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Abstract. We determine all Finsler metrics of Randers type for which the Rie-

mannian part is a scalar multiple of the Euclidean metric, on an open subset of the

Euclidean plane, whose geodesics are circles. We show that the Riemannian part must

be of constant Gaussian curvature, and that for every such Riemannian metric there

is a class of Randers metrics satisfying the condition, determined up to the addition

of a total derivative, depending on a single parameter. As one of several applications

we exhibit a Finsler metric whose geodesics are the oriented horocycles in the Poincaré

disk, in each of the two possible orientations.

1. Introduction

When, in two dimensions, does a Finsler metric have geodesics which are

all circles? Here ‘circle’ is used in the mildly generalized sense in which straight

lines are considered as circles of infinite radius. Apart from this qualification the

word has its usual meaning, so there is an underlying assumption of an Euclidean

structure: and in fact we will work in Euclidean coordinates in the Euclidean

plane.
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There are several reasons, in addition to pure curiosity, why one might be

interested in this question. It may be considered as a generalized version, or in

Tabachnikov’s words [14] as a ‘magnetic analog’, of Hilbert’s fourth problem.

Or one might be interested in an inverse problem, that is, in the question of

whether some particular path space consisting of circles is Finsler metrizable.

Our motivation originated in a problem of the latter type, the relevant path

space being the set of horocycles of a fixed orientation in the Poincaré disk. (It

is well known that any two-dimensional path space is locally Finsler metrizable.

We therefore emphasise that the question here is a global one: whether there is

a Finsler function – positive and strictly convex – defined over the whole of the

interior of the unit disk, whose geodesics are horocycles.)

We do not attempt to answer the question in all generality, but deal with the

special class of Finsler metrics consisting of Randers metrics for which the Rie-

mannian part is conformal to the Euclidean metric. The obvious two-dimensional

Riemannian spaces whose geodesics are circles belong to this class. So do the met-

rics whose geodesics are circles of fixed radius discussed by Shen in [12], which

we have elsewhere [7] discussed at some length under the name of Shen’s circles,

and which form the standard case of a magnetic flow as discussed in [14]. Now the

transformations of the plane which map circles to circles are the fractional-linear

or Möbius transformations; these are also conformal for the Euclidean metric,

and so this class of Finsler functions is mapped to itself by the Möbius transfor-

mations. This makes the class a natural one to investigate. We solve the problem

completely for this class of metrics. Our results may be summarized as follows.

Theorem. Let M be an open subset of the Euclidean plane, with Euclidean

coordinates (x, y), and let (u, v) be the corresponding fibre coordinates on the

slit tangent bundle T ◦M . In order that a Finsler metric of Randers type whose

Riemannian part is conformal to the Euclidean metric should have only circles as

geodesics the Riemannian part must be of constant Gaussian curvature. Up to a

Möbius transformation, and up to multiplication by a positive constant and the

addition of an arbitrary total derivative, such a Finsler metric belongs to one of

following three one-parameter families of Randers metrics for which the Gaussian

curvature of the Riemannian part is respectively 0, +1 and −1:

Fτ (x, y, u, v) =
√
u2 + v2 + τ(yu− xv)

Fτ (x, y, u, v) =

√
u2 + v2 + τ(yu− xv)

2(1 + (x2 + y2))

Fτ (x, y, u, v) =

√
u2 + v2 + τ(yu− xv)

2(1− (x2 + y2))
.
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We discover, among the third of these classes, Finsler metrics for the horocy-

cles in the Poincaré disk. This discovery resolves a minor controversy. It is known

unequivocally (see [10]) that neither of the horocycle flows on a compact surface

of constant negative curvature (obtained as the quotient space of the Poincaré

disk by the action of a suitable discrete group of isometries) is geodesible: that is

to say, no Riemannian metric for such a surface can be found whose geodesic flow

has the horocycles (of either orientation) as its geodesic paths. Two questions

arise: does this result apply to the horocycle flows for the whole disk, and does it

rule out Finsler metrizability? A paper by Sullivan [13] seems to suggest that it

does apply to the whole disk; moreover, the arguments adduced there apparently

rule out Finsler metrizability too. Our result shows that in fact each horocycle

path space on the disk is Finsler metrizable.

Also among our Finsler metrics are ones for curves with constant geodesic

curvature with respect to the Poincaré metric, which again are circles: these are

the base integral curves of what Arnol’d [4] calls ‘cyclical flows’. It was known

that cyclical flows are isomorphic to geodesic flows, but so far as we know no

explicit metric has been published until now.

