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Abstract. After having investigated the regular prisms and prism tilings in the

S̃L2R space in the previous work [15] of the second author, we consider the problem of

geodesic ball packings related to those tilings and their symmetry groups pq21. S̃L2R

is one of the eight Thurston geometries that can be derived from the 3-dimensional Lie

group of all 2× 2 real matrices with determinant one.

In this paper we consider geodesic spheres and balls in S̃L2R (even in SL2R), if

their radii ρ ∈ [0, π

2
), and determine their volumes. Moreover, we consider the prisms

of the above space, compute their volumes and define the notion of the geodesic ball

packing and its density. We develop a procedure to determine the densities of the densest

geodesic ball packings for the tilings, or in this paper more precisely, for their generating

groups pq21 (for integer rotational parameters p, q; 3 ≤ p, 2p

p−2
< q). We look for those

parameters p and q above, where the packing density large enough as possible. Now our

record is 0.567362 for (p, q) = (8, 10). These computations seem to be important, since

we do not know optimal ball packing, namely in the hyperbolic space H3. We know

only the density upper bound 0.85326, realized by horoball packing of H3 to its ideal

regular simplex tiling. Surprisingly, for the so-called translation ball packings under the

same groups pq21 in [8] we have got larger density 0.841700 for (p, q) = (5, 10000 → ∞)

close to the above upper bound.

We use for the computation and visualization of the S̃L2R space its projective

model introduced by the first author in [4].

Mathematics Subject Classification: 52C17, 52C22, 52B15, 53A35, 51M20.

Key words and phrases: Thurston geometries, S̃L2R geometry, density of ball packing under
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1. On S̃L2R geometry

The real 2 × 2 matrices ( d b
c a ) with unit determinant ad − bc = 1 constitute

a Lie transformation group by the usual product operation, taken to act on row

matrices as on point coordinates on the right as follows

(z0, z1)

(
d b

c a

)
= (z0d+ z1c, z0b+ z1a) = (w0, w1)

with w =
w1

w0
=

b+ z1

z0 a

d+ z1

z0 c
=

b+ za

d+ zc

(1.1)

as right action on the complex projective line C∞. This group is a 3-dimensional

manifold, because of its 3 independent real coordinates and with its usual neigh-

bourhood topology [9], [17]. In order to model the above structure in the projec-

tive sphere PS3 and in the projective space P3 (see [4]), we introduce the new

projective coordinates (x0, x1, x2, x3) where

a := x0 + x3, b := x1 + x2, c := −x1 + x2, d := x0 − x3,

with positive, then the non-zero multiplicative equivalence as a projective freedom

in PS3 and in P3, respectively. Meanwhile we turn to the proportionality SL2R <

PSL2R, natural in this context. Then it follows that

0 > bc− ad = −x0x0 − x1x1 + x2x2 + x3x3 (1.2)

describes the interior of the above one-sheeted hyperboloid solid H in the usual

Euclidean coordinate simplex, with the origin E0(1; 0; 0; 0) and the ideal points of

the axes E∞

1 (0; 1; 0; 0), E∞

2 (0; 0; 1; 0), E∞

3 (0; 0; 0; 1). We consider the collineation

group G∗ that acts on the projective sphere SP3 and preserves a polarity, i.e. a

scalar product of signature (− − ++), this group leaves the one sheeted hyper-

boloid solid H invariant. We have to choose an appropriate subgroup G of G∗ as

isometry group, then the universal covering group and space H̃ of H will be the

hyperboloid model of S̃L2R (see Figure 1 and [4]).

The specific isometries S(φ) (φ ∈ R) constitute a one parameter group given

by the matrices

S(φ) : (sji (φ)) =




cosφ sinφ 0 0

− sinφ cosφ 0 0

0 0 cosφ − sinφ

0 0 sinφ cosφ


 . (1.3)
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The elements of S(φ) are the so-called fibre translations. We obtain a unique fibre

line to each X(x0;x1;x2;x3) ∈ H̃ as the orbit by right action of S(φ) on X . The

coordinates of points lying on the fibre line through X can be expressed as the

images of X by S(φ):

