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Abstract. In this paper, we investigate properties of set-valued mappings that

establish connection between the values of this map at two arbitrary points of the do-

main and the value at their midpoint. Such properties are, for instance, Jensen convex-

ity/concavity, K-Jensen convexity/concavity (whereK is the set of nonnegative elements

of an ordered vector space), and approximate/strong K-Jensen convexity/concavity.

Assuming weak but natural regularity assumptions on the set-valued map, our main

purpose is to deduce the convexity/concavity consequences of these properties in the

appropriate sense. Our two main theorems will generalize most of the known results in

this field, in particular the celebrated Bernstein–Doetsch Theorem from 1915, and thus

they offer a unified view of these theories.

Mathematics Subject Classification: Primary: 26B25; Secondary: 54C60, 39B62.
Key words and phrases: K-Jensen convexity/concavity, set-valued map, Takagi transformation,

approximate convexity, strong convexity.

The research of the third author was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-
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1. Introduction

The classical theorem of Bernstein and Doetsch [3] published almost one

hundred years ago plays, undoubtedly, a fundamental role in the theory of con-

vexity. This theorem asserts that if f : D → R is a Jensen convex function (where

D is a real interval, or more generally, D is a convex subset of a linear space X),

i.e.,

f

(
x+ y

2

)
≤ f(x) + f(y)

2
(x, y ∈ D) (1)

and it is also locally upper bounded, then it must be convex over D. If (−f) is

Jensen convex, then f is frequently called Jensen concave, the results for these

functions are analogous under the assumption of local lower boundedness. The

above theorem was seminal and was applied and generalized in many useful ways

to various important circumstances that we briefly describe in what follows.

When the co-domain of f is an ordered vector space Y , i.e., the set K of the

nonnegative elements in Y forms a convex cone, then one can define K-Jensen

convexity of f : D → Y by

f(x) + f(y)

2
∈ f

(
x+ y

2

)
+K (x, y ∈ D). (2)

In particular, if Y = R and K = R+, then (2) is equivalent to (1). Analogously,

one can introduce K-convexity. Extensions of the Bernstein–Doetsch Theorem to

this setting were formulated by Trudzik [33]. Functions f : D → Y satisfying

the inclusion

f

(
x+ y

2

)
∈ f(x) + f(y)

2
+K (x, y ∈ D) (3)

are called K-Jensen concave. Obviously, this holds if and only if (−f) is K-Jensen

convex (or if f is (−K)-Jensen convex). Thus, the results related to K-Jensen

concavity of functions can always be derived from the statements established

for K-Jensen convexity. (This, however, will not be the case for the set-valued

setting.)

A further generalization step was to consider set-valued functions instead of

single-valued ones. A set-valued map F : D → 2Y is called K-Jensen convex if

the inclusion
F (x) + F (y)

2
⊆ F

(
x+ y

2

)
+K (x, y ∈ D) (4)

holds. Observe that if F is of the form F (x) = {f(x)} for some function f :

D → Y , then (4) is equivalent to (2), and hence (4) generalizes (2). Bernstein–

Doetsch type results for this setting have been obtained by Averna, Cardinali,
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Nikodem, and Papalini [1], [6], [21], [22], [23], [24], [25] and by Borwein [5].

The notion of the K-Jensen concavity of a set-valued function F : D → 2Y ,

analogously to (3), is defined by

F

(
x+ y

2

)
⊆ F (x) + F (y)

2
+K (x, y ∈ D). (5)

Observe that, in general, the K-Jensen concavity of F is not equivalent to the

K-Jensen convexity of (−F ). Thus, starting from the set-valued setting, the cases

of convexity and concavity need separate (but similar) considerations.

Another chain of generalizations of the Bernstein–Doetsch Theorem emerged

from the paper of Ng and Nikodem [20] in the context of approximate convexity.

They proved if f : D → R is ε-Jensen convex for some ε ≥ 0, i.e.,

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ ε (x, y ∈ D), (6)

and if f is also locally upper bounded, then it is 2ε-convex, i.e.,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + 2ε (x, y ∈ D, t ∈ [0, 1]). (7)

This result was also independently established by Laczkovich [13]. The set-

valued and K-Jensen convex/concave variant of this theorem will be formulated

as a consequence of our results in the sequel.

Considering more general error terms than constant ones, Házy and Páles

[9] investigated the following approximate Jensen type inequality:

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ ε∥x− y∥ (x, y ∈ D), (8)

provided that D is a subset of a normed space X and f is real valued. They

showed, under the usual local upper-boundedness condition, that (8) implies

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + 2εT (t)∥x− y∥
(x, y ∈ D, t ∈ [0, 1]), (9)

where the function T : R → R, the so-called Takagi function, is defined by

T (t) :=

∞∑
n=0

1

2n
dist(2nt,Z). (10)
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Results, extending this approach to more general error terms and also to convex-

ity concepts related to Chebyshev systems, have recently been obtained by Házy,

Makó and Páles [7], [8], [10], [11], [15], [16], [17], [18] and by Mureko, Ja. Ta-

bor, Jó. Tabor, and Żoldak [19], [29], [30], [31], [32]. For the set-valued and

K-Jensen convex/concave setting more general statements will be formulated as

direct consequences of our two main results below.

Finally, we mention the notion of strong convexity, which in some sense, is

opposite to approximate convexity. Following Polyak [26], a function f : D → R
is called strongly Jensen convex with modulus ε ≥ 0 if

f

(
x+ y

2

)
≤ f(x) + f(y)

2
− ε

4
∥x− y∥2 (x, y ∈ D). (11)

Assuming local upper boundedness of f , Azócar, Gimenez, Nikodem and

Sanchez in [2] showed that the above strong Jensen-convexity property implies

that f is strongly convex with modulus ε, i.e.,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− εt(1− t)∥x− y∥2

(x, y ∈ D, t ∈ [0, 1]). (12)

The set-valued Jensen convex variant of this result was established by Leiva,

Merentes, Nikodem, and Sanchez [14]. More abstract and powerful results

will be the corollaries of our two main theorems.

