗ θi :=

∑ ∂

∂yi
⊗
(
dyi +

∑
N i

j(x, y) dx
j
)
, (3.3)

where the coefficients N i
j are given by

N i
j :=

∂Gi

∂yj
=

1

2

∑
Gim

(
∂Gjm

∂xk
+

∂Gmk

∂xj
− ∂Gjk

∂xm

)
yk. (3.4)
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Definition 3.2. The nonlinear connection θ defined by (3.3) is called the Ber-

wald nonlinear connection of (M,L). The canonical connection D associated with

the Berwald nonlinear connection θ is called the Berwald connection of (M,L).

The connection forms ωi
j of D with respect to the local frame field

(∂/∂yi)1≤i≤m of V are given by ωi
j =

∑
Γ i
jkdx

k with the coefficients

Γ i
jk =

∂N i
k

∂yj
. (3.5)

In fact, from (2.1)

D(∂/∂xi)H
∂

∂yj
= θ

[(
∂

∂xi

)H

,
∂

∂yj

]
=

∑ ∂Nh
i

∂yj
∂

∂yh
.

In the case of TM , both V and H are isomorphic to the bundle π∗TM
induced from TM via π. Therefore the derivative dπ of π can also be considered

as the projection from T (TM) onto V with ker(dπ) = V , and thus dπ can be

interpreted as a section of A1(V ) given locally by

dπ =
∑ ∂

∂yi
⊗ dxi.

From (3.4) and (3.5) we obtain

Proposition 3.1. The Berwald connection D satisfies

Ddπ ≡ 0. (3.6)

Any Finsler metric L defines a Riemannian structure G on the vertical sub-

bundle V by

G

(
∂

∂yi
,

∂

∂yj

)
= Gij . (3.7)

The homogeneity assumption for L implies L2 = G(E , E) for the tautological

section E . Then, by the definition of the Berwald nonlinear connection θ, we

have X (L2) = 0 for all X ∈ Γ (H). Thus L is constant along the horizontal

subbundle H, i.e.,

X (L) ≡ 0 (3.8)

for all X ∈ Γ (H).

Since the vertical lift XV is related to the horizontal lift XH by

XV = dπ(XH),

[XH , Y H ] − [X,Y ]H ∈ Γ (V ) implies dπ([XH , Y H ]) = dπ([X,Y ]H) = [X,Y ]V ,

and thus (3.6) implies

DXHY V −DY HXV = [X,Y ]V (3.9)

for all X,Y ∈ Γ (TM).
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4. Landsberg spaces and Berwald spaces

The specific goal of this section is to recall some facts on Landsberg spaces

and Berwald spaces which we need later on (see, e.g., [Ai3], [Ai-Ko], [Ic1], [Sz] for

details).

Let (M,L) be a Finsler manifold, and let (ϕt) be the local flow generated by a

vector fieldX inM , and (ϕH
t ) the flow of the horizontal liftXH ofX with respect

to the Berwald nonlinear connection θ. From (3.8), we have d
dt

∣∣
t=0

(ϕH
t )∗L = 0.

Therefore ϕH
t preserves the indicatrix Ix := {y ∈ TxM | L(x, y) = 1} for all

x ∈ M :

Iϕt(x) = ϕH
t (Ix). (4.1)

Since each fibre V(x,y) over (x, y) ∈ TM is the tangent space Ty(TxM) of

TxM at y ∈ TxM , each fibre TxM is a Riemannian space endowed the metric

Gx := G ¹ TxM . A Finsler manifold (M,L) is called a Landsberg space if the

parallel transport Pc(t) along any curve c in M is an isometry from the initial

Riemannian space (Tc(a)M,Gc(a)) to (Tc(t)M,Gc(t)) for all t ∈ [a, b]. Thus (M,L)

is a Landsberg space if and only if

LXHG =
d

dt

∣∣∣
t=0

(ϕH
t )∗G = 0 (4.2)

for any X ∈ Γ (TM). By the definition of D, this condition is equivalent to

DXHG = 0 (4.3)

for all X ∈ Γ (TM) (see [Ai-Ko]).

