On the number of solutions of the generalized Ramanujan-Nagell equation $x^{2}-D=p^{n}$

By LE MAOHUA (Changsha, Hunan)

Abstract

Let D be a positive integer, and let p be an odd prime with $p \nmid D$. In this paper, by using Baker's method, we prove that if $\max (D, p)>10^{65}$, then the equation $x^{2}-D=p^{n}$ has at most three positive integer solutions (x, n).

1. Introduction

Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ be the sets of integers, positive integers and rational numbers respectively. Let $D \in \mathbb{N}$, and let p be an odd prime with $p \nmid D$. Further let $N(D, P)$ denote the number of solutions (x, n) of the equation

$$
\begin{equation*}
x^{2}-D=p^{n}, \quad x, n \in \mathbb{N} \tag{1}
\end{equation*}
$$

In [1], Beukers proved that $N(D, p) \leq 4$. Simultaneously, he suspected that $N(D, p) \leq 3$. Recently, the author [4] proved that if $\max (D, p) \geq$ 10^{240}, then $N(D, p) \leq 3$. In this paper we shall improve the above result. If D, p satisfy
(2) $\quad(p, D)=\left\{\begin{array}{l}\left(3,\left(\frac{3^{m}+1}{4}\right)^{2}-3^{m}\right), 2 \nmid m, \\ \left(4 a^{2}+1,\left(\frac{p^{m}-1}{4 a}\right)^{2}-p^{m}\right),\end{array} \quad a, m \in \mathbb{N}, m>1\right.$,
then the pair (D, p) is called exceptional. Beukers [1] showed that if (D, p) is exceptional, then (1) has at least three solutions

$$
\begin{align*}
& \left(x_{1}, n_{1}\right)=\left\{\begin{array}{ll}
\left(\frac{3^{m}-7}{4}, 1\right), \\
\left(\frac{p^{m}-1}{4 a}-2 a, 1\right)
\end{array} \quad\left(x_{2}, n_{2}\right)=\left\{\begin{array}{l}
\left(\frac{3^{m}+1}{4}, m\right), \\
\left(\frac{p^{m}-1}{4 a}, m\right)
\end{array}\right.\right. \tag{3}\\
& \left(x_{3}, n_{3}\right)= \begin{cases}\left(2 \cdot 3^{m}-\frac{3^{m}+1}{4}, 2 m+1\right), & \text { if } p=3 \\
\left(2 a p^{m}+\frac{p^{m}-1}{4 a}, 2 m+1\right), & \text { if } p \neq 3\end{cases}
\end{align*}
$$

In this paper we prove the following result.
Theorem. If

$$
\max (D, p)> \begin{cases}3478, & \text { if } p=3 \text { and }(D, p) \text { is exceptional, } \\ 2 \cdot 10^{19}, & \text { if } p \neq 3 \text { and }(D, p) \text { is exceptional, } \\ 10^{65}, & \text { otherwise }\end{cases}
$$

then $N(D, p) \leq 3$.

2. Auxiliary Lemmas

Lemma 1 ([4, Lemma 3]). For $D \in \mathbb{N}$ which is not a square, let $u_{1}+v_{1} \sqrt{D}$ be the fundamental solution of the equation

$$
\begin{equation*}
u^{2}-D v^{2}=1 \tag{4}
\end{equation*}
$$

If the equation

$$
\begin{equation*}
X^{2}-D Y^{2}=p^{z}, \quad \operatorname{gcd}(X, Y)=1, \quad Z>0 \tag{5}
\end{equation*}
$$

has solutions (X, Y, Z), then (5) has a unique positive solution $\left(X_{1}, Y_{1}, Z_{1}\right)$ which satisfies

$$
Z_{1} \leq Z, \quad 1<\frac{X_{1}+Y_{1} \sqrt{D}}{X_{1}-Y_{1} \sqrt{D}}<\left(u_{1}+v_{1} \sqrt{D}\right)^{2}
$$

where Z runs over all solutions of (5). Such $\left(X_{1}, Y_{1}, Z_{1}\right)$ is called the least solution of (5). Then every solution (X, Y, Z) of (5) can be expressed as

$$
Z=Z_{1} t, \quad X+Y \sqrt{D}=\left(X_{1} \pm Y_{1} \sqrt{D}\right)^{t}(u+v \sqrt{D})
$$

where $t \in \mathbb{N},(u, v)$ is a solution of (4).

