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This paper is dedicated to Professor Lajos Tamássy on the occasion
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Abstract. Both quaternionic and para-quaternionic geometry are important when

studying harmonic forms and stochastical relaxation with the help of Fokker–Planck-

type or Oguchi-type parabolic equations. In a recent paper the first-named author and

H. M. Polatoglou (2012) have shown that the five-dimensional case is the simplest

case that the use of para-quaternions is more convenient that the use of quaternions.

Now we discuss that case in some detail.

1. Introduction and preliminaries

Quaternionic geometry was studied e.g. in [1], [8], [18]-[22], including the

twistor aspect; para-quaternionic geometry was investigated e.g. in [27]–[29], [7],

[17]. The initial difference is due to the replacement of matrix units 1, iσ1, iσ2, iσ3

of the usual quaternions, where

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
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are generators of the Pauli algebra, by the units

1, ĩ = iσ2, j̃ = σ1, k̃ = σ3

of para-quaternions, so that our ĩ j̃, and k̃ mean j, (1/i)i, and (1/i)k in [8],

respectively. This is due to our definition of the real Clifford algebra H̃ of para-

quaternions as generated by 1 and imaginary units ĩ, j̃, k̃ satisfying

−ĩ2 = j̃2 = k̃2 = 1, ĩj̃ = −j̃ ĩ = k̃. (1)

For a para-quaternionic structure the left module structure is defined up to con-

jugation in H̃.

In a more general setting, let V be a real vector space. A complex structure

on V 2n is an endomorphism J ∈ End(V ) such that J2 = − Id. A hypercomplex

structure H on V 4n is a triple (Jα) = (J1, J2, J3) of anticommuting complex

structures on V satisfying J1J2 = J3; it defines on V the structure of left vector

space over quaternions H = spanR{1, i, j, k} such that multiplications by i, j

and k are given by J1, J2 and J3. A quaternionic structure on V 4n is the 3-

dimensional subspace Q ⊂ End(V ) spanned by a hypercomplex structure H, i.e.

Q = spanR{J1, J2, J3}.

A triple J̃1, J̃2, J̃3 of anticommuting endomorphisms of V satisfying the

relations

−J̃1
2
= J̃2

2
= J̃3

2
= Id, J̃1J̃2 = J̃3

is called a para-hypercomplex structure on V . Observe that (J̃1 is a complex

structure and) J̃2 and J̃3 are para-complex structures on V . A Lie subalgebra

Q̃ ⊂ gl(V ) is called a para-quaternionic structure on V if there exists a basis J̃1,

J̃2, J̃3 satisfying the above relations. A para-hypercomplex structure (J̃1, J̃2, J̃3)

defines on V the structure of a left module over the Clifford algebra generated by

unity 1 and generators ĩ, j̃, k̃ satisfying (1).

The Hurwitz twistors are deduced from quaternions and Clifford structures

as follows. Let C4(I2, I2) be the 4-dimensional complex space with the indefinite

hermitian metric

κ = I2,2 = diag∗(I2,−I2) =

(
0 −I2
I2 0

)
, I2 = 1,

and R5(I2,3) – the 5-dimensional real space with the indefinite symmetric metric

I2,3 = diag(I2,−I3). Let (e1, . . . , e4) and (e1, . . . , e5) denote the corresponding
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canonical bases, and ◦ the multiplication acting from R3(I2,3) ⊗R C4(I2,2) to

C4(I2,2). Let us set

ǫα ◦ ǫk = C1
αkǫ1 + · · ·+ C4

αkǫ4, Cα + (Cj
αk), j = 1, . . . , 5.

Consider the algebra A2,3 generated by {C#
α Cβ : α ≤ β} where C#

α = κC∗
j κ

−1.

An element x ∈ A2,3 is called Hurwitz twistor [12], [13] whenever x has the

form

x =
∑

α<β

ξα,βC
#
α , ξα,β ∈ C, (2)

and im x2 = 0, where x ∈ A2,3 is defined in the following manner: x ∈ A2,3 can

be written uniquely as

x =
4∑

k=0

xk, x =
∑

α1<β1<...<αk<βk

ξα1,β1,...,αk,βk
C#

α1
Cβ1

. . . C#
αk

Cβk
, (3)

with x0 = ξ0I4 for k = 0. We set im x := x − x0 and denote the collection of

Hurwitz twistors by H:

H =

{
x =

∑

α<β

ξα,βC
#
α Cβ : im x2 = 0

}
.