On the other hand, a Finsler manifold (M,L) is called a Berwald space if the

parallel translation Pc(t) is an isometry between the normed tangent spaces, i.e.,

‖v − w‖ =
∥∥Pc(t)(v)− Pc(t)(w)

∥∥ (4.4)

is satisfied for all v, w ∈ Tc(a)M and t ∈ [a, b] (see [Ic1]). Then, by a well-known

theorem due to Szabó [Sz], the Berwald connection D of a Berwald space (M,L)

is induced from the Levi–Civita connection ∇g of a Riemannian metric g on M ,

i.e.,

DXHY V = (∇g
XY )

V
(4.5)

for all X,Y ∈ Γ (TM).

Since we have G(E , E) = L2, the tautological section E is a unit vector at

every point y ∈ Ix. Further, the gradient vector field of the level hypersurface
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Ix ⊂ TxM is given by

∑
Gim ∂L

∂ym

(
∂

∂yi

)
=

1

2L

∑
Gim ∂L2

∂ym

(
∂

∂yi

)

=
1

L

∑
GimGlmyl

(
∂

∂yi

)
=

1

L

∑
yi

∂

∂yi

at each point of Ix. Thus E may be considered as the outward-pointing unit

normal vector field of the indicatrix Ix. Hence, for the volume form dµ =√
detG dy1 ∧ · · · ∧ dyn on each tangential Riemannian space (TxM,Gx), the

(n− 1)-form

dµI = ι(E)dµ =
∑

(−1)j−1yj
√
detG dy1 ∧ · · · ∧ ˇdyj ∧ · · · dyn (4.6)

defines a volume form of each indicatrix Ix, and the volume vol(Ix) of Ix is given

by vol(Ix) =
∫
Ix

dµI .

The averaged Riemannian metric of G is a Riemannian metric g onM defined

by

g(X,Y ) =
1

vol(Ix)

∫

Ix

G(XV , Y V ) dµI , (4.7)

and the averaged connection of D is a linear connection ∇ on TM defined by

g(∇XY, Z) =
1

vol(Ix)

∫

Ix

G
(
DXHY V , ZV

)
dµI (4.8)

for all X,Y, Z ∈ Γ (TM), respectively (see [Ma-Ra-Tr-Ze], [To-Et]). Since E satis-

fies (2.3), we have

Lemma 4.1 (cf. [Ai-Ko]). If (M,L) is a Landsberg space, then

LXHdµI = 0 (4.9)

for every X ∈ Γ (TM), and therefore the volume of the indicatrix Ix is constant.

From Lemma 4.1 we conclude that

X

(∫

Ix

fdµI

)
=

∫

Ix

LXH (fdµI) =

∫

Ix

XH(f) dµI

for all X ∈ Γ (TM) and f ∈ C∞(TM) if (M,L) is a Landsberg space. This

identity implies that ∇ is compatible with the averaged metric g. Further, (3.9)

implies that ∇ is torsion-free.
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Theorem 4.1 ([Ai3]). If (M,L) is a Landsberg space, then the averaged

connection ∇ of D is the Levi–Civita connection of the averaged Riemannian

metric g of G.

In particular, if (M,L) is a Berwald space, we have the the following well-

known result.

Theorem 4.2. ([Sz], [Vi]) If (M,L) is a Berwald space, then the Berwald

connection D is induced by the Levi–Civita connection ∇g of the averaged Rie-

mannian metric g of G, i.e., D is given by (4.5) for all X,Y ∈ Γ (TM).

5. Rizza–Kähler manifolds

In the sequel of this paper we assume that (M,L) is a 2n-dimensional Finsler

manifold which admits an almost complex structure J , i.e., an endomorphism J

of TM such that J ◦ J = −I, where I is the identity morphism of TM .

Definition 5.1 ([Ri1], [Ic3]). A Finsler metric L is called a complex Finsler

metric or Rizza metric if it satisfies

L ◦ (aI + bJ)X =
√
a2 + b2 L ◦X (5.1)

for all X ∈ Γ (TM) and a, b ∈ R. Then the triplet (M,J,L) is called a Rizza

manifold.

Example 5.1. Let h be a Hermitian metric on an almost complex manifold

(M,J). For anyX ∈ Γ (TM), we put L◦X =
√
h(X,X). Then, since h(JX,X)+

h(X,JX) = 0 is satisfied, it is easily checked that L satisfies (5.1). Thus Rizza

manifolds are natural generalizations of Hermitian manifolds.