2. Terminology and auxiliary results

Let X be a Hausdorff topological linear space. The family of all open sets

containing the origin of X will be denoted by U = U(X). The closure of a subset

H ⊆ X will be denoted either by H or by cl(H). We will frequently use the fact

that H =
∩

U∈U(X)(U +H). An immediate consequence of this formula is that,

for every pair of subsets A,B ⊆ X, we have

A+B ⊆ A+B = A+B. (13)

(See, e.g., [27], [28]). Indeed, to prove the inclusion in (13), let U ∈ U(X) and

choose V ∈ U(X) such that V + V ⊆ U . Then A + B ⊆ (V + A) + (V + B) ⊆
U +A+B. Hence A+B ⊆

∩
U∈U(X)(U +A+B) = A+B. The equality in (13)

trivially follows from this inclusion and the monotonicity of the closure operation.
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If either A or B is compact then, the set A+B is closed and the inclusion in (13)

can be replaced by equality.

A subset H ⊆ X is called bounded if, for any U ∈ U, there exists t > 0 such

that H ⊆ tU . It is well-known that the union of finitely many bounded sets is

also bounded. The family of bounded sets is closed under algebraic addition and

multiplication by scalars.

Given two points x, y ∈ X, their convex hull, i.e., the segment connecting

them, will be denoted by [x, y]. Convexity of a set H ⊆ X is equivalent to the

property that [x, y] ⊆ H whenever x, y ∈ H. A set H ⊆ X is said to be closedly

convex if, for all x, y ∈ H, [x, y] ⊆ H holds. In fact, it is easy to see that H

is closedly convex if and only if H is convex. A convex set which is closed with

respect to multiplication by positive scalars is called a convex cone. A set H ⊆ X

is called star-shaped with respect to a point p ∈ H, if for all x ∈ H, the segment

[x, p] is contained in H. If p = 0, then we will simply call H star-shaped.

Given a convex cone K ⊆ X, we can define the ordering relation ≤K as

follows: x ≤K y holds if and only if y − x ∈ K. This relation is transitive, and,

provided that K ∩ (−K) = {0}, it is also reflexive and antisymmetric and then

≤K is a partial order on X.

Given a convex cone K, a subset S ⊆ X is called K-lower bounded if there

exists a bounded set H ⊆ X such that S ⊆ H + K. If S ⊆ cl(H + K) for

some bounded set H, then we say that S is closedly K-lower bounded. If the

space X is locally bounded, then these notions are equivalent to each other. One

can easily see that the union of finitely many (closedly) K-lower bounded sets is

also (closedly) K-lower bounded. Furthermore, the family of (closedly) K-lower

bounded sets is closed under algebraic addition and multiplication by positive

scalars.

A set H ⊆ X is called K-convex (resp. closedly K-convex ) if [x, y] is con-

tained in H +K (resp. in cl(H +K)) whenever x, y ∈ H. In general, using the

inclusion in (13), one can see that the K-convexity of H implies that H is closedly

K-convex, but the reversed implication may not be valid for all convex cones K.

Given a nonempty subset H ⊆ X, we can naturally attach a cone, called the

recession cone of H in the following manner:

rec(H) := {x ∈ X | tx+H ⊆ H for all t ≥ 0}.

It is elementary to check that rec(H) is a convex cone containing 0. The

additional basic properties of the recession cone are summarized in the following

lemma.
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Lemma 2.1. Let H ⊆ X be a nonempty set. Then

(i) rec(H) is a convex cone containing 0;

(ii) K = rec(H) is the largest cone K such that K +H ⊆ H is valid;

(iii) rec(H) ⊆ rec(H);

(iv) for all x ∈ X, t > 0, rec(x+ tH) = rec(H);

(v) for all nonempty sets H1,H2 ⊆ X, rec(H1) + rec(H2) ⊆ rec(H1 +H2).

Proof. The proofs of (i), (ii) and (iv) are immediate.

Taking closure of both sides of the inclusion rec(H) + H ⊆ H and then

using (13), it follows that rec(H) +H ⊆ H. Hence, using (ii), we conclude that

rec(H) ⊆ rec(H) proving (iii).

Adding up the relations rec(H1) +H1 ⊆ H1 and rec(H2) +H2 ⊆ H2 side by

side, we get (rec(H1) + rec(H2)) + H1 + H2 ⊆ H1 + H2. Hence, using (ii), the

inclusion stated in (v) follows. �

In order to prove our main results in the next section, we will also need the

following lemma, which allows one to perform the limit related to inclusions.

Lemma 2.2. Let (An), (Bn) be nondecreasing sequences of nonempty sub-

sets of X, let H ⊆ X be a nonempty bounded set, let K ⊆
∩∞

n=0 rec(Bn) be also

nonempty, and let εn > 0 be a null-sequence of real numbers. Assume that, for

all n ≥ 0,

An ⊆ cl
(
εnH +K +Bn

)
. (14)

Then
∞∪

n=0

An ⊆ cl

( ∞∪
n=0

Bn

)
. (15)

Proof. Let U ⊆ X be any neighborhood of the origin 0 ∈ X and let V ⊆ X

be an open balanced neighborhood of 0 such that V + V + V ⊆ U . The set

K being a subset of the closure of the recession cone rec(Bn), we have that

K ⊆ V + rec(Bn). By definition, we also have that rec(Bn) + Bn ⊆ Bn. Thus,

for all n ≥ 0, it follows that K +Bn ⊆ V +Bn.

On the other hand, since H is bounded and εn is a null-sequence, there exists

an integer N such that, for n ≥ N , εnH ⊆ V. Therefore, applying (14), for n ≥ N ,

we get that

An ⊆ cl
(
εnH +K +Bn

)
⊆ cl

(
V + V +Bn

)
⊆ V + V + V +Bn ⊆ U +Bn ⊆ U +

∞∪
k=0

Bk.
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Therefore,
∞∪

n=N

An ⊆ U +
∞∪
k=0

Bk. (16)

In view of the nondecreasingness of the sequence (An), inclusion (16) is equivalent

to
∞∪

n=0

An ⊆ U +

∞∪
k=0

Bk.