Traditionally, the 5-dimensional space-time is R5(I1,4); when speaking on Hurwitz

twistors, it seems convenient to associate them with R5(I3,2) instead of R5(I2,3).

It appears that the expression (2) is an element of H, if and only if the following(
5
4

)
equations hold:

ξ12ξ34 − ξ13ξ24 + ξ14ξ23 = 0,

ξ12ξ35 − ξ13ξ25 + ξ15ξ23 = 0,

ξ12ξ45 − ξ14ξ25 + ξ15ξ24 = 0,

ξ13ξ45 − ξ14ξ35 + ξ15ξ34 = 0,

ξ23ξ45 − ξ24ξ35 + ξ25ξ34 = 0.

In analogous way the anti-objects, called anti-Hurwitz twistors, correspond

to R5(1, 4) and are determined by
(
5
4

)
similar equations as well; we denote the

collection of those anti-objects by aH. Still in analogy we consider C16(I8,8) and

R9(8, 1) replacing it by R9(1, 8) which leads to pseudotwistors [15]:

p =
{
x =

∑
α<β<9

ξα,βC
#
α Cβ : im x2 = 0

}
,
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determined by
(
9
4

)
= 126 algebraic equations; we denote the collection of cor-

responding anti-objects by ap. We may also consider C64(I32,32) and R13(6, 7)

replaced by R13(7, 6) which leads to bitwistors determined by
(
13
4

)
= 715 algebraic

equations; we denote their collection by b and the collection of their anti-objects

– by ab. The above leads to the so-called Cartan-like triality [6].

Figure 1. Double Cartan-like triality of Hurwitz twistors, pseudotwis-

tors, and bitwistors.

2. Some relationship with traditional harmonicity and holomorphy

Before we start to use quaternions or para-quaternions for investigating par-

abolic equations responsible for relaxation, we recall some known results on rela-

tions with traditional harmonicity and holomorphy.

2.1. Relationship with harmonic forms. Let Z
(n)
A

(U) be the space of real-

analytic solutions of the structure spinor equations (of spin 1
2n) on an open set

U ⊂ C2k, k = 1, 2. Then [14] they can be written as harmonic forms, i.e., there

exists a one-to-one correspondence between spinor solutions and harmonic forms
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with respect to:

the (1, 1)-metric

ds2 := dz1dz̄1 − dz2dz̄2 for k = 1 (Hurwitz twistors);

the (0, 4)-metric

ds2 := −dz1dz̄1 − dz2dz̄2 − dz3dz̄3 − dz4dz̄4 for k = 2 (pseudotwistors).

This correspondence can be expressed as:

Z
(n)
A

(U) ≃ H
1
(
U,C22k−1(n−1)

)
for k = 1, 2,

where

H
1
(
U,C22k−1(n−1)

)
=
{
φ ∈ Γ1,0

(
U,C22k−1(n−1)

)
: ∂φ = 0 and ϑφ = 0

}

and ϑ is the formally adjoint operator of ∂ with respect to the indefinite fibre

(22k−1, 0)-metric

dρ2 := dζ1dζ̄1 + dζ2dζ̄2 + . . .+ dζ2k−1dζ̄2k−1.

2.2. Relationship with the one-dimensional Dolbeault cohomology

group. Set

P1 := {L1
1 : L1

1 ⊂ C
4, linear subspace, dimL1

1 = 1} (≃ P
3(C)),

U1 := {L1
2 : L1

2 ⊂ C
4, linear subspace, dimL1

2 = 2} (≃ G(2, 4),

P2 := {L2
1 : L2

1 ⊂ C
8, linear subspace, dimL2

1 = 1} (≃ P
7(C)),

U2 := {L2
2 : L2

2 ⊂ C
8, linear subspace, dimL2

2 = 2} (≃ G(2, 8)),

where P3(C), P7(C), G(2, 4), G(2, 8) are the corresponding complex projective and

Grassmannian spaces, respectively. Then we have the following correspondences:

H p ab

µ1 ւ ց ν1, µ2 ւ ց ν2, µ2 ւ ց ν2.