We should make it clear that we do not claim that our examples exhaust the

possibilities for Finsler metrics whose geodesics are circles. Tabachnikov, in [14],

describes the whole class of metrics whose geodesics are circles all of the same

radius. Álvarez Paiva and Berck, in [2], find all reversible Finsler metrics

on the 2-sphere whose geodesics are circles. In each case the methods used are

different from ours. Our solutions do of course overlap with those of these other

authors, in some instances of the first and second cases listed in the Theorem

above, respectively.

In Section 2 we obtain the Randers spaces whose geodesics are circles, thus

proving the Theorem. In Section 3 we discuss horocycles. In Section 4 we compute

the geodesic curvature (with respect to the Poincaré metric) of the geodesics of

the Randers metrics of interest. In Section 5 we consider cyclical flows.

We have specified the Finsler metrics under consideration as those Randers

metrics for which the Riemannian part is conformal to the Euclidean metric.

Now in two dimensions every Riemannian metric is locally conformally flat, so

it may be argued that that part of the specification is superfluous: that we are

dealing with Randers metrics in two dimensions for which the geodesics are circles

when expressed in terms of coordinates for which the Riemannian part is a scalar

multiple of the Euclidean metric. It seems to us however to be more natural

geometrically to state the problem in the original form, that is, to start with the

Euclidean plane with Euclidean coordinates as described above, and insist that
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the Finsler functions in question are of Randers type with Riemannian part which

is a scalar multiple of the Euclidean metric in those coordinates.

2. Proof of the theorem

Let M be an open subset of the Euclidean plane, with Euclidean coordinates

(x, y), and let (u, v) be the corresponding fibre coordinates on T ◦M . The vertical

vector fields

u
∂

∂u
+ v

∂

∂v
and − v

∂

∂u
+ u

∂

∂v

form a basis for vertical vector fields. So any spray may be written

Γ = u
∂

∂x
+ v

∂

∂y
+ λ

(
−v ∂

∂u
+ u

∂

∂v

)
mod (∆)

where λ is a function on T ◦M , positively homogeneous of degree 1 in (u, v). Here

∆ = u
∂

∂u
+ v

∂

∂v
,

the Liouville field. We wish to determine conditions under which the base integral

curves of Γ are circles, considered as oriented paths. That is to say, we may

count as equivalent sprays which differ by a multiple of ∆, or in other words

work projectively. In the first instance, therefore, we may simply ignore the ∆

component. The base integral curves of Γ are then the solutions of

ẍ = −λ(x, y, ẋ, ẏ)ẏ, ÿ = λ(x, y, ẋ, ẏ)ẋ.

Along a solution curve ẋ2 + ẏ2 is constant, so we may assume parametrization

with Euclidean arc-length. But then λ is just the curvature of the solution curve:

to be more precise, if s 7→ (x(s), y(s)) is a solution curve, λ(x(s), y(s), ẋ(s), ẏ(s))

is its curvature at the point of parameter value s, the unit tangent to the curve at

that point being (ẋ(s), ẏ(s)) and the unit normals ±(−ẏ(s), ẋ(s)). Now a circle

is just a curve of constant curvature: so the solution curve is a circle if and only

if λ is constant along it. Thus the necessary and sufficient condition for all the

base integral curves of Γ to be circles is that Γ(λ) = 0, or that λ satisfies

u
∂λ

∂x
+ v

∂λ

∂y
+ λ

(
−v ∂λ

∂u
+ u

∂λ

∂v

)
= 0.

We wish next to use this criterion to determine when the geodesics of a

Finsler function are circles. It is perhaps too much to expect to be able to answer
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this question in all generality, but as we have argued in the Introduction there

is an obvious class of Finsler functions which are of interest, appropriate to the

problem, and easy to analyse: it consists of Finsler functions obtained from a

conformally-Euclidean Riemannian metric by a Randers change: that is, Finsler

functions F of the form

F (x, y, u, v) = eϕ(x,y)
√
u2 + v2 + a(x, y)u+ b(x, y)v,

where we have written the conformal factor, which must be everywhere positive,

as eϕ(x,y).

Since F is positively homogeneous of degree 1 it has a single Euler-Lagrange

equation, which is

(vu̇− uv̇)

(u2 + v2)3/2
+

(
∂ϕ

∂y
u− ∂ϕ

∂x
v

)
1√

u2 + v2
+ e−ϕ

(
∂a

∂y
− ∂b

∂x

)
= 0.