(x0;x1;x2;x3)
S(φ)−−−→ (x0 cosφ− x1 sinφ;x0 sinφ+ x1 cosφ;

x2 cosφ+ x3 sinφ;−x2 sinφ+ x3 cosφ) (1.4)

for the Euclidean coordinates x := x1

x0 , y := x2

x0 , z := x3

x0 , x
0 6= 0 as well. The

π periodicity for the above coordinates in the above maps can be seen from the

formula (1.4). In (1.3) and (1.4) we can see the 2π periodicity of φ. Moreover, we
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Figure 1. The hyperboloid model

see the (logical) extension to φ ∈ R, as real parameter, to have the universal covers

H̃ and S̃L2R, respectively, through the projective sphere PS3. The elements of

the isometry group of SL2R (and so by the above extension the isometries of

S̃L2R) can be described by the matrix (aji ) (see [4] and [5])

(aji ) =




a00 a10 a20 a30

∓a10 ±a00 ±a30 ∓a20

a02 a12 a22 a32

±a12 ∓a02 ∓a32 ±a22




where

−(a00)
2 − (a10)

2 + (a20)
2 + (a30)

2 = −1, −(a02)
2 − (a12)

2 + (a22)
2 + (a32)

2 = 1,

−a00a
0
2 − a10a

1
2 + a20a

2
2 + a30a

3
2 = 0 = −a00a

1
2 + a10a

0
2 − a20a

3
2 + a30a

2
2, (1.5)

and we allow positive proportionality, of course, as projective freedom. We define

the translation group GT , as a subgroup of the isometry group of SL2R, those
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isometries acting transitively on the points of H and by the above extension on

the points of H̃. GT maps the origin E0(1; 0; 0; 0) onto X(x0;x1;x2;x3). These

isometries and their inverses (up to a positive determinant factor) can be given

by

T : (tji ) =




x0 x1 x2 x3

−x1 x0 x3 −x2

x2 x3 x0 x1

x3 −x2 −x1 x0


 ,

T−1 : (T k
j ) =




x0 −x1 −x2 −x3

x1 x0 −x3 x2

−x2 −x3 x0 −x1

−x3 x2 x1 x0


 . (1.6)

The rotation about the fibre line through the origin E0(1; 0; 0; 0) by angle ω

(−π < ω ≤ π) can be expressed by

REO
(ω) : (rji (E0, ω)) =




1 0 0 0

0 1 0 0

0 0 cosω sinω

0 0 − sinω cosω


 , (1.7)

and the rotation RX(ω) with matrix : (rji (X,ω)) about the fibre line through

X(x0;x1;x2;x3) by angle ω can be derived by formulas (1.6) and (1.7) by conju-

gacy RX(ω) = T−1REO
(ω)T. Thus the above rotation RX(ω), with a specific

X (cosh r, 0, sinh r, 0) ∼ (1, 0, tanh r, 0) has the important matrix (see [15])



1 + sinh2
r−

− sinh2
r cosω

sinh2 r sinω

1

2
sinh 2r−

−
1

2
sinh 2r cosω

−
1
2
sinh 2r sinω

− sinh2 r sinω
1 + sinh2

r−

− sinh2
r cosω

−
1
2
sinh 2r sinω

−
1

2
sinh 2r+

+
1

2
sinh 2r cosω

−
1

2
sinh 2r+

+
1

2
sinh 2r cosω

− 1
2
sinh 2r sinω

1− cosh2
r+

+cosh2
r cosω

cosh2 r sinω

−
1
2
sinh 2r sinω

1

2
sinh 2r−

−
1

2
sinh 2r cosω

− cosh2 r sinω
1− cosh2

r+

+cosh2
r cosω




(1.8)

Horizontal intersection of the hyperboloid solid H with the plane E0E
∞

2 E∞

3 pro-

vides the base plane of the model H̃ = S̃L2R. The fibre through X intersects the
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hyperbolic (H2) base plane z1 = x = 0 in the foot point

Z(z0 = x0x0 + x1x1; z1 = 0; z2 = x0x2 − x1x3; z3 = x0x3 + x1x2). (1.9)

We generally introduce a so-called hyperboloid parametrization by [4] as follows

x0 = cosh r cosφ,

x1 = cosh r sinφ,

x2 = sinh r cos (θ − φ),

x3 = sinh r sin (θ − φ), (1.10)

where (r, θ) are the polar coordinates of the H2 base plane, and φ is the fibre

coordinate. We note that

−x0x0 − x1x1 + x2x2 + x3x3 = − cosh2 r + sinh2 r = −1 < 0.