Let φθ be the endmorphism of TM defined by φθ = cos θ · I + sin θ · J for

each θ ∈ R. Then we can write assumption (5.1) as L ◦ φθX = L ◦ X for any

θ ∈ R. By direct calculation, we have φθ1 ◦ φθ2 = φθ1+θ2 for all θ1, θ2 ∈ R. Using
this fact, we obtain

Theorem 5.1 ([Ic3], [Ri1]). For any Finsler metric L on an almost complex

manifold (M,J), the function L ◦ X =
(

1
2π

∫ 2π

0
L(φθX)2dθ

)1/2
defines a Rizza

metric on (M,J).

The almost complex structure J of TM is lifted to that of V :

JV XV := (JX)V (5.2)



114 Tadashi Aikou

for any X ∈ Γ (TM). Suppose that JV is parallel with respect to the Berwald

connection D:

DJV = 0. (5.3)

From the definitions of D and JV , it is obvious that DZJV = 0 for all Z ∈ Γ (V ).

Thus this assumption is equivalent to

DXJV = 0 (5.4)

for all X ∈ Γ (H). Since the Kähler condition in [Ic4] implies (5.3), the class of

Rizza manifolds satisfying (5.3) includes the class of Kaehlerian Finsler manifolds

in [Ic4]. To distinguish our Kählerity from that of [Ic1] or [Ab-Pa], we use a new

terminology:

Definition 5.2. A Rizza manifold (M,J,L) is said to be Rizza–Kähler if (5.3)

is satisfied.

Remark 5.1. Since the Kähler condition in [Le-Wo] implies the corresponding

condition in [Ic4], our Rizza–Kähler manifolds are defined in wider sense than that

of [Le-Wo]. A complex manifold M with a normal (a, b, f)-metric L discussed in

[Ic-Ha] is an example of Rizza–Kähler manifolds.

The integrability tensor for J is the Nijenhuis tensor field NJ given by

NJ (X,Y ) := [X,Y ] + J [JX, Y ] + J [X, JY ] − [JX, JY ] for all X,Y ∈ Γ (TM).

From (3.9), the assumption (5.3) implies

(NJ(X,Y )V = ([X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]V

= [X,Y ]V + JV [JX, Y ]V + JV [X, JY ]V − [JX, JY ]V

= DXHY V −DY HXV + JV
(
D(JX)HY V −DY H (JX)V

)

+ JV (DXH (JY )V −D(JY )HXV )−D(JX)H (JY )V +D(JY )H (JX)V

= DXHY V −DY HXV + JV D(JX)HY V +DY HXV −DXHY V

− JV D(JY )HXV − JV D(JX)HY V + JV D(JY )HXV = 0

for all X,Y ∈ Γ (TM). Thus NJ ≡ 0, therefore J is integrable.

Proposition 5.1 ([Ic4]). If the Berwald connection D satisfies (5.3), then J

is integrable, i.e., (M,J) is a complex manifold.

Remark 5.2. This proposition was first proved by Ichijyō [Ic4] in terms of

the Cartan connection of (M,L). The essential fact we need in the proof above

is the condition (3.9) of D.
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We suppose that (5.3) is satisfied. Since (M,J) is a complex manifold, we

identify TM with the holomorphic tangent bundle over (M,J). Then each fibre

TxM over x ∈ M is a complex manifold with complex structure Jx. Since

LXH (JY )V , JV (LXHY V ) ∈ Γ (V ) for all X,Y ∈ Γ (TM), we obtain

(DXHJV )(Y V ) = DXH (JV Y V )− JV (DXHY V ) = (LXHJV )Y V .

Proposition 5.2. If (M,J,L) is a Rizza–Kähler manifold, then

LXHJV = 0 (5.5)
for all X ∈ Γ (TM).

A real vector field X on a complex manifold (M,J) is real holomorphic if

X1,0 := (X −√−1JX)/2 is a holomorphic vector field on (M,J). A vector field

X is real holomorphic if and only if the flow (ϕt) generated by X is a holomorphic

map of (M,J), i.e., dϕt ◦Jx = Jϕt(x) ◦dϕt is satisfied for every x ∈ M . Thus X is

real holomorphic if and only if LXJ = 0, i.e., X is an infinitesimal automorphism

of J .