P1 U1 P2 U2 P2 U2

(4)

Let Zn
H
(Uk) be the space of holomorphic solutions of the structure spinor

equations (of spin 1
2n) on an open set Uk, whereas µk and νk be the related fibre

bundles forming the diagrams (4). We set

U ′
k = ν−1

k (Uk) and U ′′
k = µk ◦ ν

−1
k (Uk) for k = 1, 2.
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Then, if every fibre of µk is connected, there exists a one-to-one correspon-

dence [14]:

Zn
H(Uk) ≃ H1(U ′′

k ,O(−αkn− βk)),

where H1 denotes the one-dimensional Dolbeault cohomology group,

O(−αkn− βk) = O([e]−αkn−βk),

[e] being the canonical effective divisor of P3(C), while αk and βk are positive

integers. Moreover,

α1 = 1, β1 = 2; β2 ≥ 2.

2.3. Relationship with traditional holomorphy. Consider the holomorphic

embeddings

C
2 ≃ R

4 ι
−→ G(2, 4), R

4 ∋ x
ι

7−→
3∑

α=1

xαSα + x4I4, (5)

C
4 ≃ R

8 ι
−→ G(8, 16), R

8 ∋ x
ι

7−→

7∑

α=1

xαSα + x8I8, (6)

where G(τ, ν) stands for a τ -dimensional Grassmannian submanifold, while Sα

and I4 or I8 are generators of the corresponding algebra, proposed explicitly first

in [13], so that they are real parts of holomorphic mappings in the classical sense.

The result we are going to quote was first published without specification of the

quaternionic or para-quaternionic dependence in [14], [15] and with specifying this

dependence – in [7]. In the case (σ−1, τ) = (0, 4) resp. (0, 8) we are interested, it

states that there exists a complex structure I = I[ι(σ − 1, τ)] on the holomorphic

embedding (5) resp. (6) with properties

ι(0, 4) = ι(0, 4)(H), resp. ι(0, 8) = ι(0, 8)(H̃) (7)

and the each embedding concerned is the real part of a holomorphic mapping in

the classical sense.

We introduce seven 2× 2-complex matrices which we call atoms:

A0 = A0(H) =

(
u vH

−vH u

)
, A1 =

(
û v̂

v −u

)
, A2 =

(
−u −v̂

−v û

)
,

A3 =

(
w 0

0 w

)
, A4 =

(
ŵ 0

0 ŵ

)
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A5 = A5(H̃)

(
t
H̃

0

0 t
H̃

)
, A6 = A6(H̃) =

(
ˆttH̃ 0

0 ˆtH̃

)
,

where u in A0 and vH are given in

u = x4 + ix3 ∈ C, vH = x2 + ix1 ∈ C, v
H̃
= x1 + ix2 ∈ C,

whereas u in A1, A2; v, w, and t
H̃
are given in

u = x3 + ix8 ∈ C, v = x1 + ix2 ∈ C, w = x4 + ix5 ∈ C,

tH = x7 + ix6 ∈ C, t
H̃
= x6 + ix7 ∈ C.

Let
ζH = (u, vH) ∈ C

2 and z
H̃
= (u, v, w, t

H̃
) ∈ C

4.

The atomization method allows us to find the following explicit formulae for the

embedding in question:

ι(ζH) = A0 for (0, 4), ι(z
H̃
) =




A1 A3 A5 0

A4 A2 0 A5

A6 0 A2 −A3

0 A6 −A4 A5


 for (0, 8).

2.4. Pseudotwistros of degree 3 vs. those of degree 1. Consider quaternal

embeddings, like iA = diag(A, A,A,A), A = A3, acting from G(2, 4) to G(8, 16),

instead of (2), pseudotwistors of degree k with x as in the second formula in (3),

and collections J (k) of all such x with imx2 = 0. Consider the following analogues

of (4):

J (k) J (1)

ւ ց k = 1, 3; ւ ց , J
(1)
±A

=
(
J
(1)
±A

)
.