The above relation is valid for all U ∈ U(X), hence

∞∪
n=0

An ⊆
∩

U∈U(X)

(
U +

∞∪
k=0

Bk

)
= cl

( ∞∪
k=0

Bk

)
,

which proves (15). �

Given another Hausdorff topological linear space Y , we will now introduce

further notions for set-valued maps from a subset of X to P0(Y ), where P0(Y )

stands for the family of nonempty subsets of the space Y .

Let D ⊆ X be a nonempty set and K be a convex cone in Y . A set-valued

function S : D → P0(Y ) is called locally closedly K-lower bounded if, for any

x ∈ D, there exist an open set U containing x and a bounded set H ⊆ Y such that

S(u) ⊆ cl(H +K) holds for all u ∈ U ∩D. A set-valued function S : D → P0(Y )

is called locally closedly weakly K-upper bounded if, for any x ∈ D, there exist an

open set U containing x and a bounded set H ⊆ Y such that 0 ∈ cl(S(u)+H+K)

for all u ∈ U ∩D.

Lemma 2.3. Assume that S : D → P0(Y ) is a locally closedly K-lower

bounded set-valued map. Then, for each compact subset C ⊆ D, there exists a

bounded set H ⊆ Y such that, for all x ∈ C, S(x) ⊆ cl(H +K).

Proof. Let C ⊆ D be a nonempty compact set. Since S is locally closedly

K-lower bounded, therefore, for each x ∈ C, there exist an open set Ux containing

x and a bounded set Hx ⊆ Y such that S(u) ⊆ cl(Hx+K) for all u ∈ Ux∩D. The

family of sets {Ux | x ∈ C} is an open covering for C, hence, by the compactness of

C, there exists a finite subcovering {Ux1 , . . . , Uxn} of C. Let H := Hx1∪· · ·∪Hxn .

Then, H is bounded and, for all x ∈ C, there exists i ∈ {1, . . . , n} such that

x ∈ Uxi . Hence S(x) ⊆ cl(Hxi +K) ⊆ cl(H+K), which proves the assertion. �

Lemma 2.4. Assume that S : D → P0(Y ) is a locally closedly weakly K-

upper bounded set-valued map. Then, for each compact subset C ⊆ D, there

exists a bounded set H ⊆ Y such that, for all x ∈ C, 0 ∈ cl(S(x) +H +K).
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Proof. Let C ⊆ D be a nonempty compact set. The set-valued map S

being locally closedly weakly K-upper bounded, it follows that, for each x ∈ C,

there exist an open set Ux containing x and a bounded set Hx ⊆ Y such that

0 ∈ cl(S(u) + Hx + K) for all u ∈ Ux. The family of sets {Ux | x ∈ C} is

an open covering for C, hence, by the compactness of C, there exists a finite

subcovering {Ux1 , . . . , Uxn} of C. Let H := Hx1 ∪ · · · ∪Hxn . Then, H is bounded

and, for all x ∈ C, there exists i ∈ {1, . . . , n} such that x ∈ Uxi . Hence 0 ∈
cl(S(x) +Hxi +K) ⊆ cl(S(x) +H +K), which proves the assertion. �

3. Takagi transformation of set-valued maps

Assume now that D ⊆ X is a star-shaped set and consider now a set-valued

map S : D → P0(Y ) with the additional property that 0 ∈ S(x) for all x ∈ D.

For such a map, we define ST : R×D → Y by the following expression:

ST (t, x) := cl

( ∞∪
n=0

n∑
k=0

1

2k
S
(
2dZ(2

kt)x
))

(t ∈ R, x ∈ D), (17)

where dZ : R → R is defined by

dZ(t) := dist(t,Z) := inf
k∈Z

|k − t| (t ∈ R).

The set-valued map ST will be called the Takagi transformation of the map S in

the sequel. The recession cone of a set-valued map S is set by

rec(S) :=
∩
x∈D

recS(x).

In the following lemma we establish the relationship between a set-valued

map and its Takagi transformation.

Lemma 3.5. Let D ⊆ X be a star-shaped set and S : D → P0(Y ) be a

set-valued map with the additional property that 0 ∈ S(x) for all x ∈ D. Then

cl(S(x)) ⊆ ST

(
1

2
, x

)
(x ∈ D). (18)

If, in addition S(0) ⊆ rec(S), then

cl(S(x)) = ST

(
1

2
, x

)
(x ∈ D). (19)
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Proof. Observe that dZ
(
1
2

)
= 1

2 and dZ
(
2k · 1

2

)
= 0 for k ∈ N. Thus,

ST
(1
2
, x
)
= cl

( ∞∪
n=0

n∑
k=0

1

2k
S

(
2dZ

(
2k · 1

2

)
x

))
= cl

(
S(x) +

∞∪
n=0

n∑
k=1

1

2k
S(0)

)
.

The property 0 ∈ S(0), directly implies that (18) holds. To prove (19), assume

that S(0) ⊆ rec(S). Then S(0) ⊆ rec(S(x)) ⊆ rec(S(x)). Since rec(S(x)) is a

convex cone, we have that this set is closed under addition and multiplication by

scalars. Thus, for all n ∈ N,
n∑

k=1

1

2k
S(0) ⊆

n∑
k=1

1

2k
rec(S(x)) ⊆ rec(S(x)).

Consequently,
∞∪

n=0

n∑
k=1

1

2k
S(0) ⊆ rec(S(x)).

Therefore,

ST

(
1

2
, x

)
= cl

(
S(x) +

∞∪
n=0

n∑
k=1

1

2k
S(0)

)
⊆ cl

(
S(x) + rec(S(x))

)
⊆ cl(S(x)),

which completes the proof of (19). �

The following lemma implies that the Takagi transformation of a set-valued

map which is constructed as the product of an upper semicontinuous nonnegative

scalar function and a convex subset of Y is the product of the Takagi transfor-

mation of the scalar function and the same set.