The inhomogeneous coordinates in (1.11), which will play an important role in

the later E3-visualization of the prism tilings in S̃L2R, are given by

x =
x1

x0
= tanφ,

y =
x2

x0
= tanh r

cos (θ − φ)

cosφ
,

z =
x3

x0
= tanh r

sin (θ − φ)

cosφ
. (1.11)

The infinitesimal arc-length-square can be derived by the standard pull back

method. By T−1-action of (1.6) on the differentials (dx0; dx1; dx2; dx3), we obtain

that in this parametrization the infinitesimal arc-length-square at any point of

S̃L2R is the following:

(ds)2 = (dr)2 + cosh2 r sinh2 r(dθ)2 +
[
(dφ) + sinh2 r(dθ)

]2
. (1.12)

Hence we get the symmetric metric tensor field gij on S̃L2R by components:

gij :=



1 0 0

0 sinh2 r(sinh2 r + cosh2 r) sinh2 r

0 sinh2 r 1


 , (1.13)
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and

dV =
√
det(gij) dr dθ dφ =

1

2
sinh(2r)dr dθ dφ

as the volume element in hyperboloid coordinates. The geodesic curves of S̃L2R

are generally defined as having locally minimal arc length between any two of

their (close enough) points.

By (1.13) the second order differential equation system of the S̃L2R geodesic

curve is the following:

(1.14)
r̈ = sinh(2r) θ̇ φ̇+

1

2

(
sinh(4r)− sinh(2r)

)
θ̇ θ̇,

φ̈ = 2ṙ tanh (r)(2 sinh2 (r) θ̇ + φ̇),

θ̈ =
2ṙ

sinh (2r)

(
(3 cosh (2r)− 1)θ̇ + 2φ̇

)
. (1.15)

We can assume, by the homogeneity, that the starting point of a geodesic curve

is the origin (1, 0, 0, 0). Moreover, r(0) = 0, φ(0) = 0, θ(0) = 0, ṙ(0) = cos(α),

φ̇(0) = sin(α) = −θ̇(0) are the initial values in Table 1 for the solution of (1.14),

and so the unit velocity will be achieved.

Types

0 ≤ α <
π

4
r(s, α) = arsinh

( cosα√
cos 2α

sinh(s
√
cos 2α )

)

(H2 − like direction) θ(s, α) = −arctan
( sinα√

cos 2α
tanh(s

√
cos 2α )

)

φ(s, α) = 2 sinαs+ θ(s, α)

α =
π

4
r(s, α) = arsinh

(√2

2
s
)

(light direction) θ(s, α) = −arctan
(√2

2
s
)

φ(s, α) =
√
2s+ θ(s, α)

π

4
< α ≤ π

2
r(s, α) = arsinh

( cosα√
− cos 2α

sin(s
√
− cos 2α )

)

(fibre-like direction) θ(s, α) = −arctan
( sinα√

− cos 2α
tan(s

√
− cos 2α )

)

φ(s, α) = 2 sinαs+ θ(s, α)

Table 1
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The equation of the geodesic curve in the hyperboloid model has been deter-

mined in [2], with the usual geographical sphere coordinates (λ, α), as longitude

and altitude, respectively, from the general starting position of (1.10), (1.11),

(−π < λ ≤ π, −π
2 ≤ α ≤ π

2 ), and the arc-length parameter 0 ≤ s ∈ R. The

Euclidean coordinates X(s, λ, α), Y (s, λ, α), Z(s, λ, α) of the geodesic curves can

be determined by substituting the results of Table 1 (see [2]) into the equations

(1.10) and (1.11) as follows

X(s, λ, α) = tan (φ(s, α)),

Y (s, λ, α) =
tanh (r(s, α))

cos (φ(s, α)
cos
[
θ(s, α)− φ(s, α) + λ

]
,

Z(s, λ, α) =
tanh (r(s, α))

cos (φ(s, α)
sin
[
θ(s, α)− φ(s, α) + λ

]
. (1.16)

2. Geodesic balls in S̃L2R

Definition 2.1. The distance d(P1, P2) between the points P1 and P2 is de-

fined by the arc length of the geodesic curve from P1 to P2.