This equation is satisfied by u̇ = −λv, v̇ = λu where

λ = e−ϕ

(
∂a

∂y
− ∂b

∂x

)√
u2 + v2 +

∂ϕ

∂y
u− ∂ϕ

∂x
v.

Let us denote the coefficient of
√
u2 + v2 by µ. Then the condition on λ for the

geodesics to be circles becomes(
u

(
∂µ

∂x
− µ

∂ϕ

∂x

)
+ v

(
∂µ

∂y
− µ

∂ϕ

∂y

))√
u2 + v2 +

(
∂2ϕ

∂x∂y
− ∂ϕ

∂x

∂ϕ

∂y

)
(u2 − v2)

−

(
∂2ϕ

∂x2
− ∂2ϕ

∂y2
−
(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2
)
uv = 0.

Thus from the quadratic terms ϕ must satisfy the two equations

∂2ϕ

∂x∂y
=
∂ϕ

∂x

∂ϕ

∂y
and

∂2ϕ

∂x2
− ∂2ϕ

∂y2
=

(
∂ϕ

∂x

)2

−
(
∂ϕ

∂y

)2

,

while from the term in
√
u2 + v2 it follows that µe−ϕ is constant.

The equations that ϕ must satisfy turn out to be simplest when expressed in

terms of e−ϕ = f : they become

∂2f

∂x∂y
= 0 and

∂2f

∂x2
=
∂2f

∂y2
.
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It follows that all third order partial derivatives of f vanish, so f is at most

quadratic in x and y, with highest-order term a constant multiple of x2 + y2.

Then the Riemannian part is of constant Gaussian curvature; in fact if f(x, y) =

l(x2 + y2) +mx+ ny + p the curvature is 4lp− (m2 + n2).

The condition on a and b is that

f2
(
∂a

∂y
− ∂b

∂x

)
= k,

a constant. Note that if (a, b) and (a′, b′) both satisfy this condition (with the

same k) then
∂

∂y
(a′ − a) =

∂

∂x
(b′ − b),

so that

a′ = a+
∂ψ

∂x
, b′ = b+

∂ψ

∂y

for some function ψ on M : but F is only determined up to a total derivative

anyway. So any one solution (a, b) is enough. Indeed, if (a, b) is a solution with

k = 1 then (τa, τb) is a solution with k = τ . In fact with f(x, y) = l(x2 + y2) +

mx+ ny + p, provided that m, n and p are not all zero,

a(x, y) = (αx+ βy + γ)/f(x, y), b(x, y) = (−βx+ αy + δ)/f(x, y)

will do for any constants α, β, γ and δ such that

mα+ nβ − 2lγ = 0, −nα+mβ + 2lδ = 0, 2pβ − nγ +mδ = 1.

By using Möbius transformations and the fact that F and cF have the same

geodesics for nonzero constant c we can obtain canonical forms, up to the addition

of total derivatives, for the Finsler metrics corresponding to Gaussian curvature 0,

+1, −1, as follows. Note first that since F and cF must both be positive we must

take c to be positive; so we may assume without loss of generality that the leading

term in f is (x2+y2), −(x2+y2) or zero (i.e. that f is linear). In either of the first

two cases we may eliminate the linear terms by a change of origin, and by scaling

reduce the quadratic expression to one of 1+(x2+y2), 1− (x2+y2), (x2+y2)−1

and (x2 + y2) (the conformal factor cannot be everywhere negative). The latter

two cases are equivalent to those with f = 1−(x2+y2) and f = 1 respectively, by

inversion in the unit circle. Any linear f may be reduced to f = y (by a rotation

followed by a scale followed by a translation), and any constant f to 1. Moreover,

it is well-known that there exists a Möbius transformation in the hyperbolic plane
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which transforms the half-plane model (with f = y) into the Poincaré disk model

(with f = 1 − (x2 + y2)). So we may assume that f = 1, f = 1 + (x2 + y2),

or f = 1 − (x2 + y2). The first has Gaussian curvature 0 of course. Finally we

replace the latter two by f = 2(1 + (x2 + y2)) and f = 2(1− (x2 + y2)), so as to

obtain Gaussian curvature +1 and −1 respectively. It is then easily checked that

β = 1, α = γ = δ = 0 satisfies the conditions for a and b above, with k = 1, in

each case. We obtain the following classes of canonical forms

Fτ (x, y, u, v) =
√
u2 + v2 + τ(yu− xv) (Gaussian curvature 0)

Fτ (x, y, u, v) =

√
u2 + v2 + τ(yu− xv)

2(1 + (x2 + y2))
(Gaussian curvature +1)

Fτ (x, y, u, v) =

√
u2 + v2 + τ(yu− xv)

2(1− (x2 + y2))
(Gaussian curvature −1)

as stated in the Theorem. Each class depends on a single parameter τ .

