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Real hypersurfaces of e-(J4 = 1)-Kaehler manifolds

By AUREL BEJANCU (Iaşi) and GUSTAVO SANTOS-GARCÍA (Salamanca)

§0. Introduction

(J4 = 1)-Kaehler manifolds were introduced in [3] as a natural gener-
alization of both Kaehler manifolds and para-Kaehler manifolds. Several
interesting results on the topic can be found in [3–5, 7].

We shall consider e-(J4 = 1)-Kaehler manifolds. As the metric in
that case is necessarily semi-Riemannian, the theory of submanifolds has
to deal with both degenerate and non-degenerate submanifolds. Such a
study is initiated in the present paper for real hypersurfaces of e-(J4 = 1)-
Kaehler manifolds. First we obtain the geometric structure induced on
a real hypersurface of an e-metric (J4 = 1)-manifolds. Then we give
characterizations of the integrable distributions on a real hypersurface of
an e-(J4 = 1)-Kaehler manifold by means of their second fundamental
forms.

§1. Preliminaries

Let M be a real 2m-dimensional differentiable manifold endowed with
a semi-Riemannian metric g and a tensor field J of type (1,1) satisfying

g ◦ (J × I) + g ◦ (I × J) = 0; J4 = I,

where I is the identity map on TM . The characteristic polynomial of J is
supposed to be PJ(λ) = (λ2−1)r(λ2+1)s, with r+s = m. Then (M, g, J) is
called an e-metric (J4 = 1)-manifold (cf. [3]). If moreover ∇J = 0, where
∇ is the Levi-Civita connection on M with respect to g, then (M, g, J) is
called an e-(J4 = 1)-Kaehler manifold . The letter e appears in these names
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as a consequence of the fact that the fundamental 2-form F = g ◦ (I × J)
of M , in the case m = 2, is related to the electromagnetic field.

Throughout the paper we shall denote by Γ(E) the F (M)-module
of differentiable sections of a vector bundle E over M , where F (M) is
the algebra of differentiable functions on M . We shall use ⊕ and ⊥ for
the Whitney sum and the orthogonal Whitney sum of vector bundles,
respectively.

Consider the tensor fields P = 1
2 (I+J2) and Q = 1

2 (I−J2) and express
the tangent bundle of M as follows: TM = U⊥V , where U = Im P and
V = Im Q. It is easy to check that U and V are para-holomorphic and
holomorphic distributions respectively, i.e., J acts as an almost product
operator on U and an almost complex operator on V and satisfies

g ◦ (J × J) = −g ◦ (I × I) and g ◦ (J × J) = g ◦ (I × I)

on U and V , respectively. Moreover, U and V are orthogonal distributions
and (see [3]) M is locally the product of a 2r-dimensional para-Kaehler
manifold and a 2s-dimensional Kaehler manifold, provided that M is an
e-(J4 = 1)-Kaehler manifold.

Let N be a real hypersurface on an e-metric (J4 = 1)-manifold
(M, g, J). For any x ∈ N consider the perp-vector space TxN⊥ to TxN
in TxM (cf. O’Neill [6]) and construct the perp-vector bundle TN⊥ =⋃
x∈N

TxN⊥ over N . As our metric is necessarily semi-Riemannian, the in-

duced metric on N , denoted by the same letter g, is either non-degenerate
or degenerate according as the perp-vector bundle is non-degenerate or
degenerate, respectively.

First we consider the case in which g is non-degenerate and call N a
non-degenerate real hypersurface of M . In this situation the perp-vector
bundle is just the normal bundle of N . Suppose ξ is a unit vector field
normal to N and put

(1.1) ∇̄XY = ∇XY + h(X, Y )ξ

and

(1.2) ∇̄Xξ = −AξX,

for any X,Y ∈ Γ(TN), where ∇ and ∇̄ are the Levi-Civita connections
on N and M respectively, h is the second fundamental form of N and Aξ

is the shape operator of N .
Next, suppose that the induced metric is degenerate on TN , i.e.,

there exists ξ ∈ Γ(TN), ξ 6= 0, such that g(ξ,X) = 0, for any X ∈ Γ(TN).
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Then we call N a degenerate (null) real hypersurface of M . In this case the
perp-vector bundle TN⊥ becomes a distribution on N and thus the above
theory of non-degenerate real hypersurfaces is useless. In order to study the
geometry of the degenerate immersion of N in M we need a vector bundle
transversal to TN in TM . The construction of such a vector bundle was
performed by Bejancu and Duggal [2] for degenerate hypersurfaces of
semi-Riemannian manifolds as follows. First, consider the so-called screen
distribution SN on N , which is a distribution complementary of TN⊥ in
TN . It is proved in [2] that there exists a unique vector bundle tN with
rank tN = 1 such that for any ξ ∈ Γ(TN⊥) there exists a unique ξ̄ ∈ Γ(tN)
satisfying

(1.3) g(ξ̄, ξ̄) = g(ξ̄, X) = 0, g(ξ, ξ̄) = 1, ∀X ∈ Γ(SN).