Proposition 3.6. Let D ⊆ X be a star-shaped set and S0 ⊆ Y be a convex

set containing 0 ∈ Y and K ⊆ Y be a convex cone. Let φ : D → R+ be a

locally upper bounded nonnegative function. Define S : D → P0(Y ) by S(x) :=

K + φ(x)S0. Then

ST (t, x) = cl
(
K + φT (t, x)S0

)
(t ∈ R, x ∈ D), (20)

where

φT (t, x) =
∞∑

n=0

1

2n
φ
(
2dZ(2

nt)x
)

(t ∈ R, x ∈ D). (21)

If, in addition, φ(0) = 0, then

φT

(
1

2
, x

)
= φ(x) and ST

(
1

2
, x

)
= cl(K + φ(x)S0)

= cl(S(x)) (x ∈ D). (22)
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Proof. For t ∈ R and n ≥ 0, we have that 0 ≤ 2dZ(2
nt) ≤ 1, therefore

2dZ(2
nt)x ∈ [0, x]. The function φ being locally upper bounded on D, it is

bounded from above over [0, x] by some constant M(x). Then we have that

φT (t, x) =
∞∑

n=0

1

2n
φ
(
2dZ(2

nt)x
)
≤

∞∑
n=0

1

2n
M(x) = 2M(x) (t ∈ R).

To prove (20), fix (t, x) ∈ R×D.

For the proof of the inclusion ⊆ in (20), we first show that

∞∪
n=0

n∑
k=0

1

2k
S
(
2dZ(2

kt)x
)
⊆ K + φT (t, x)S0. (23)

Choose y from the left hand side of inclusion (23) arbitrarily. Then, using the

definition of S and the convexity of S0, for some n ≥ 0 we have that

y ∈
n∑

k=0

1

2k
S
(
2dZ(2

kt)x
)
=

n∑
k=0

(
K +

1

2k
φ
(
2dZ(2

kt)x
)
S0

)

= K +

( n∑
k=0

1

2k
φ
(
2dZ(2

kt)x
))

S0 +

( ∞∑
k=n+1

1

2k
φ
(
2dZ(2

kt)x
))

{0}

⊆ K +

( ∞∑
k=0

1

2k
φ
(
2dZ(2

kt)x
))

S0 = K + φT (t, x)S0.

Thus, inclusion (23) is proved. Taking the closures of both sided, the inclusion ⊆
in (20) follows immediately.

For the proof of the inclusion ⊇ in (20), by the closedness of ST (t, x), it

suffices to show that

K + φT (t, x)S0 ⊆ ST (t, x).

Let y ∈ K+φT (t, x)S0. Then y = u+φT (t, x)v for some elements u ∈ K, v ∈ S0.

Define the sequence (yn) by

yn := u+
n∑

k=0

1

2k
φ
(
2dZ(2

kt)x
)
v.

Obviously, yn → y as n → ∞. On the other hand, for all n ≥ 0

yn ∈ K +
n∑

k=0

1

2k
φ
(
2dZ(2

kt)x
)
S0 =

n∑
k=0

1

2k
(
K + φ

(
2dZ(2

kt)x
)
S0

)
=

n∑
k=0

1

2k
S
(
2dZ(2

kt)x
)
⊆ ST (t, x).
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By the closedness of ST (t, x), it follows that the limit y of the sequence (yn) is

also contained in ST (t, x), which completes the proof of (20).

In the case of φ(0) = 0, the first equality in (22) is immediate, the second

equality is then a consequence of (20). �
Corollary 3.7. Let X be a normed space, D ⊆ X be a star-shaped set,

S0 ⊆ Y be a convex set containing 0 ∈ Y , K ⊆ Y be a convex cone, and α > 0.

Define S : D → P0(Y ) by S(x) := K + ∥x∥αS0. Then

ST (t, x) = cl
(
K + Tα(t)∥x∥αS0

)
(t ∈ R, x ∈ D), (24)

where Tα : R → R is the α-order Takagi type function defined by

Tα(t) :=
∞∑

n=0

2α−n(dZ(2
nt))α (t ∈ R). (25)

Proof. To obtain the statement, we can apply Proposition 3.6 with the

function φ defined by φ(x) := ∥x∥α. Observe that

φT (t, x) =
∞∑

n=0

1

2n
φ
(
2dZ(2

nt)x
)
=

∞∑
n=0

2α−n
(
dZ(2

nt)
)α∥x∥α = Tα(t)∥x∥α

(t ∈ R, x ∈ D).

Therefore, (24) is a consequence of (20) of Proposition 3.6. �
Remark 3.8. An important particular case is when α = 1, then T1 = 2T ,

where T is the Takagi function defined by (10) in the introduction. In the case

α = 2 an interesting argument results in a closed form for T2. Observe that Tα

(for any α > 0) satisfies the functional equation

Tα(t) = 2α
(
dZ(t)

)α
+

1

2
Tα(2t) (t ∈ R). (26)

By Banach’s fixed-point theorem, this functional equation has a unique solution

in the Banach space of bounded real functions over the real line (which is equipped

with the supremum norm). Thus Tα is a unique solution to (26). On the other

hand, for α = 2, one can easily check that the 1-periodic function T ∗
2 defined on

[0, 1] by T ∗
2 (t) = 4t(1 − t) is also a solution of (26), thus we must have T2(t) =

4t(1− t) for t ∈ [0, 1]. For further details, see [18].

Corollary 3.9. Let X be a normed space, D ⊆ X be a star-shaped set,

S0 ⊆ Y be a convex set containing 0 ∈ Y , K ⊆ Y be a convex cone. Define

S : D → P0(Y ) by S(x) := K + S0. Then

ST (t, x) = cl
(
K + 2S0

)
(t ∈ R, x ∈ D). (27)

Proof. We apply Proposition 3.6 for the constant function φ ≡ 1. Then

(21) yields that φT ≡ 2, whence (20) implies the statement. �
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4. Main results

The main results of this paper are contained in the following two theorems.

Throughout this section, we assume thatX and Y are Hausdorff topological linear

spaces.