LetX be a real holomorphic vector field on a Rizza–Kähler manifold (M,J,L).

Then, since (5.5) implies dϕH
t ◦ JV

x = JV
ϕt(x)

◦ dϕH
t , the flow ϕH

t : TxM\{0} →
Tϕt(x)M\{0} generated by the horizontal lift XH of X is a holomorphic map for

every x ∈ M .

Theorem 5.2. If (M,J,L) is a Rizza–Kähler manifold, then (M,L) is a

Berwald space.

Proof. Let ϕH
t : TxM\{0} → Tϕt(x)M\{0} be the flow generated by the

horizontal liftXH of any real holomorphic vector fieldX. By Proposition 5.2, each

ϕH
t is a holomorphic map. Since we are always concerned with M of dimCM ≥ 2,

the isolated singularity {0} of ϕH
t is removable by Hartogs’ theorem (see, e.g.,

[Hu]), and thus each ϕH
t may be extended to a holomorphic map on the whole of

TxM for every x ∈ M .

Let ηa = ya+
√−1y(a) (1 ≤ a ≤ m, (a) = m+a) be the complex coordinates

on each fiber of the holomorphic tangent bundle over (M,J) naturally induced

from the given local complex coordinate system (z1, . . . , zm) (n = 2m) on M .

Denoting by N a
b the coefficients of the Berwald nonlinear connection H in the

complex coordinate system (za, ηa) in TM , the horizontal lifts (∂/∂zb)H of the

members of the local frame field (∂/∂zb)1≤b≤m are given by

(
∂

∂zb

)H

=
∂

∂zb
−
∑

N a
b

∂

∂ηa
,
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where the coefficients N a
b are holomorphic in η = (η1, . . . , ηm). Further, the

relations between the coefficients N i
j and N a

b are given by N a
b := Na

b +
√−1N

(a)
b

and

(
N i

j

)
=


 Na

b N
(a)
b

−N
(a)
b Na

b


 , 1 ≤ i, j ≤ n = 2m.

The power series expansions of N a
b (z, η) with respect to (η1, . . . , ηm) are of the

form

N a
b (z, η) =

∑

c1,...,cm≥0

N a
bc1···cm(z)(η1)c1 · · · (ηm)cm ,

and thus

Na
b (x, y) +

√−1N
(a)
b (x, y)

=
∑

N a
bc1···cm(z)

(
y1 +

√−1y(1)
)c1 · · ·

(
ym +

√−1y(m)
)cm

.

Since the real coefficients N i
j satisfy the homogeneity condition N i

j ◦mλ = λN i
j

for all λ > 0, the surviving terms in the RHS of the above relation are given by

c1 + · · ·+ cm = 1:

Na
b (x, y) +

√−1N
(a)
b (x, y) =

∑
N a

bc(z)
(
yc +

√−1y(c)
)
.

If we put N a
bc(z) = Γ a

bc(x) +
√−1Γ

(a)
bc (x), then we obtain

∑
N a

bc(z)
(
yc +

√−1y(c)
)
=

∑(
Γ a
bc(x)y

c − Γ
(a)
bc (x)y(c)

)

+
√−1

∑(
Γ a
bc(x)y

(c) + Γ
(a)
bc (x)yc

)
.

Consequently we have

Na
b =

∑(
Γ a
bcy

c − Γ
(a)
bc y(c)

)
, N

(a)
b =

∑(
Γ a
bcy

(c) + Γ
(a)
bc yc

)

This shows that the real coefficients N i
j are of the forms N i

j =
∑

Γ i
jky

k, and the

coefficients N i
j of H are polynomials of degree one in (y1, . . . , yn). This shows

that (M,L) is a Berwald space by Szabó’s theorem[Sz]. ¤
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6. Kähler metrics associated with Rizza–Kähler metrics

Let (M,J,L) be a Rizza manifold. If the metric G on V defined by (3.7)

satisfies the Hermitian condition

G(JV Z, JV W) = G(Z,W) (6.1)

for all Z,W ∈ Γ (V ), then L is the norm function L(x, y) =
√∑

gijyiyj of

certain Riemannian metric g =
∑

gijdx
i ⊗ dxj (see [He], [Ic4]). Thus, in [Ic4],

the following Riemannian structure K on V has been introduced:

K(Z,W) :=
1

2

[
G(Z,W) +G(JV Z, JV W)

]
, (6.2)

where Z,W ∈ Γ (V ). Obviously, K satisfies the Hermitian condition, but K is

never obtained from a Finsler metric. Hence K is a generalized Finsler structure.