In this case, Gauss and Weingarten equations for the degenerate immersion
of N in M become

(1.4) ∇̄XY = ∇XY + B(X, Y )ξ̄

and

(1.5) ∇̄X ξ̄ = −A′̄ξX + τ(X)ξ̄,

for any X,Y ∈ Γ(TN), where B is the second fundamental form of the
immersion, ∇ is a torsion-free connection induced by ∇̄ on N , τ is a 1-form
locally defined on N and A′̄

ξ
is the shape operator of N . We have to note

that B does not depend on the screen distribution and, in general, ∇ is
not a metric connection. In this theory we need also the equations [2]:

(1.6) ∇XhY =
∗
∇XhY + C(X,hY )ξ

and

(1.7) ∇Xξ = −
∗
AξX − τ(X)ξ,

for any X,Y ∈ Γ(TN), where h is the projection of TN on SN ,
∗
∇ is the

linear connection induced by ∇ on SN , C is an F (M)-bilinear form on

TN ×SN and
∗
Aξ is a linear operator on Γ(TN). Note that, in general, C

is not symmetric on SN × SN but it satisfies

(1.8) C(X,hY ) = g(A′̄ξX, hY ), ∀X,Y ∈ Γ(TN).

Finally, note that B is symmetric and satisfies

B(X, hY ) = g(
∗
AξX, hY ), ∀X,Y ∈ Γ(TN),

and
B(ξ, Y ) = 0, ∀Y ∈ Γ(TN).
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§2. Geometric structure induced on a real hypersurface
on an e-metric (J4 = 1)-manifold

2.I. The case of a non-degenerate real hypersurface.

First, suppose that N is a non-degenerate real hypersurface of (M, g, J).
In order to get the geometric structure induced on N we have to analyse
two cases.

Case 2. I. 1. (TN⊥ is a vector sub-bundle of U or of V ). In this case
J2(TN⊥) = TN⊥ and therefore J(TN⊥) = J3(TN⊥). As J(TN⊥) is
orthogonal to TN⊥ it follows that the tangent bundle of N decomposes as
follows:

(2.1) TN = J(TN⊥)⊥D1,

where D1 is the orthogonal distribution comlementary of J(TN⊥) in TN .
Moreover, it is easy to check that D1 is J-invariant, and therefore N is the
analogous of a CR-submanifold for Kaehler manifolds (cf. [1]).

Case 2. I. 2. (TN⊥ ∩ U = {0} and TN⊥ ∩ V = {0}). As g is semi-
Riemannian we have to analyse two subcases:

Case 2. I. 2. a. (J(TN⊥) is a null vector bundle). In this case
J(TN⊥) and J3(TN⊥) are degenerate distributions on N while J2(TN⊥)
is non-degenerate. Moreover, {Jξ, J2ξ, J3ξ} is a set of linearly indepen-
dent local vector fields for any ξ ∈ Γ(TN⊥). Therefore, the tangent bundle
of N is decomposed as follows:

(2.2) TN = {J(TN⊥)⊕ J3(TN⊥)}⊥J2(TN⊥)⊥D2.

It is important to note that D2 is J-invariant. In particular, we state:

Proposition 1. Let N be an orientable non-degenerate real hypersur-
face of a 4-dimensional e-metric (J4 = 1)-manifold M such that J(TN⊥)
is a null vector bundle. Then N is a parallelizable manifold.

Proof. It follows from the fact that ξ is globally defined and
{Jξ, J2ξ, J3ξ} is a set of linearly independent vector fields on N .

Case 2. I. 2. b. (J(TN⊥) is a non-null vector bundle). In this case
J2(TN⊥) is neither tangent nor normal to N at any point. However,
J(TN⊥) and J3(TN⊥) are distributions on N and we have the decompo-
sition

(2.3) TN = {J(TN⊥)⊕ J3(TN⊥)}⊥D3.
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2. II. The case of a degenerate real hypersurface.