We should also determine maximum domains on which Fτ is positive and

strongly convex: actually positive is enough, since according to [5] (Section 11.1),

for a Randers metric positivity implies strong convexity. Notice that

|yu− xv| ≤
√
x2 + y2

√
u2 + v2

by the Cauchy–Schwarz inequality. It follows that the first two Finsler functions

above are positive on the domain x2 + y2 < τ−2. The geodesics of the first class

are Shen’s circles and we refer to [7] and [12] for further discussions on this metric.

As these references reveal, the situation is complicated by the fact that we may

change, and possibly enlarge, domains by adding on total derivatives. For the

second case, the Finsler function with τ = 0 corresponds (up to a factor) to the

metric of the sphere after stereographic projection. If τ ̸= 0, i.e. when the Finsler

function is non-reversible, the metrics cannot be extended to the whole sphere.

This is indeed to be expected in the light of the following result, which can be

derived from [1]: any Finsler metric (not necessarily of Randers type) defined

on the whole sphere, all of whose geodesics are circles, is the sum of a reversible

metric and a total derivative. We shall discuss the third class of metrics in more

detail in the sections that follow.
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3. Horocycles

As we pointed out earlier, one interesting example consists of the horocycles.

In the Poincaré disk model of the hyperbolic plane, the horocycles are repre-

sented by circles tangent to the boundary circle. So let us take the closed unit disk

D centred at the origin in R2, with interior D0 and boundary the unit circle C,

and consider all circles whose centres lie in D0 and which touch C. Actually,

the set of such circles does not define a path space: one has first to choose an

orientation (otherwise there are two circles through any given point in D0 with

given tangent vector). We choose the anticlockwise orientation.

Consider a circle through a point (x0, y0) ∈ D0, with (non-zero) tangent

vector (u0, v0) there. Its centre (ξ, η) lies on the normal, so x0−ξ = ρv0, y0−η =

−ρu0, with ρ > 0 to get the orientation right. For this circle to touch C its

radius r must satisfy
√
ξ2 + η2 + r = 1. The equation of the horocycle through

(x0, y0) with tangent (u0, v0) is thus (x− ξ)2 + (y− η)2 = r2 where ξ = x0 − ρv0,

η = y0 + ρu0, and

ρ
√
u20 + v20 = r = 1−

√
(x0 − ρv0)2 + (y0 + ρu0)2,

from which

ρ =
1− (x20 + y20)

2
(√

u20 + v20 + y0u0 − x0v0

) .
Since (x0, y0) ∈ D0 the argument of the previous section involving the Cauchy–

Schwarz inequality implies that ρ is well-defined and positive.

We shall show that

F (x, y, u, v) =

√
u2 + v2 + yu− xv

2(1− (x2 + y2))

is a Finsler function on T ◦D0 whose geodesics are the horocycles. Notice that

4F (x0, y0, u0, v0) = ρ−1; thus F is positive on T ◦D0, so it is a Finsler function

there. It belongs to the class of Finsler functions discussed in the previous section

whose geodesics are circles, and whose Riemannian part has Gaussian curvature

−1; we shall show that its geodesics are the anticlockwise-oriented horocycles.

In this case, somewhat remarkably, λ = 4F . The geodesics are thus the

solutions of

ẍ = −4F (x, y, ẋ, ẏ)ẏ, ÿ = 4F (x, y, ẋ, ẏ)ẋ,

with Ḟ = 0. Thus ẋ − u0 = −(y − y0)/ρ, ẏ − v0 = (x − x0)/ρ, with ρ =

(4F (x0, y0, u0, v0))
−1; or in other words

ρẋ = −y + (y0 + ρu0) = −(y − η), ρẏ = x− (x0 − ρv0) = x− ξ.
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Thus
(x− ξ)2 + (y − η)2 = ρ2(ẋ2 + ẏ2) = ρ2,

since without loss of generality we may take ẋ2 + ẏ2 = 1. This base integral path

is a circle with centre (ξ, η) and radius ρ. Finally, we show that (ξ, η) ∈ D0, and

ρ+
√
ξ2 + η2 = 1; in fact the first follows from the second. It follows easily from

the definitions of ρ (with u20 + v20 = 1) and ξ and η that ξ2 + η2 = (1− ρ)2. But

by the Cauchy–Schwarz inequality 1− ρ > 0, and therefore ρ+
√
ξ2 + η2 = 1 as

required.