The numerical approximation of the distance d(O,P ), by Table 1 and (1.15)

for given P (X,Y, Z) from the origin O, will not be detailed here.

Definition 2.2. The geodesic sphere of radius ρ (denoted by SP1
(ρ)) with

the center in point P1 is defined as the set of all points P2 with the condition

d(P1, P2) = ρ. Moreover, we require that the geodesic sphere is a simply connected

surface without selfintersection.

Definition 2.3. The body of the geodesic sphere of centre P1 and with radius

ρ is called geodesic ball, denoted by BP1
(ρ), i.e., Q ∈ BP1

(ρ) iff 0 ≤ d(P1, Q) ≤ ρ.

Figure 2.a shows a geodesic sphere of radius ρ = 1.3 with centre O and

Figure 2.b shows its intersection with the (x, z) plane. From (1.15) it follows that

S(ρ) is a simply connected surface in E3 and S̃L2R, respectively, if ρ ∈ [0, π2 ).

If ρ ≥ π
2 then the universal cover should be discussed. Therefore, we consider

geodesic spheres and balls only with radii ρ ∈ [0, π2 ) in the following. These will

be satisfactory for our cases.
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2.1. The volume of a geodesic ball. The volume formula of the geodesic ball

B(ρ) follows from the metric tensor gij . We obtain the connection between the

hyperboloid coordinates (r, θ, φ) and the geographical coordinates (s, λ, α) in a

standard way by Table 1 and by (1.15). Therefore, the volume of the geodesic

ball of radius ρ can be computed by the following

Theorem 2.1.

Vol(B(ρ)) =

∫

B

1

2
sinh(2r) dr dθ dφ = 4π

∫ ρ

0

∫ π
4

0

1

2
sinh(2r(s, α))|̇J1| dα ds

+ 4π

∫ ρ

0

∫ π
2

π
4

1

2
sinh(2r(s, α))|̇J2| dα ds (2.1)

where |J1| =
∣∣∣

∂r
∂s

∂r
∂α

∂φ
∂s

∂φ
∂α

∣∣∣ and similarly |J2|(by Table 1 and ∂θ
∂λ

= 1) are the corre-

sponding Jacobians.

The complicated formulas above need numerical approximations by computer

(see Figure 3).

3. Regular prism tilings and their space groups pq21

In [15] we have defined and described the regular prisms and prism tilings

with a space group class Γ = pq21 of S̃L2R. These will be summarized in this

section.
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Figure 3. The increasing function ρ 7→ Vol(B(ρ)).

Definition 3.1. Let P i be an infinite solid that is bounded by certain surfaces

that can be determined (in [15]) by “side fibre lines” passing through the vertices

of a regular p-gon Pb lying in the base plane. The images of solids P i by S̃L2R

isometries are called infinite regular p-sided prisms. Here regular means that the

side surfaces are congruent to each other under rotations about a fiber line (e.g.

through the origin).

The common part of P i with the base plane is the base figure of P i that is

denoted by P and its vertices coincide with the vertices of Pb, but P is not

assumed to be a polygon.

Definition 3.2. A bounded regular p-sided prism is analogously defined if the

face of the base figure P and its translated copy Pt, under a fibre translation by

(1.3) and so (1.5), are also introduced. The faces P and Pt are called cover faces.

Remark 3.1. All cross-sections of a prism generated by fibre translations from

the base plane are congruent. Prisms are named for their base, e.g. the prism in

Figure 4 is a trigonal prism.
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We consider regular prism tilings Tp(q) by prisms Pp(q) where q pieces reg-

ularly meet at each side edge by q-rotation.

The following theorem has been proved in [15]:

Theorem 3.1. There exist regular infinite prism tilings T i
p (q) in S̃L2R for

each 3 ≤ p ∈ N where 2p
p−2 < q ∈ N. For bounded prisms, these are not face-to-

face.