Now, suppose N is a degenerate real hypersurface of an e-metric
(J4=1)-manifold. Then TN⊥ becomes a distribution on N and we have

(2.4) TN = TN⊥⊥SN,

where SN is a screen distribution on N . In this case we may use the
e-metric structure (g, J) in order to get some particular distributions.

Case 2. II. 1. (TN⊥ is a vector sub-bundle of U but J(TN⊥)∩TN⊥ =
{0}). As in the non-degenerate case we have J2(TN⊥) = TN⊥ and
J(TN⊥) = J3(TN⊥). It follows that J(TN⊥) is a null distribution on N .
Thus we can choose SN as a vector sub-bundle complementary of TN⊥

in TN but such that J(TN⊥) ⊂ SN . Then J(tN) is a vector subbundle
of SN too. Therefore we have the decomposition

(2.5) TN = TN⊥⊥{J(TN⊥)⊕ J(tN)}⊥D4,

where D4 is the orthogonal distribution complementary of J(TN⊥) ⊕
J(tN) in SN . Note that {ξ, Jξ, Jξ̄} is a set of linearly independent vector
fields for any ξ ∈ Γ(TN⊥) and ξ̄ ∈ Γ(tN) satisfying (1.3).

Case 2. II. 2. (Jξ = ±ξ, ∀ξ ∈ Γ(TN⊥)). In this case the decomposi-
tion is as in (2.4) and J(tN) is not tangent to N .

Case 2. II. 3. (TN⊥ ∩ U = {0} and TN⊥ ∩ V = {0}). We have to
analyse the following two subcases:

Case 2. II. 3. a. (J(TN⊥) is a null vector bundle). Choose SN such
that it contains the null distributions J(TN⊥), J2(TN⊥) and J3(TN⊥).
It follows that ξ, Jξ, J2ξ and J3ξ are linearly independent on N and
therefore m > 2. The tangent bundle of N can be decomposed as follows:

(2.6) TN = TN⊥⊥J(TN⊥)⊥J2(TN⊥)⊥J3(TN⊥)⊥D5.

Case 2. II. 3. b. (J(TN⊥) is a non-null vector bundle). It follows that
J(TN⊥) and J3(TN⊥) are non-null distributions on N while J2(TN⊥) is
a null vector bundle which is not tangent to N . Moreover ξ, Jξ and J3ξ

are linearly independent vector fields and therefore we have

(2.7) TN = TN⊥⊥J(TN⊥)⊥J3(TN⊥)⊥D6.
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§3. Integrability of distributions on a real
hypersurface of an e-(J4 = 1)-Kaehler manifold

Suppose N is a non-degenerate real hypersurface of an e-(J4 = 1)-
Kaehler manifold M such that TN decomposes as in (2.1). Then, taking
into account that J is parallel with respect to ∇̄ and using (1.1), we obtain

(3.1) J([X, Y ]) = ∇XJY −∇Y JX + {h(X, JY )− h(Y, JX)}ξ
for any X, Y ∈ Γ(D1). Applying J3 to (3.1) and taking into account that
TN⊥ is a vector sub-bundle either of U or of V , we obtain

(3.2) [X, Y ] = J3(∇XJY −∇Y JX)± {h(X, JY )− h(Y, JX)}Jξ.

It follows that J3(∇XJX −∇Y JX) is tangent to N . Moreover we have

g(J3(∇XJY −∇Y JX), Jξ) = −g(∇XJY −∇Y JX, ξ) = 0,

and hence J3(∇XJY − ∇Y JX) belongs to D1. Therefore from (3.2) we
obtain:

Theorem 1. Let N be a non-degenerate real hypersurface of an e-
(J4 = 1)-Kaehler manifold M whose tangent vector bundle decomposes as
in (2.1). Then the distribution D1 is integrable iff the second fundamental
form of N satisfies

h(X, JY ) = h(Y, JX), ∀X,Y ∈ Γ(D1).

In a similar way, using (1.1), (1.2) and the decompositions (2.2) and
(2.3), we obtain the following characterizations of the integrability of dis-
tributions on N .