J
(k)
− J

(k)
+ J

(1)
−A

J
(1)
+A

(8)

If k = 1, then for any quaternal embedding iA of some VA in G(2, 4) to G(8, 16)

we have

ι∗
A
J (1) = J

(1)
A

, ι∗
A
J

(1)
+ = J

(1)
+A

, ι∗
A
J

(1)
− = J

(1)
−A

and the diagram in (7) related with J
(1)
A

. If k = 3, we have

J
(3)
− ⊆ ⊕

A

J
(1)
A

−

· J
(1)
Ac

+

, J
(3)
+ ⊆ ⊕

A

J
(2)
A+

· J
(2)
Ac

+

, (9)

where A∪Ac=A∗. The addends in (9) depend on the quaternionic or para-qua-

ternionic structure according to dependence of A expressed in terms of A1, . . . , A6.
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3. Stochastical relaxation and the specific role of dimension 5

3.1. Setting of the problem. We consider a modified Oguchi equation [25], [4],

[11]
∂

∂t
〈s(t, τ̄ )〉 = −

1

τ̂
[〈s(t, τ̄ )〉 − 〈s(t, τ̄ )〉l.e.] (10)

where τ̄ is the spin-lattice relaxation time related to a spin on R-site, R =

(x1, . . . , xτ ) in Rr, r = 1, 2, . . . ; τ̄ = xτ+1 stands for the stochastic variable res-

ponsible for the stochastic behaviour of the lattice, describing thermal oscillations

of spin, and 〈s(t, τ̄ )〉 denotes the canonical average of spin; 〈s(t, τ̄ )〉l.e. being its

local equilibrium value. 〈s(t, τ)〉 does not depend on the positions in a fixed layer

xτ = x̂τ . Set

Γ =
1

τ̂

[
1−

1

2
(1− 4〈s〉2)

x̂τJ

kBT

]
, (11)

Λ =
a2

τ̂
·
1

2
(1− 4〈s〉2)

x̂τJ

kBT
, (12)

where J is the parameter of the theory responsible for the interaction between

two neighbouring spins, and a is the lattice constant. The equation (10) can be

transformed to

∂

∂t
〈s(t, τ̄ )〉 = −Γ〈s(t, τ̄)〉+ Λ

(
τ∑

ν=1

∂2

∂x2
ν

−
â2

a2
∂2

∂τ̄2

)
〈s(t, τ̄ )〉,

where Γ and Λ are given by (11) and (12), respectively, while â is the amplitude

of stochastic movement. Then the substitution τ̄ = (â/a)τ̃ brings the above

equation to

∂

∂t
〈s(t, τ̃ )〉 = −Γ〈s(t, τ̃ )〉+ Λ

(
τ∑

ν=1

∂2

∂x2
ν

−
∂2

∂τ̃2

)
〈s(t, τ̃ )〉. (13)

In [4], for solving (13), τ = 2 and 3, the quaternionic approach was used syste-

matically.

By (7), the 8- (resp. 4-)dimensional stochastical relaxation problem may be

considered in relation with the pseudotwistors in p (resp. anti-Hurwitz twistors

in aH) in terms of para-quaternions (resp. quaternions) [11]. By restriction of

solution of (13) an analogous conclusion holds for the 7-, 6-, and 5- (resp. 3-, 2-,

and 1-) dimensional stochastical relaxation problems as well as for the 8-, 7-, 6-,

and 5- (resp. 4-, 3-, 2-, and 1-) dimensional relaxation problems related with (13)
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Figure 2. Applicability of para-quaternions (resp. quaternions) and

pseudo-twistors (resp. anti-Hurwitz twistors) for 5-, 6-, 7-, 8- (resp.

1-, 2-, 3-, 4-)dimensional relaxation and stochastical relaxation prob-

lems.

for 〈s(t, τ̄ )〉 = 〈s(t)〉, 〈s(t, τ̄ )〉l.e. = 0. The reasoning is illustrated by Figure 2;

the family of solutions to (13) for τ = 8 is represented by the point (1, 8) on the

projection plane Cσ,τ = {(σ, τ)}.

It seems interesting to consider, with help of para-quaternions, the simplest

proper case of equation (13), i.e. for τ = 5. Let

s(t, τ̃ ) = s(x, y, z; ξ, η, τ̃ ; t), (x, y, z, ξ, η, τ̃) ∈ R
6 ≃ C

3 t ∈ R
+.
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Then the equation (13) reads

∂

∂t
〈s(t, τ̃ )〉 = −Γ〈s(t, τ̃ )〉

+ Λ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

∂ξ2
+

∂2

∂η2
−

∂2

∂τ̃2

)
〈s(t, τ̃ )〉. (14)

Mathematically, a specific position of this equation is connected with the fact

that C2 ≃ R4 in (5) and C4 ≃ R8 in (6). We are going to discuss the equation

(13) in detail.