We assume that the prism Pp(q) is a topological polyhedron having at each

vertex one p-gonal cover face (it is not a polygon at all) and two skew quadrangles

which lie on certain side surfaces in the model. Let Pp(q) be one of the tiles of

Tp(q), Pb is centered in the origin with vertices A1A2A3 . . . Ap in the base plane

(Figure 4). It is clear that the side curves cAiAi+1
(i = 1 . . . p, Ap+1 ≡ A1) of the

base figure are derived from each other by 2π
p

rotation about the vertical x axis,

so there are congruent in S̃L2R sense. The corresponding vertices B1B2B3 . . . Bp

are generated by a fibre translation τ given by (1.3) with parameter 0 < Φ ∈ R.

The fibre lines through the vertices AiBi are denoted by fi, (i = 1, . . . , p) and the
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fibre line through the “midpoint” H of the curve cA1Ap
is denoted by f0. This f0

will be a half-screw axis as follows below.
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The tiling Tp(q) is generated by a discrete isometry group Γp(q) = pq21

⊂ Isom(S̃L2R) which is given by its fundamental domain A1A2OAs
1A

s
2O

s a topo-

logical polyhedron and the group presentation (see Figure 4 for p = 3 and [15] for

details):

pq21 = {a,b, s : ap = bq = asa−1s−1 = babs−1 = 1}
= {a,b : ap = bq = ababa−1b−1a−1b−1 = 1}. (3.1)

Here a is a p-rotation about the fibre line through the origin (x axis), b

is a q-rotation about the fibre line trough A1 and s = bab is a screw motion

s : OA1A2 → OsBpB1. All these can be obtained by formulas (1.7) and (1.8).

Then we get the second presentation in (3.1), i.e. abab = baba =: τ is a fi-

bre translation. Then ab is a 21 half-screw motion about f0 = HHτ (look at

Figure 4) that also determines the fibre translation τ above. This group in (3.1)

surprisingly occurred in § 6 of our paper [7] at double links Kp,q. The coordinates

of the vertices A1A2A3 . . . Ap of the base figure and the corresponding vertices

B1B2B3 . . . Bp of the cover face can be computed for all given parameters p, q by

tanh(OA1) = b :=

√
1− tan π

p
tan π

q

1 + tan π
q
tan π

q

. (3.2)

Moreover, the equation of the curve cA1A2
can be determined as the foot points

(see (1.4) and (1.9)) of the corresponding fibre lines. For example, the data of

P3(q) for some 6 < q ∈ N are collected in Table 2 by Maple computations.

(p, q) b

(3, 7) ≈ 0.30007426

(3, 8) ≈ 0.40561640

(3, 9) ≈ 0.47611091

(3, 10) ≈ 0.50289355

(3, 50) ≈ 0.89636657

(3, 1000) ≈ 0.99457331

(3,∞) 1

Table 2

3.1. The volume of the bounded regular prism Pp(q). The volume formula

of a sector-like 3-dimensional domain Vol(D(Φ)) can standardly be computed by

the metric tensor gij (1.13) in hyperboloid coordinates. This defined by the base

figure D (= s−1) lying in the base plane (see Figure 4) and by fibre translation τ

given by (1.3) with the height parameter Φ = π − 2π
p
− 2π

q
.
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Theorem 3.2. Suppose we are given a sector-like region D (illustrated in

Figure 4), so a continuous function r = r(θ) where the radius r depends upon the

polar angle θ. The volume of domain D(Φ)) is derived by the following integral:

Vol(D(Φ)) =

∫

D

1

2
sinh(2r(θ))dr dθ dφ

=

∫ Φ

0

∫ θ2

θ1

∫ r(θ)

0

1

2
sinh(2r(θ)) dr dθ dφ = Φ

∫ θ2

θ1

1

4
(cosh(2r(θ)) − 1) dθ. (3.3)

Let Tp(q) be the regular prism tiling above and let Pp(q) be one of its tiles.

We get the following

Theorem 3.3. The volume of the bounded regular prism Pp(q) (3 ≤ p ∈ N,
2p
p−2 < q ∈ N can be computed by the following simple formula:

Vol(Pp(q)) = Vol(D(p, q,Φ)) · p, (3.4)

where Vol(D(p, q,Φ)) is the volume of the sector-like 3-dimensional domain that

is given by the sector region OA1A2 ⊂ P (see Figure 4) and by Φ = A1B1 =

π − 2π
p
− 2π

q
, the S̃L2R height of the prism, depending on p, q.