Theorem 4.1. Let D ⊆ X be a nonempty convex set and A,B : (D−D) →
P0(Y ) such that 0 ∈ A(x)∩B(x) for all x ∈ (D−D). Denote rec(B), the closure

of the recession cone of B by K. Let F : D → P0(Y ) be a set-valued mapping

which satisfies the Jensen-convexity-type inclusion

F (x) + F (y)

2
+A(x− y) ⊆ cl

(
F

(
x+ y

2

)
+B(x− y)

)
(x, y ∈ D). (28)

Assume, in addition that F has the following two K-boundedness properties.

(i) F is pointwise closedly K-lower bounded, i.e., for each x ∈ D, there exists a

bounded set H ⊆ Y such that F (x) ⊆ cl(H +K);

(ii) F is locally closedly weakly K-upper bounded on D, i.e., for all x ∈ D,

there exist an open set U containing x and a bounded set H ⊆ Y such that

0 ∈ cl(F (u) +H +K) holds for all u ∈ U .

Then F satisfies the convexity type inclusion

tF (x) + (1− t)F (y) +AT (t, x− y) ⊆ cl
(
F (tx+ (1− t)y) +BT (t, x− y)

)
(x, y ∈ D, t ∈ [0, 1]). (29)

Theorem 4.2. Let D ⊆ X be a nonempty convex set and A,B : (D−D) →
P0(Y ) such that 0 ∈ A(x)∩B(x) for all x ∈ (D−D). Denote rec(B), the closure

of the recession cone of B by K. Let F : D → P0(Y ) be a set-valued mapping

which satisfies the following Jensen-concavity-type inclusion

F

(
x+ y

2

)
+A(x− y) ⊆ cl

(
F (x) + F (y)

2
+B(x− y)

)
(x, y ∈ D). (30)

Assume, in addition that F has the following K-convexity and K-boundedness

properties.

(i) F is pointwise closedly K-convex, i.e., tF (x) + (1 − t)F (x) ⊆ cl(F (x) +K)

holds for each x ∈ D and for all t ∈ [0, 1];

(ii) F is locally closedly K-lower bounded, i.e., for each x ∈ D, there exist a

neighborhood U of x and a bounded set H ⊆ Y such that F (u) ⊆ cl(H +K)

for all u ∈ D ∩ U .
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Then F satisfies the concavity type inclusion

F (tx+ (1− t)y) +AT (t, x− y) ⊆ cl
(
tF (x) + (1− t)F (y) +BT (t, x− y)

)
(x, y ∈ D, t ∈ [0, 1]). (31)

Remark 4.3. In each of the above theorems the closure operation can be

removed from the right hand sides of the inclusions (28), (29), (30), and (31) if

the values of the set-valued map F are compact and B has closed values. The

closure operation can also be removed from the right hand sides of (28) and (29)

if F has closed values and B is compact valued. This observation also applies

to the corollaries below. Another thing which is worth mentioning is that if

A(0) ⊆ rec(A) and B(0) ⊆ rec(B), then, in view of Lemma 3.5, the inclusions

(31) and (29) reduce to (30) and (28) for the substitution t = 1
2 , respectively.

Therefore, in this case, under the boundedness and convexity assumptions on F ,

(31) and (29) are equivalent to (30) and (28), respectively. The problem whether

inclusions (31) and (29) are the sharpest possible is an open problem. Results

where the exactness of such estimates were obtained are due to Boros [4], Makó

and Páles [15], [18].

The proofs of the above two theorems are described in the next section. In

what follows, taking particular choices of the set-valued maps A, B and using

Proposition 3.6, we establish some of the important direct consequences of these

theorems. They will illustrate how the results recalled in the introduction are

related to our main theorems.

In the next four corollaries we suppose that D ⊆ X is a nonempty convex

set, K ⊆ Y is a nonempty closed convex cone, S0 ⊆ Y is a convex set containing

0 and φ : (D −D) → R+ is a locally upper bounded nonnegative function. Note

that, by the convexity of D, the set (D −D) is starshaped, thus Proposition 3.6

can be applied.

The first two corollaries are about approximately and strongly K-Jensen

convex set-valued mapping, respectively.

Corollary 4.4. Assume that F : D → P0(Y ) is a pointwise closedly K-lower

bounded and locally closedly weakly K-upper bounded set-valued mapping which

satisfies

F (x) + F (y)

2
⊆ cl

(
F

(
x+ y

2

)
+K + φ(x− y)S0

)
(x, y ∈ D). (32)

Then

tF (x) + (1− t)F (y) ⊆ cl
(
F (tx+ (1− t)y) +K + φT (t, x− y)S0

)
(x, y ∈ D, t ∈ [0, 1]).

(33)



242 Carlos González, Kazimierz Nikodem, Zsolt Páles and Gari Roa

Corollary 4.5. Assume that F : D → P0(Y ) is a pointwise closedly K-lower

bounded and locally closedly weakly K-upper bounded set-valued mapping which

satisfies

F (x) + F (y)

2
+ φ(x− y)S0 ⊆ cl

(
F

(
x+ y

2

)
+K

)
(x, y ∈ D). (34)

Then

tF (x) + (1− t)F (y) + φT (t, x− y)S0 ⊆ cl
(
F (tx+ (1− t)y) +K

)
(x, y ∈ D, t ∈ [0, 1]).

(35)

The next two corollaries are about approximately and strongly K-Jensen

concave set-valued mapping, respectively.

Corollary 4.6. Assume that F : D → P0(Y ) is a pointwise closedly K-

convex and locally closedly K-lower bounded set-valued mapping which satisfies

F

(
x+ y

2

)
⊆ cl

(
F (x) + F (y)

2
+K + φ(x− y)S0

)
(x, y ∈ D). (36)

Then

F (tx+ (1− t)y) ⊆ cl
(
tF (x) + (1− t)F (y) +K + φT (t, x− y)S0

)
(x, y ∈ D, t ∈ [0, 1]).

(37)

Corollary 4.7. Assume that F : D → P0(Y ) is a pointwise closedly K-

convex and locally closedly K-lower bounded set-valued mapping which satisfies

F

(
x+ y

2

)
+ φ(x− y)S0 ⊆ cl

(
F (x) + F (y)

2
+K

)
(x, y ∈ D). (38)

Then

F (tx+ (1− t)y) + φT (t, x− y)S0 ⊆ cl
(
tF (x) + (1− t)F (y) +K

)
(x, y ∈ D, t ∈ [0, 1]).