3.2. Setting of a linearization procedure. As in [4], in relation with (13) we

concentrate on the Fokker–Planck type [26] equation

∂

∂t
s(t) = −Γs∗(t) + Λ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

∂ξ2
+

∂2

∂η2
−

∂2

∂τ̃2

)
s(t),

(x, y, z, ξ, η) ∈ R
4, t ∈ R

+, (15)

where s∗(t) is an arbitrary admissible function; in particular we may take [3]:

s∗ = s0 ≡ −

∫ t

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

× exp

[
(x− x′)2 + (y − y′)2 + (z − z′)2 + (ξ − ξ′)2 + (η − η′)2 − (τ̃ − τ̃ ′)2

4Λ(x′, y′, z′, ξ′, η′, τ̃ ′, t′)(t− t′)

]

×
(Γs0)(x− x′, y − y′, z − z′, ξ − ξ′, η − η′, τ̃ − τ̃ ′, t− t′)

2
√
Λ(x′, y′, z′, ξ′, η′, τ̃ ′, t′)(t− t′)

× dx′dy′dz′dξ′dη′dτ̃ ′dt′. (16)

According to [23], [24] we need an 8-dimensional vector

s = (s, s0, s1, . . . , s6) ∈ R
8 ≃ C

4 (17)

and two bases:

(ε, εα) = (ε, ε0, ε1, . . . , ε5) (18)

say, for the space S of variables x, y, z, ξ, η, τ̃ , t, and

(e, ej) = (e, e0, e1, . . . , e6) (19)

for the space V of solution (17). Hence, in our case, (εα) consists of complex

8× 8-matrices. They have to satisfy the relations

ε2 = −ε0, ε2α = ε0, α = 1, . . . , 4; ε25 = 0,
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εεα + εαε = 0, εαεβ + εβεα = 0, α, β = 1, . . . , 5. (20)

The explicit formulae for (18) in terms of para-quaternions can be deduced

from the corresponding formulae obtained for τ = 1 and 2 in [4] (after converting

quaternions to para-quaternions) with the use of interaction procedure of [18],

formulae (1) and (18), expressed already in terms of para-quaternions. The expli-

cit formulae will be published in a subsequent paper. The algebra determined by

the basis (18) satisfying the conditions (20) is known as the Clifford-Grassmann

algebra Cl∗01,4(C).

Then we find analogues of the familiar operators ∂z̄ and ∂z: ∂̄ and ∂ (say):

∂̄s = P s− v, Λ∂(P s) = (∂/∂t)s with Λ∂v = −Γs. (21)

Here

v ∈ V, Λ∂(P s) = ∂(Qs), (22)

Q being a polynomical of ε, ε0, ε1, . . . , ε4:

Qs = s11 ⊙ ε+ s12 ⊙ ε0 + s13 ⊙ ε1 + · · ·+ s16 ⊙ ε4 + s17 ⊙ εε0

+ s21 ⊙ εε1 + · · ·+ s24 ⊙ εε4 + s25 ⊙ ε0ε1 + · · ·+ s27 ⊙ ε0ε3

+ s31 ⊙ ε0ε4 + s32 ⊙ ε1ε2 + . . .

+ s34 ⊙ ε1ε4 + s35 ⊙ ε2ε3 + s36 ⊙ ε2ε4 + s37 ⊙ ε3ε4, (23)

where

skj , j = 1, . . . , 7; k = 1, . . . , 4, belong to V and are C
4-valued, (24)

while ⊙ is the multiplication ⊙ : V ⊗ S → V in the algebra Cl∗01,4(C). Indeed,

from (18) and (19) we infer that

Λ∂∂̄s = Λ∂(P s)− Λ∂v =
∂

∂t
s− Γs

= Λ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

∂ξ2
+

∂2

∂η2
−

∂2

∂τ̃2

)
s,

so (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

∂ξ2
+

∂2

∂η2
−

∂2

∂τ̃2

)
s = ∂∂̄s

with s being in V and C4-valued. Hence by (18)-(20) we arrive at the formulae

s = s41 ⊙ ε+ s42 ⊙ ε0 + s43 ⊙ ε1 + · · ·+ s46 ⊙ ε4 + s47 ⊙ εε0 + s51 ⊙ εε1 + . . .
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+ s54 ⊙ εε4 + s55 ⊙ ε0ε1 + · · ·+ s57 ⊙ ε0ε3 + s61 ⊙ ε0ε4 + s62 ⊙ ε1ε2 + . . .