4. The optimal geodesic ball packings under pq21

Sphere packing problems concern arrangements of non-overlapping equal

spheres, rather balls, which fill a space. Space is the usual three-dimensional

Euclidean space. However, ball packing problems can be generalized to the other

3-dimensional Thurston geometries. But sometimes a difficult problem is – simi-

larly to the hyperbolic space – the exact definition of the packing density. In [16]

we extended the problem of finding the densest geodesic ball packing for the other

3-dimensional homogeneous geometries (Thurston geometries). In this paper we

study the problem in S̃L2R and develop a procedure for regular prism tilings and

their above group pq21 in (3.1).

Let Tp(q) be a regular prism tiling and let Pp(q) be one of its tiles which is

given by its base figure P that is centered in the origin with vertices A1A2A3 . . . Ap

in the base plane of the model (see Figure 5). The corresponding vertices B1B2

B3 . . . Bp and C1C2C3 . . . Cp are generated by fibre translations τ := abab =

baba and its inverse, given by (1.3) (1.8) and (3.1) with parameter Φ at (3.3)

also to the above group pq21.
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It can be assumed by symmetry arguments that the optimal geodesic ball is

centered in the origin. Denote by B(E0, ρ) the geodesic ball of radius ρ centered

in E0(1; 0; 0; 0). The volume vol(Pp(q)) is given by the parameters p, q and

Φ ≥ 2ρopt. The images of Pp(q) under the discrete group pq21 cover the S̃L2R

space without overlap. For the density of the packing it is sufficient to relate the

volume of the optimal ball to that of the solid Pp(q) (see Definition 3.1).

We study only one case of the multiply transitive geodesic ball packings where

the fundamental domains of the S̃L2R space groups pq21 are not prisms. Let the

fundamental domains be derived by the Dirichlet—Voronoi cells (D-V cells) where

their centers are images of the origin. The volume of the p-times fundamental

domain and of the D–V cell is the same, respectively, as in the prism case (for

any above (p, q) fixed).

These locally densest geodesic ball packings can be determined for all possible

fixed integer parameters (p, q). The optimal radius ρopt is

ρopt = min
{
artanh (OA1),

Φ

2
=

π

2
− π

p
− π

q
,
d(O,Oab)

2

}
,

where d(O,Oab) is the geodesic distance between O and Oab by Definition 2.1.

The maximal density of the above ball packings can be computed for any

possible parameters p, q. In Table 3 we have summarized some numerical results.

The best density that we found ≈ 0.567362 for parameters p = 8, q = 10.
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A
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B

B

B

C

C

C

1

1
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2

2

2

3

3

3

Figure 5. The optimal prism and ball configuration for parameters

p = 3 and q = 7.
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(p, q) ρ(Kopt) Vol(BK) Vol(Pp(q)) δ(Kopt)

(3, 11) 0.237999 0.057543 0.169931 0.338626

(3, 12) 0.261799 0.076892 0.205617 0.373960

(3, 13) 0.279134 0.093489 0.238467 0.392044

(3, 14) 0.287083 0.101857 0.268561 0.379271

(3, 50) 0.350810 0.188371 0.636918 0.295754

(3, 1000) 0.370822 0.223543 0.812627 0.275087

(5, 7) 0.493679 0.546132 1.218594 0.448165

(6, 8) 0.654498 1.350812 2.570209 0.525565

(6, 9) 0.692287 1.624770 2.924327 0.555605

(7, 9) 0.772932 2.347696 4.181962 0.561386

(7, 10) 0.789635 2.523909 4.568217 0.552493

(8,10) 0.860471 3.387783 5.971111 0.567362

(9, 11) 0.930662 4.456867 7.887074 0.565085

(9, 3000) 1.003711 5.838784 13.410609 0.435385

(20, 60) 1.361357 18.712577 37.065848 0.504847

(20, 2000) 1.387192 20.205264 39.883121 0.506612

Table 3

Remark 4.1. Surprisingly (at the first glance), the analogous translation ball

packings led to larger densities, e.g. at (p, q) = (5, 10000 → ∞) we obtained the

density 0.841700 close enough to the H3 upper bound 0.85326.

Our projective method gives a way of investigating similar problems in Thurston

geometries (see e.g. [5], [10]–[14], [16]).
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