If (M,J,L) is a Rizza–Kähler manifold, then (4.3) and (5.3) show that the Berwald

connection D of (M,J,L) satisfies

DXHK = 0 (6.3)

for all X ∈ Γ (TM). The aim of this section is to show that D is induced from

the Levi–Civita connection of a Kähler metric on (M,J).

Let (M,J,L) be a Rizza–Kähler manifold. Then, from Theorem 5.2, (M,L)

is a Berwald space, i.e., the Berwald connection D is induced from the Levi–Civita

connection ∇g of the averaged Riemannian metric g defined by (4.7). Further,

from (4.5), we obtain

[(∇g
XJ)Y ]

V
= (DXHJV )Y V = 0

for all X,Y ∈ Γ (TM), and thus ∇g is a complex connection of (M,J).

Let k be the averaged Riemannian metric of K:

k(X,Y ) :=
1

vol(Ix)

∫

Ix

K
(
XV , Y V

)
dµI . (6.4)

Theorem 6.1. Let (M,J,L) be a Rizza–Kähler manifold. Then (M,L) is

a Berwald space, and its Berwald connection D is induced from the Levi–Civita

connection of the averaged Kähler metric k on M .
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Proof. First we show that the metric k is a Hermitian metric on (M,J).

Indeed, from the definitions of K and k, we have

k(JX, JY ) =
1

vol(Ix)

∫

Ix

K
(
JV XV , JV Y V

)
dµI

=
1

vol(Ix)

∫

Ix

K
(
XV , Y V

)
dµI = k(X,Y ).

Furthermore (4.5) implies

k(∇ZX,Y ) =
1

vol(Ix)

∫

Ix

K
(
(∇g

ZX)V , Y V
)
dµI

=
1

vol(Ix)

∫

Ix

K
(
DZHXV , Y V

)
dµI .

Then from (6.3) we obtain

(∇g
Zk)(X,Y ) = Z (k(X,Y ))− k(∇g

ZX,Y )− k(X,∇g
ZY )

=
1

vol(Ix)

∫

Ix

[
ZHK(XV , Y V )−K(DZHXV , Y V )−K(X,DZHY V )

]
dµI

=
1

vol(Ix)

∫

Ix

(DZHK)
(
XV , Y V

)
dµI = 0.

Since ∇g is torsion-free, k is a Kähler metric on M . ¤

Therefore, if (M,J,L) is a Rizza–Kähler manifold, then (M,J) is a Kähler

manifold. As is well-known, since a Hopf manifold never admits any Kähler

metric, there exists no Rizza–Kähler metric on such a manifold. However, any

Hopf manifold admits a locally conformal Kähler metric ([Va]). Hence, in the

next section, we shall consider conformal changes of Rizza metrics.

7. Locally conformal Rizza–Kähler manifolds

First define the operator d∇ : L → d∇L for a Finsler metric L by

i(X)d∇L = XH(L), X ∈ Γ (TM), (7.1)

where XH is the horizontal lift of X with respect to a linear connection ∇. A

Finsler manifold (M,L) is said to be locally conformal Berwald (l.c. Berwald in

short) if there exists a torsion-free linear connection ∇ on TM such that

d∇L = β ⊗ L (7.2)
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for a closed 1-form β on M ([Ai1], [Ai3]). Such a space is a special type of the

so-called Wagner spaces (see [Ha-Ic]).

Let (M,J,L) be a Rizza manifold. We consider a conformal change

Lα := eσαL (7.3)

of L by a local function σα defined on an open subset Uα ⊂ M

Definition 7.1. A Rizza manifold (M,J,L) is called a locally conformal Rizza–

Kähler manifold (l.c. Rizza–Kähler manifold in short) if there exists an open cover

(Uα)α∈A of M and a family (σα)α∈A of functions σα : Uα → R such that all Lα’s

are Rizza–Kähler metrics on Uα.