+ s64 ⊙ ε1ε4 + s65 ⊙ ε2ε3 + s66 ⊙ ε2ε4 + s67 ⊙ ε3ε4 + (Qs)⊙ υ

= se+ s0e0 + s1e1 + · · ·+ s6e6 (25)

with

s, s0, s1, . . . , s6, being in V and C
4-valued. (26)

3.3. The fundamental solution. In order to find s effectively (in principle we

do not need s, s0, s1, . . . , s6) we have to find the system of fundamental solutions of

the equation (15) and to be able to compare on both sides of (25) the coordinates

with respect to e. Here we have to remember that

skj , j = 1, . . . , 7; ; k = 1, . . . , 6,

are linear combinations of e, e0, e1, . . . , e6, so we need to determine the multipli-

cation scheme for e⊙ εα, e0 ⊙ εα, ej ⊙ εα in the algebra Cl∗01,4; the multiplication

⊙ has to be compatible with the problem of solving the equation (15).

As far as the first question is concerned, we have

s = c11s
x + c12s

y + c13s
z + c14s

ξ + c15s
η + c16s

τ̃ + c21s
xy + c22s

xz + c23s
xξ

+ c24s
xη + c25s

xτ̃ + c26s
yz + c31s

yξ + c32s
yη + c33s

yτ̃ + c34s
zξ + c35s

zη + c36s
zτ̃

+ c41s
ξη + c42s

ξτ̃ + c43s
ητ̃ + c44s

xt + c45s
yt + c46s

zt + c51s
ξt + c52s

ηt + c53s
τ̃ t

+ c54s
xyt + c55s

xzt + c56s
xξt + c61s

xηt + c62s
xτ̃t + c63s

yzt + c64s
yξt + c65s

yηt

+ c66s
yτ̃t + c71s

zξt + c72s
zηt + c73s

zτ̃t + c74s
ξηt + c75s

ξτ̃t + c76s
ητ̃t, (27)

where

cjk, j = 1, . . . , 7; k = 1, . . . , 6,

are complex constants to be determined from the initial conditions

sR=0(0) = s0, s(t) → ∞ as (R, τ̃ , t) → (∞, τ̃0, t0),

s(t) → 0 as (R, τ̃ , t) → (R0, τ̃0, t0) for some R0, τ̃0, t0, (28)

and the boundary conditions, and

sx, sy, sz, sξ, sη, sτ̃ , sxy, sxz, sxξ, sxη, sxτ̃ , syz, syξ, syη,

syτ̃ , szξ, szη, szτ̃ , sξη, sξτ̃ , sητ̃ , sxt, syt, szt, sξt, sηt, sτ̃ t, sxyt,

sxzt, sxξt, sxηt, sxτ̃t, syzt, syξt, syηt, syτ̃t, szξt, szηt, szτ̃t, sξηt, sξτ̃t, sητ̃t,
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are fundamental solutions of the equation (15). Explicitly, we get

sx = (∂s0)ε, sxy = (∂s0)εε0, s
yξ = (∂s0)ε0ε2,

sy = (∂s0)ε0, sxz = (∂s0)εε1, s
yη = (∂s0)ε0ε3

sz = (∂s0)ε1, sxξ = (∂s0)εε2, s
yτ̃ = (∂s0)ε0ε4,

sξ = (∂s0)ε2, sxη = (∂s0)εε3, s
zξ = (∂s0)ε1ε2,

sη = (∂s0)ε3, sxτ̃ = (∂s0)εε4, s
zη = (∂s0)ε1ε3,

sτ̃ = (∂s0)ε4, syz = (∂s0)ε0ε1,s
zτ̃ = (∂s0)ε1ε4, (29)

sξη = (∂s0)ε2ε3, sξt = s0ε2 + (∂s0)ε2ε5,

sξτ̃ = (∂s0)ε2ε4, sηt = s0ε3 + (∂s0)ε3ε5,

sητ̃ = (∂s0)ε3ε4, sτ̃ t = s0ε4 + (∂s0)ε4ε5,

sxt = s0ε+ (∂s0)εε5, sxyt = −s0εε0 + (∂s0)εε0ε5,

syt = s0ε0 + (∂s0)ε0ε5, sxzt = −s0εε1 + (∂s0)εε1ε5,

szt = s0ε1 + (∂s0)ε1ε5, sxξt = −s0εε2 + (∂s0)εε2ε5, (30)