(39)

Proof of the Corollaries 4.4–4.7. Using Theorem 4.1 with the set-

valued maps A(u) = 0 and B(u) = K + φ(u)S0 (resp., A(u) = φ(u)S0 and

B(u) = K) and applying the Proposition 3.6, we obtain Corollary 4.4 (resp.,

Corollary 4.5). Observe that, in both settings, we have that K ⊆ rec(B), thus

the pointwise closed K-lower boundedness and local closed weak K-upper bound-

edness of F imply its pointwise closed rec(B)-lower boundedness and local closed

weak rec(B)-upper boundedness.
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Analogously, using Theorem 4.2 with the set-valued maps A(u) = 0 and

B(u) = K + φ(u)S0 (resp., A(u) = φ(u)S0 and B(u) = K) and applying the

Proposition 3.6, we obtain Corollary 4.6 (resp., Corollary 4.7). In both settings,

we have that K ⊆ rec(B), thus the pointwise closed K-convexity and local closed

K-lower boundedness of F imply its pointwise closed rec(B)-convexity and local

closed rec(B)-lower boundedness. �

Remark 4.8. The results mentioned and recalled in the introduction can

be derived as obvious consequences of the above corollaries. In the real valued

setting, the Bernstein–Doetsch Theorem [3], the results of Ng–Nikodem [20]

and Házy–Páles [9] follow if, in Corollary 4.4, we take Y := R, K := R+,

S0 := [−1, 0], F (x) := {f(x)}, and φ(x) := 0, φ(x) := ε, φ(x) := ε∥x∥, re-

spectively. Observe that, in these cases, Proposition 3.6 yields φT (t, x) := 0,

φT (t, x) := 2ε, φT (t, x) := 2εT (t)∥x∥, respectively. The results of Averna,

Cardinali, Nikodem, and Papalini [1], [6], [21], [22], [23], [24], [25] and by

Borwein [5] that are related to K-Jensen convex/concave vector-valued and

set-valued mappings can also be obtained directly. Numerous results obtained

for approximate midconvexity by Makó and Páles [15], [18] and by Mureko,

Ja. Tabor, Jó. Tabor, and Żoldak [19], [29], [30], [31], [32] are generalized

by Corollaries 4.4–4.7 to the vector-valued and set-valued setting. Similarly, us-

ing the explicit form of the function T2 described in Remark 3.8, one can easily

derive the results of Azócar, Gimenez, Nikodem and Sanchez [2] and Leiva,

Merentes, Nikodem, and Sanchez [14] that are related to strongly K-Jensen

convex real valued and set-valued functions from Corollary 4.5.

5. Proofs of the two main theorems

Proof of Theorem 4.1. As the first step of the proof of (29), we are going

to show that, for all x, y ∈ D there exists a bounded set H ⊆ Y such that, for all

n ≥ 0, t ∈ [0, 1],

tF (x) + (1− t)F (y) +
n−1∑
k=0

1

2k
A
(
2dZ(2

kt)(x− y)
)

⊆ cl

(
F (tx+ (1− t)y) +

1

2n
H +K +

n−1∑
k=0

1

2k
B
(
2dZ(2

kt)(x− y)
))

.

(40)

Fix x, y ∈ D arbitrarily. To verify that (40) holds, we will proceed by induc-

tion on n. For the case n = 0, we have to prove that there exists a bounded set
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H such that, for all t ∈ [0, 1],

tF (x) + (1− t)F (y) ⊆ cl
(
F (tx+ (1− t)y) +H +K

)
. (41)

Let U ∈ U(Y ) and choose a balanced V ∈ U(Y ) such that V +V +V ⊆ U . Because

F is pointwise closedly K-lower bounded, there exist bounded sets Hx,Hy ⊆ Y

such that

F (x) ⊆ cl(Hx +K) ⊆ V +Hx +K and F (y) ⊆ cl(Hy +K) ⊆ V +Hy +K.

Multiplying these inclusions by t and 1− t, respectively, adding them up side by

side, and using the convexity of K, we obtain

tF (x) + (1− t)F (y) ⊆ tV + tHx + tK + (1− t)V + (1− t)Hy + (1− t)K

⊆ V + V + tHx + (1− t)Hy +K.
(42)

One can prove that the sets H1 :=
∪

t∈[0,1] tHx and H2 :=
∪

t∈[0,1](1 − t)Hy are

bounded. Thus, inclusion (42) yields that, for all t ∈ [0, 1],

tF (x) + (1− t)F (y) ⊆ V + V +H1 +H2 +K. (43)

On the other hand, applying Lemma 2.4, by the local closed weakK-upper bound-

edness and the compactness of the segment [x, y], there exist a bounded set H0

such that, for all t ∈ [0, 1],

0 ∈ cl(F (tx+ (1− t)y) +H0 +K) ⊆ V + F (tx+ (1− t)y) +H0 +K. (44)

Now adding up the inclusions (43) and (44) side by side, for all t ∈ [0, 1], we

obtain

tF (x) + (1− t)F (y) ⊆ V + V + V + F (tx+ (1− t)y) +H0 +H1 +H2 +K

⊆ U + F (tx+ (1− t)y) +H0 +H1 +H2 +K.
Therefore,

tF (x) + (1− t)F (y) ⊆
∩
U∈U

(
U + F (tx+ (1− t)y) +H0 +H1 +H2 +K

)
= cl

(
F (tx+ (1− t)y) +H0 +H1 +H2 +K

)
.

Thus, inclusion (41) follows with H := H0 +H1 +H2.