Theorem 2. Let N be a non-degenerate real hypersurface of an e-
(J4 = 1)-Kaehler manifold M whose tangent bundle decomposes as in
(2.2). Then we have:

(i) J(TN⊥)⊕ J3(TN⊥) is integrable iff h satisfies

h(Jξ, Jξ) + h(J3ξ, J3ξ) = 0

and

(3.3) h(Jξ, J3X) = h(JX, J3ξ), ∀X ∈ Γ(D2);

(ii) {J(TN⊥)⊕ J3(TN⊥)}⊥J2(TN⊥) is integrable iff h satisfies

h(Jξ, JX) + h(J3ξ, X) = 0, h(J3ξ, JX) + h(J3ξ, X) = 0

and (3.3);
(iii) D2 is integrable iff h satisfies

h(JX, JY ) = h(J2X, Y ) = h(X, J2Y ), ∀X, Y ∈ Γ(D2).
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Theorem 3. Let N be a non-degenerate real hypersurface of an e-
(J4 = 1)-Kaehler manifold M whose tangent bundle decomposes as in
(2.3). Then we have:

(i) J(TN⊥)⊕ J3(TN⊥) is integrable iff h satisfies

h(Jξ, J3X) = h(J3ξ, JX) = 0, ∀X ∈ Γ(D3);

(ii) D3 is integrable iff h satisfies

h(X, JY ) = h(Y, JX), ∀X,Y ∈ Γ(D3).

Next, we consider a totally umbilical non-degenerate real hypersurface
N of M , i.e., the second fundamental form is expressed as follows:

h(X, Y ) = λg(X,Y ), ∀X, Y ∈ Γ(TN),

where λ is a differentiable function on N . If λ vanishes on N we say that
N is totally geodesically immersed in M . Then, using Theorems 1, 2 and
3 we obtain the following results:

Corollary 1. Let N be a totally umbilical non-degenerate real hyper-
surface of an e-(J4 = 1)-Kaehler manifold M whose tangent bundle admits
the decomposition (2.1). Then D1 is involutive iff N is totally geodesic.

Corollary 2. Let N be a totally umbilical non-degenerate real hy-
persurface of an e-(J4 = 1)-Kaehler manifold M whose tangent bundle
decomposes as in (2.2). Then we have:

(i) The distributions J(TN⊥)⊕J3(TN⊥) and {J(TN⊥)⊕J3(TN⊥)}⊥
J2(TN⊥) are integrable;

(ii) D2 is integrable iff N is totally geodesic.

Corollary 3. Let N be a totally umbilical non-degenerate real hy-
persurface of an e-(J4 = 1)-Kaehler manifold M whose tangent bundle
decomposes as in (2.3). Then we have:

(i) The distribution J(TN⊥)⊕ J3(TN⊥) is integrable;
(ii) If N is totally geodesic then D3 is integrable. If N is not totally

geodesic, D3 is integrable iff D3 and J(D3) are orthogonal distributions.

We now consider a degenerate real hypersurface N of an e-(J4 = 1)-
Kaehler manifold M whose tangent bundle satisfies (2.5). Using (1.3)–(1.8)
we obtain

g([Jξ, Jξ̄], ξ̄) = C(Jξ, Jξ̄)−B(Jξ̄, Jξ̄)

and

g([Jξ, Jξ̄], X) = C(Jξ, JX)−B(Jξ̄, JX), ∀X ∈ Γ(D4).

Therefore we may state:
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Theorem 4. Let N be a degenerate real hypersurface of an e-(J4=1)-
Kaehler manifold M whose tangent bundle satisfies (2.5). Then we have:

(i) J(TN⊥)⊕J(tN) is integrable iff the second fundamental forms B
and C satisfy

C(Jξ, Jξ̄) = B(Jξ̄, Jξ̄)

and

(3.4) C(Jξ, JX) = B(Jξ̄, JX), ∀X ∈ Γ(D4);

(ii) TN⊥⊥{J(TN⊥) ⊕ J(tN)} is integrable iff B and C satisfy (3.4)
and

C(ξ, JX) = −B(Jξ, X) = −B(Jξ̄, X), ∀X ∈ Γ(D4).

(iii) D4 is integrable iff C is symmetric on D4 and satisfies

C(X, JY ) = C(Y, JX), ∀X, Y ∈ Γ(D4)

and B satisfies

B(X, JY ) = B(Y, JX), ∀X, Y ∈ Γ(D4).

Similar results follow from decompositions (2.6) and (2.7). Therefore
we may conclude that integrability of distributions on real hypersurfaces
of e-(J4 = 1)-Kaehler manifolds is characterized by means of the second
fundamental forms.
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