In principle our calculations determine only the projective class of Γ: but

Γ(F ) = 0 as we showed earlier, so Γ is in fact the geodesic spray of F .

The geodesics of the Finsler function

F̄ (x, y, u, v) =

√
u2 + v2 − yu+ xv

2(1− (x2 + y2))

are the horocycles with clockwise orientation.

The Finsler metric F for the horocycles has constant flag curvature; but

somewhat unexpectedly its flag curvature is 1 rather than −1. Since F is a Ran-

ders metric we can use the Zermelo navigation data to carry out the calculation.

The method is described by Bao and Robles in [6]; see also [11]. We follow their

notation. The Zermelo navigation data for F consist of a Riemannian metric h

and a vector field W on D0. Using the formulas given in Section 3.1.2 of [6] we

find that

h = (1− (x2 + y2))−1
(
(1− y2)dx2 + 2xy dxdy + (1− x2)dy2

)
,

while

W = y
∂

∂x
− x

∂

∂y
.

Now h is the metric of a hemisphere, obtained by parallel projection of the upper

unit hemisphere in R3, given by z =
√
1− (x2 + y2), along the z-axis onto D0.

Moreover, W is the generator of rotations about the origin in R2, so it is an

infinitesimal isometry of h. It then follows from Theorem 10 of [6] that F has

constant flag curvature equal to the Gaussian curvature of h, which is 1.

4. Geodesic curvature

Consider again the Finsler function

F (x, y, u, v) = eϕ(x,y)
√
u2 + v2 + a(x, y)u+ b(x, y)v.
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One of the conditions we derived earlier for the geodesics of F to be circles is that

e−2ϕ

(
∂a

∂y
− ∂b

∂x

)
is constant. Let us denote the expression displayed above by κ. We shall show

that for any F of this form and for any geodesic path of F , κ is its geodesic

curvature with respect to the Riemannian part of F .

For any F of this form let us denote its Riemannian part eϕ
√
u2 + v2 by G.

Any spray Γ of F is given by

Γ = u
∂

∂x
+ v

∂

∂y
+ λ

(
−v ∂

∂u
+ u

∂

∂v

)
+ ν∆

for some ν, where

λ = eϕκ
√
u2 + v2 +

∂ϕ

∂y
u− ∂ϕ

∂x
v = κG+ λ0

say. Furthermore, let us choose ν such that Γ(G) = 0, so that the base integral

curves of Γ are parametrized proportionally to the Riemannian arc-length. This

requires just that

ν = −
(
u
∂ϕ

∂x
+ v

∂ϕ

∂y

)
,

from which it is clear that, with this choice of parametrization,

Γ = Γ0 + κG

(
−v ∂

∂u
+ u

∂

∂v

)
where Γ0 is the geodesic spray of the Riemannian part of F . Let us write ∇/ds
for the operation of covariant differentiation along a curve parametrized by s with

respect to the Levi–Civita connection of the Riemannian metric. Then any base

integral curve of the spray Γ (with the chosen value of ν), parametrized with

Riemannian arc-length so that G = 1 along it, satisfies

∇ẋ
ds

= −κẏ, ∇ẏ
ds

= κẋ.

It is clear that (−ẏ(s), ẋ(s)) is a unit normal field along the curve. Thus κ is the

geodesic curvature of the base integral curve with respect to the Riemannian part

of F .

Since κ is a function on the base M the geodesics of the Finsler functions F

under consideration have the interesting property that their geodesic curvatures
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depend on position only: at each point (x, y) ∈ M all geodesics of F through

(x, y) have the same geodesic curvature κ(x, y) there. The flow on T ◦M of the

corresponding spray Γ (normalized so that Γ(G) = 0) is accordingly called by

Arnol’d, in [4], an isotropic flow. Remark that when κ is constant the base

integral curves of Γ are ‘Riemannian’ circles (in the sense of e.g. [8]), for the

Riemannian metric given by G.