Now, suppose that the inclusion (40) holds for n and let us prove that it is

also valid for n+1. Assume that t ∈
[
0, 1

2

]
(the case when t ∈

[
1
2 , 1
]
is completely
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analogous). Then dZ(t) = t and we can write the left hand side of the inclusion

as

tF (x) + (1− t)F (y) +

n∑
k=0

1

2k
A
(
2dZ(2

kt)(x− y)
)

= tF (x) + (1− t)F (y) +A
(
2t(x− y)

)
+

n∑
k=1

1

2k
A
(
2dZ(2

kt)(x− y)
)
. (45)

We have that

(1− t)F (y) ⊆ 1− 2t

2
F (y) +

1

2
F (y), (46)

and therefore

tF (x) + (1− t)F (y) +A
(
2t(x− y)

)
+

n∑
k=1

1

2k
A
(
2dZ(2

kt)(x− y)
)

⊆ 1

2

(
2tF (x) + (1− 2t)F (y) +

n−1∑
k=0

1

2k
A
(
2dZ(2

k(2t))(x− y)
))

+
1

2
F (y) +A

(
2dZ(t)(x− y)

)
. (47)

Using our inductive hypothesis with 2t instead of t, it follows that

2tF (x) + (1− 2t)F (y) +

n−1∑
k=0

1

2k
A
(
2dZ(2

k(2t))(x− y)
)

⊆ cl

(
F (2tx+ (1− 2t)y) +

1

2n
H +K +

n−1∑
k=0

1

2k
B
(
2dZ(2

k(2t))(x− y)
))

. (48)

Combining the inclusions (45), (47) and (48), we arrive at

tF (x) + (1− t)F (y) +
n∑

k=0

1

2k
A
(
2dZ(2

kt)(x− y)
)

⊆ 1

2
cl

(
F (2tx+ (1− 2t)y) +

1

2n
H +K +

n−1∑
k=0

1

2k
B
(
2dZ(2

k(2t))(x− y)
))

+
1

2
F (y) +A

(
2dZ(t)(x− y)

)
⊆ cl

(
F (2tx+ (1− 2t)y) + F (y)

2
+

1

2n+1
H +K

+
n−1∑
k=0

1

2k+1
B
(
2dZ(2

k(2t))(x− y)
)
+A

(
2t(x− y)

))
.
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By the Jensen-convexity property (28) of F , we have that

F (2tx+ (1− 2t)y) + F (y)

2
+A

(
2t(x− y)

)
⊆ cl

(
F

(
2tx+ (1− 2t)y + y

2

)
+B

(
2t(x− y)

))
.

This and the previous inclusion imply

tF (x) + (1− t)F (y) +
n∑

k=0

1

2k
A
(
2dZ(2

kt)(x− y)
)

⊆ cl

(
cl

(
F

(
2tx+ (1− 2t)y + y

2

)
+B

(
2t(x− y)

))
+

1

2n+1
H +K

+
n−1∑
k=0

1

2k+1
B
(
2dZ(2

k(2t))(x− y)
))

= cl

(
F
(
tx+ (1− t)y

)
+

1

2n+1
H +K +

n∑
k=0

1

2k
B
(
2dZ(2

kt)(x− y)
))

.

Now, we can conclude that inclusion (40) holds for all n ≥ 0.

To complete the proof of the theorem, let t ∈ [0, 1] be also fixed and apply

Lemma 2.2 to the sequences of sets and numbers defined for n ≥ 0 as

An := tF (x) + (1− t)F (y) +
n−1∑
k=0

1

2k
A(2dZ(2

kt)(x− y)),

Bn := F
(
tx+ (1− t)y

)
+

n−1∑
k=0

1

2k
B
(
2dZ(2

kt)(x− y)
)
,

εn :=
1

2n
.

Then, with these notations, inclusion (40) is equivalent to (14). On the other

hand, by the assumption that 0 ∈ A(u) ∩ B(u) for all u ∈ (D − D), it easily

follows that (An) and (Bn) are nondecreasing sequences of subsets of Y .

We will show that K ⊆
∩∞

n=0 rec(Bn). For this, it suffices to prove, that for

all neighborhood U of zero and for all n ∈ N, the inclusion K ⊆ U + rec(Bn) is

valid. Let n ∈ N and let U be an arbitrary neighborhood of zero. Then choose a

neighborhood V of zero such that
∑n−1

k=0 2
−kV ⊆ U . Then, K ⊆ V + rec(B(u))

for all u ∈ D −D. Hence, using the properties of the recession cones established



Bernstein–Doetsch type theorems for set-valued maps of strongly. . . 247

in Lemma 2.1, we obtain

K =

n−1∑
k=0

1

2k
K ⊆

n−1∑
k=0

1

2k

(
V + rec

(
B
(
2dZ(2

kt)(x− y)
)))

⊆ U + rec

( n−1∑
k=0

1

2k
(
B
(
2dZ(2

kt)(x− y)
))

⊆ U + rec

(
F
(
tx+ (1− t)y

)
+

n−1∑
k=0

1

2k
(
B
(
2dZ(2

kt)(x− y)
))

,

which proves the inclusion K ⊆ U + rec(Bn). Therefore K ⊆
∩∞

n=0 rec(Bn).

Now we are in the position to apply Lemma 2.2. Hence (15) holds, in other

words, we obtain that

∞∪
n=1

(
tF (x) + (1− t)F (y) +

n−1∑
k=0

1

2k
A(2dZ(2

kt)(x− y))

)

⊆ cl

( ∞∪
n=1

(
F
(
tx+ (1− t)y

)
+

n−1∑
k=0

1

2k
B
(
2dZ(2

kt)(x− y)
)))

.

Now applying (13) to evaluate the left and right hand sides of the above inclusion,

it follows that

tF (x) + (1− t)F (y) + cl

( ∞∪
n=1

n−1∑
k=0

1

2k
A(2dZ(2

kt)(x− y))

)

⊆ cl

(
F
(
tx+ (1− t)y

)
+ cl

( ∞∪
n=1

n−1∑
k=0

1

2k
B
(
2dZ(2

kt)(x− y)
)))

,

which is equivalent to the inclusion (29) to be proved. �

Proof of Theorem 4.2. To prove (31), we are going to show first that,

for all x, y ∈ D, there exists a bounded set H ⊆ Y such that, for all n ≥ 0 and

t ∈ [0, 1],

F (tx+ (1− t)y) +

n−1∑
k=0

1

2k
A
(
2dZ(2

kt)(x− y)
)

⊆ cl

(
tF (x) + (1− t)F (y) +

1

2n
H +K +

n−1∑
k=0

1

2k
B
(
2dZ(2

kt)(x− y)
))

. (49)
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Let x, y ∈ D be fixed. To verify that (49) holds, we will proceed by induction

over n.