sxηt = −s0εε3 + (∂s0)εε3ε5, szξt = −s0ε1ε2 + (∂s0)ε1ε2ε5,

sxτ̃t = −s0εε4 + (∂s0)εε4ε5, szηt = −s0ε1ε3 + (∂s0)ε1ε3ε5,

syzt = −s0ε0ε1 + (∂s0)ε0ε1ε5, szτ̃t = −s0ε1ε4 + (∂s0)ε1ε4ε5,

syξt = −s0ε0ε2 + (∂s0)ε0ε2ε5, sξηt = −s0ε2ε3 + (∂s0)ε2ε3ε5,

syηt = −s0ε0ε3 + (∂s0)ε0ε3ε5, sξτ̃t = −s0ε2ε4 + (∂s0)ε2ε4ε5,

syτ̃t = −s0ε0ε4 + (∂s0)ε0ε4ε5, sητ̃t = −s0ε3ε4 + (∂s0)ε3ε4ε5, (31)

where s0 is determined by (16).

As far as second question is concerned, we have the multiplication rules

ej ⊙ εα = (e, ej ⊙ εα)e+

6∑

k=0

(ek, ej ⊙ εα)ek, ek = (e, ek)e+

6∑

j=0

(ej , ek)ej ,

[(ejek)] = [(ej , ek)]
−1, j, k = 0, . . . , 6; α = 0, . . . , 5, (32)

and analogous rules for (e, e), (e, ej) and (ek, e).

Here [(ej , ek)] denotes the matrix of all elements (ej , ek) including (e, e),

(ej , e) and (e, ek)-the scalar product of ej and ek etc., where we follow the con-

vection (19).
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3.4. Concluding the proof. Formulation of the result. Thanks to Sec-

tions 3.2 and 3.3 we have proved

Theorem 1. Let s = s(t) be a solution of the Fokker–Planck type equation

(15), where Γ and Λ are C1-scalar functions of R = (x, y, z, ξ, η) ∈ R5, τ ∈ R,

and t ∈ R
+. Consider the space S of variables x, y, z, ξ, η, τ̃ , t with a basis (18)

of complex 8×8-matrices specified the relations (20) and the space V of solutions

(17) forming the algebra Cl∗01,4(C), with a basis (19) of the linearized problem

∂̄s = P s− v, Λ∂(P s) = (∂/∂t)s, with Λ∂v = −Γs, (33)

where

v ∈ V, Λ∂(P s) = ∂(Qs), (34)

and Q being a polynomial of ε, ε0, ε1, . . . , ε4, where s is related to s by (17).

(a) Explicitly, a solution s of (33) can be expressed by (25) with coefficients

as in (26) and (23), and the multiplication ⊙ : V ×S → V in the algebra Cl∗01,4(C),

which has to satisfy the rules (32). The polynomial Q is given by (23) and the

matrices (18) can be satisfied according to (20) in the terms of para-quaternions.

(b) Then the general solution of the system (33) is a linear combination (27)

with complex coefficients of 42 fundamental solutions which, in the case of (16),

are explicitly given by the formulae (29)–(31).

Differently speaking, we have an equivalent

Theorem 2. (i) Let Q be a polynomial of ε, ε0, ε1, . . . , ε4, given by (23),

where (18) are complex 8 × 8-matrices satisfying the relations (20) and forming

a basis of the space V of variables x, y, z, ξ, η, τ̃ , t with P as in (34), where V is

the space of solutions (17) forming the algebra Cl∗01,4(C) with a basis (19), of the

linearized problem (33), corresponding to the Fokker–Planck equation (15), Γ and

Λ are C1-scalar functions of R = (x, y, z, ξ, η) ∈ R5, τ ∈ R, and t ∈ R+, and a

solution s = s(t) of (15) is related to s by (17). The multiplication ⊙ : V ×S → V

in algebra Cl∗01,4(C) has to satisfy the rules (32).

(ii) Then a solution s of (33) can be expressed as in (25) with coefficients

as in (26) and (24), and the matrices (18) can be specified according to (20) in

terms of para-quaternions. Moreover, the general solution of the system (33) is

a linear combination (27) with complex coefficients of 42 fundamental solutions

which, in the case of (16), are given explicitly by the formulae (29)–(31), where

s0 is determined by (16).

The results obtained have a clear physical significance [2], [5], [9], [11], [16],

[17], [25], [26].
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