Consider next the 1-form θ = −(adx+ bdy). We have

dθ =

(
∂a

∂y
− ∂b

∂x

)
dx ∧ dy = e2ϕκdx ∧ dy = κω,

where ω is the area 2-form of the Riemannian part of F . Let c be a piecewise-

smooth closed curve in M which bounds a region R: then∮
F (ċ) =

∮
G(ċ) +

∫
R

κω.

Suppose that κ is constant, as it is for those Finsler functions F whose geodesics

are circles; suppose that it is nonzero; then by scaling a and b we may take κ = 1.

Then the area of R is just
∫
R
κω =

∮
c
θ. This observation is relevant to the so-

called isoperimetric problem for the Riemannian manifold with metric G, that is,

the problem of minimising the length of the perimeter,
∮
G(ċ), of the region while

fixing its area. By the method of the Lagrange multiplier a curve c is a solution

curve for this isoperimetric problem if it satisfies the Euler-Lagrange equations

for the Lagrangian

F−τ (x, y, u, v) = eϕ(x,y)
√
u2 + v2 − τ(a(x, y)u+ b(x, y)v)

(τ being the multiplier). That is, solutions of the isoperimetric problem (if any

exist) are closed curves which are geodesics of F−τ ; the value of τ is determined

by the requirement that the area enclosed by c (as measured with ω) takes the

specified value. In particular, we obtain the known results that the solutions

to the isoperimetric problem for arbitrary G have constant geodesic curvature,

and that the solutions for surfaces of constant curvature are circles. In fact we

can generalize the problem slightly, by using F to measure the perimeter rather

than G, since (for constant κ) the difference between the two perimeters
∮
G(ċ)

and
∮
F (ċ) is just a constant multiple of the area enclosed, which is assumed

fixed. This discussion complements a solution by Bryant to a problem posted

recently by Álvarez Paiva in an online discussion forum [3].
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5. Cyclical flows

We consider now

Fτ (x, y, u, v) =

√
u2 + v2 + τ(yu− xv)

2(1− (x2 + y2))

where τ is a constant. The quantity f2µ for this function takes the (constant)

value τ : its geodesics are therefore circles. If we set τ = 0 we get the geodesics of

the Poincaré disk, if we set τ = +1 or τ = −1 we get horocycles; the configurations

for other values of τ interpolate between, and extend beyond, these. Now in order

that Fτ > 0 we must have x2 + y2 < min(1, τ−2). Thus for −1 ≤ τ ≤ 1, Fτ

is a well-defined Finsler metric (positive and strictly convex) over the whole of

the open unit disk D0. But for |τ | > 1 Fτ is a Finsler metric only on a smaller

domain. It is however what we have elsewhere [7] called a pseudo-Finsler function;

in particular, its geodesics are still well-defined, and are circles.

The possibilities are illustrated in the following figures. Each of the plots

show geodesics through the same initial point and with the same initial direction,

but for different choices for the parameter τ . The black circles represent either

horocycles (τ = ±1) or Riemannian geodesics (τ = 0). The grey circles outside

the horocycles correspond to Finsler geodesics with parameter values |τ | < 1,

while those inside the horocycles correspond to |τ | > 1.

By the calculation in the previous section the geodesic curvature of the in-

tegral curves of the geodesic spray of the Finsler function Fτ , viewed as curves

on the Poincaré disk, is just τ . We are therefore in the case of what Arnol’d

calls cyclical flows ([4]; see also [9]). Theorem 2 of Arnol’d’s paper states that

if τ2 < 1 the corresponding flow is ‘isomorphic to a geodesic flow’: we have ex-

hibited a Finsler function of which it is the geodesic flow. Let us be a little more

precise. The Finsler function Fτ determines a Riemannian metric on T ◦M , its
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so-called Sasaki lift. The flow of Γτ is a geodesic flow of this metric, and is there-

fore a Riemannian geodesic flow. Fuller details may be inferred from a discussion

of geodesibility in [10].

Each geodesic of Fτ , for fixed τ , has constant curvature in the ordinary

sense, that is, constant geodesic curvature with respect to the Euclidean metric,

but different geodesics have different curvatures. Each geodesic also has constant

geodesic curvature with respect to the Poincaré metric, but now all geodesics have

the same curvature. It may be shown (again by making use of Zermelo navigation)

that τ = 0,±1 are the only cases where Fτ is of constant flag curvature.
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