The bounded set H will be constructed so that (49) be valid for n = 0, that

is, for all t ∈ [0, 1], the following condition holds:

F (tx+ (1− t)y) ⊆ cl
(
tF (x) + (1− t)F (y) +H +K

)
. (50)

In view of Lemma 2.3, the local closed K-lower boundedness of F and the com-

pactness of the segment [x, y] imply that there exists a bounded set H0 ⊆ Y such

that

F (tx+ (1− t)y) ⊆ cl(H0 +K) (t ∈ [0, 1]). (51)

On the other hand, the sets F (x) and F (y) being nonempty, we can choose two

elements u ∈ F (x) and v ∈ F (y). Then

0 ∈ F (x)− u and 0 ∈ F (y)− v. (52)

Multiplying the two inclusions in (52) by t and (1 − t), respectively, and adding

them up to the inclusion (51), for t ∈ [0, 1], we obtain that

F (tx+ (1− t)y) ⊆ tF (x) + (1− t)F (y)− tu− (1− t)v + cl(H0 +K)

⊆ cl
(
tF (x) + (1− t)F (y)− [u, v] +H0 +K

)
.

Therefore, (50) holds with H := H0 − [u, v], which is obviously bounded.

Now, suppose that (49) is valid for n and let us prove its validity for n+ 1.

Assume that t ∈
[
0, 1

2

]
. Observe that then dZ(t) = t. Let us start evaluating the

left side of the inclusion to be proved.

F (tx+ (1− t)y) +

n∑
k=0

1

2k
A
(
2dZ(2

kt)(x− y)
)

= F (tx+ (1− t)y) +A(2dZ(t)(x− y)) +
n∑

k=1

1

2k
A
(
2dZ(2

kt)(x− y)
)

= F

(
2tx+(1−2t)y+y

2

)
+A(2t(x−y))+

1

2

n−1∑
k=0

1

2k
A
(
2dZ(2

k(2t))(x− y)
)
. (53)

By the Jensen-concavity property (30) of F , we get the inclusion

F

(
2tx+ (1− 2t)y + y

2

)
+A

(
2t(x− y)

)
⊆ cl

(
F (2tx+ (1− 2t)y) + F (y)

2
+B

(
2t(x− y)

))
. (54)
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Combining (53) and (54), we obtain

F (tx+ (1− t)y) +

n∑
k=0

1

2k
A
(
2dZ(2

kt)(x− y)
)

⊆ cl

(
F (2tx+ (1− 2t)y) + F (y)

2
+B

(
2t(x− y)

))
+

1

2

n−1∑
k=0

1

2k
A
(
2dZ(2

k(2t))(x− y)
)

⊆ cl

(
1

2

(
F (2tx+ (1− 2t)y) +

n−1∑
k=0

1

2k
A
(
2dZ(2

k(2t))(x− y)
))

+
1

2
F (y) +B

(
2dZ(t)(x− y)

))
. (55)

Now, using our inductive hypothesis with 2t instead of t, we get

F (2tx+ (1− 2t)y) +
n−1∑
k=0

1

2k
A
(
2dZ(2

k(2t))(x− y)
)

⊆ cl

(
2tF (x)+(1−2t)F (y)+

1

2n
H+K+

n−1∑
k=0

1

2k
B
(
2dZ(2

k(2t))(x− y)
))

. (56)

Inserting (56) into (55) and using that (1−2t)F (y)+F (y) ⊆ cl
(
(2−2t)F (y)+K

)
(which is a consequence of the pointwise closed K-convexity of F ), it follows that

F (tx+ (1− t)y) +
n∑

k=0

1

2k
A
(
2dZ(2

kt)(x− y)
)

⊆ cl

(
1

2
cl

(
2tF (x) + (1− 2t)F (y) +

1

2n
H +K

+
n−1∑
k=0

1

2k
B
(
2dZ(2

k(2t))(x− y)
))

+
1

2
F (y) +B

(
2dZ(t)(x− y)

))
⊆ cl

(
1

2

(
2tF (x) + (1− 2t)F (y) + F (y) +K

)
+

1

2n+1
H

+
n∑

k=0

1

2k
B
(
2dZ(2

kt)(x− y)
))

⊆ cl

(
tF (x) + (1− t)F (y) +

1

2n+1
H +K +

n∑
k=0

1

2k
B
(
2dZ(2

kt)(x− y)
))

.
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This completes the proof of the induction and hence (49) holds for all n ≥ 0.

Now we are going to use Lemma 2.2, so that, for a fixed t ∈ [0, 1], we define

the sequences

An := F (tx+ (1− t)y) +
n−1∑
k=0

1

2k
A
(
2dZ(2

kt)(x− y)
)
,

Bn := tF (x) + (1− t)F (y) +

n−1∑
k=0

1

2k
B
(
2dZ(2

kt)(x− y)
)
,

εn =
1

2n
.

Then, inclusion (49), with sequences (An), (Bn) and (εn) defined above is

equivalent to (14). One can see that the sequences (An) and (Bn) are nonde-

creasing and K ⊆
∩∞

n=0 rec(Bn) also holds (due to a similar argument that was

followed in the proof of Theorem 4.1). Thus, by the Lemma 2.2, it follows that

∞∪
n=0

F (tx+ (1− t)y) +
n−1∑
k=0

1

2k
A
(
2dZ(2

kt)(x− y)
)

⊆ cl

( ∞∪
n=0

tF (x) + (1− t)F (y) +

n−1∑
k=0

1

2k
B
(
2dZ(2

kt)(x− y)
))

.

Now, similarly as in the proof of Theorem 4.1, using (13), this relation implies

the desired inclusion (31). �
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[16] J. Makó and Zs. Páles, Implications between approximate convexity properties and ap-
proximate Hermite-Hadamard inequalities, Cent. Eur. J. Math. 10 (2012), 1017–1041.
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