From Theorem 5.2, the Finsler metric Lα is a Berwald metric on Uα. Since

the Berwald connection Dα of Lα satisfies DαJV = 0, Proposition 5.1 implies

that J is integrable, and thus (M,J) is a complex manifold.

For the Hermitian metric K on V defined by (6.2), we denote by Kα the

Hermitian metric on V ¹ π−1(Uα) obtained by the conformal change Kα =

e2σαK. Then the averaged Riemannian metric kα of Kα is defined by

kα(X,Y ) =
1

vol(Iαx )

∫

Iα
x

Kα
(
XV , Y V

)
dµIα

for all X,Y ∈ Γ (TM), where Iαx = e−σαIx is the indicatrix at x ∈ M with respect

to Lα, and dµIα is the volume form on Iαx :

dµIα =
∑

(−1)i−1
√
detGα widw1 ∧ · · · ∧ ˇdwi ∧ · · · ∧ dwn

= enσα(x)
∑

(−1)i−1
√
detG widw1 ∧ · · · ∧ ˇdwi ∧ · · · ∧ dwn

at w = (w1, . . . , wn) ∈ Iαx , where Gα is the metric obtained by the conformal

change Gα = e2σαG. Since the isomorphism ψα : (TxM,Gx) 3 y −→ ψα(y) =

e−σαy ∈ (TxM,Gα
x) is an isometry, we have

ψ∗
α(dµIα) = enσα(x)

∑
(−1)i−1

√
detG ◦ ψα e−nσα(x)yidy1 ∧ · · · ∧ ďyi ∧ · · · ∧ dyn

=
∑

(−1)i−1
√
detG yidy1 ∧ · · · ∧ ďyi ∧ · · · ∧ dyn = dµI ,

which implies vol(Iαx ) =
∫
Iα
x
dµIα =

∫
Ix

ψ∗
α(dµIα) =

∫
Ix

dµI = vol(Ix). Thus the

averaged Riemannian metric kα obtained from Kα is given by

kα(X,Y ) =
1

vol(Iαx )

∫

Iα
x

Kα(XV , Y V )dµIα
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=
1

vol(Ix)

∫

Ix

(
Kα(XV , Y V ) ◦ ψα

)
dµI

=
e2σα

vol(Ix)

∫

Ix

K
(
XV , Y V

)
dµI = e2σαk(X,Y )

for all X,Y ∈ Γ (TM), i.e., kα is given by the conformal change

kα = e2σαk (7.4)

for the Hermitian metric k defined by (6.4). From Theorem 6.1, the metric kα

is a local Kähler metric for all α ∈ A. Since the Kähler form Ωα of kα is given

by Ωα = e2σαΩ for the one Ω of k, we obtain dΩ = −2dσα ∧ Ω and, hence

(dσα − dσβ) ∧ Ω = 0. By the non-degeneracy of Ω, we have dσα = dσβ on the

intersection Uα∩Uβ 6= φ. Therefore the family (dσα)α∈A of exact local one-forms

dσα glues up to a global 1-form βL on M which implies dΩ = −2βL ∧ Ω. Thus

(M,J, k) is an l.c. Kähler manifold ([Va]).

Theorem 7.1. Let (M,J,L) be an l.c. Rizza–Kähler manifold. Then the

associated Hermitian manifold (M,J, k) is an l.c. Kähler manifold.

Let ∇α be the averaged connection determined by the local connection Dα

with respect to the local metric Gα by the formula (4.8). Since each local con-

nection ∇α is compatible with the local Kähler metric kα, we have

0 = ∇αkα = e2σα (2dσα ⊗ k +∇αk) ,

and thus we obtain

∇αk = −2βL ⊗ k.

Therefore ∇α is the Weyl connection of (M,k) with the Lee form βL of the

conformal class represented by k. The uniqueness of the Weyl connection implies

that the local connections ∇α glue up to a global torsion-free linear connection ∇.

Since each local connection Dα is induced from ∇α, the connection ∇α satisfies

d∇αLα = 0, i.e., d∇αL = −dσα ⊗ L. Hence we obtain

d∇L = −βL ⊗ L (7.5)

on M . Therefore we have

Theorem 7.2. If (M,J,L) is an l.c. Rizza–Kähler manifold, then the un-

derlying real Finsler manifold (M,L) is l.c. Berwald.
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