Lemma 2 ([2, Theorem 10•8•2]). Let $k \in \mathbb{Z}$ with $\operatorname{gcd}(k, D)=1$. If $|k|<\sqrt{D}$ and $\left(X^{\prime}, Y^{\prime}\right)$ is a positive solution of the equation

$$
\begin{equation*}
X^{\prime 2}-D Y^{\prime 2}=k, \quad \operatorname{gcd}\left(X^{\prime}, Y^{\prime}\right)=1 \tag{6}
\end{equation*}
$$

then X^{\prime} / Y^{\prime} is a convergent of \sqrt{D}.
It is a well known fact that the simple continued fraction of \sqrt{D} can be expressed as $\left[a_{0}, \dot{a}_{1}, \ldots, \dot{a}_{s}\right]$, where $a_{0}=[\sqrt{D}], a_{s}=2 a_{0}$ and $a_{i}<2 a_{0}$ for $i=1, \cdots, s-1$.

Lemma 3. For any $m \in \mathbb{Z}$ with $m \geq 0$, let $p_{m} / q_{m}, r_{m}$ denote the m th convergent and complete quotient of \sqrt{D} respectively. Further let $k_{m}=(-1)^{m-1}\left(p_{m}^{2}-D q_{m}^{2}\right)$. Then we have:
(i) $k_{m}>0$ and $a_{m+1}=\left[\left(\Delta_{m}+\sqrt{D}\right) / k_{m}\right]$ for a suitable $\Delta_{m} \in \mathbb{N}$.
(ii) Let

$$
s^{\prime}= \begin{cases}s-1, & \text { if } 2 \mid s \\ 2 s-1, & \text { if } 2 \nmid s\end{cases}
$$

Then $p_{s^{\prime}}+q_{s^{\prime}} \sqrt{D}$ is the fundamental solution of (5).
(ii) If $1<k<\sqrt{D}, k \in \mathbb{N}, 2 D \not \equiv 0(\bmod k)$ and (6) has solution $\left(X^{\prime}, Y^{\prime}\right)$, then (6) has at least two positive solutions $\left(p_{j}, q_{j}\right)$ and $\left(p_{s^{\prime}-j-1}, q_{s^{\prime}-j-1}\right)$, where $j \in \mathbb{Z}$ with $0 \leq j \leq s^{\prime}-1$.

Proof. The lemma follows from Satz 10 and Satz 18 of [6, Chapter III] and from various results scattered in [6, Section 26].

Lemma 4. Let $\left(X_{1}, Y_{1}, Z_{1}\right)$ be the least solution of (5). If $p^{z_{1} r}<\sqrt{D}$ for some $r \in \mathbb{N}$, then $u_{1}+v_{1} \sqrt{D}>D^{r / 2}$.

Proof. Under the assumption, by Lemma 1, there exists $X_{i}, Y_{i} \in \mathbb{Z}$ $(i=1, \ldots, r)$ such that

$$
X_{i}^{2}-D Y_{i}^{2}=p^{z_{1} i}, \quad \operatorname{gcd}\left(X_{i}, Y_{i}\right)=1, i=1, \cdots, r
$$

Since $p^{z_{1} r}<\sqrt{D}$, by Lemma 2 and (iii) of Lemma 3, \sqrt{D} has $2 r$ convergents $p_{m_{i}} / q_{m_{i}}, p_{m_{i}^{\prime}} / q_{m_{i}^{\prime}}(i=1, \cdots, r)$ such that

$$
k_{m_{i}}=k_{m_{i}^{\prime}}=p^{z_{1} i}, \quad 2 \nmid m_{i} m_{i}^{\prime}, \quad 0<m_{i}, m_{i}^{\prime}<s^{\prime}, i=1, \ldots, r
$$

where s^{\prime} was defined as in (ii) of Lemma 3. Therefore, by (i)

$$
\begin{align*}
& a_{m_{i}+1}=\left[\frac{\Delta_{m_{i}}+\sqrt{D}}{k_{m_{i}}}\right]>\frac{\sqrt{D}}{p^{z_{1} i}}-1 \\
& a_{m_{i}^{\prime}+1}=\left[\frac{\Delta_{m_{i}^{\prime}}+\sqrt{D}}{k_{m_{i}^{\prime}}}\right]>\frac{\sqrt{D}}{p^{z_{1} i}}-1, i=1, \cdots, r . \tag{7}
\end{align*}
$$

Notice that $p_{0}=a_{0}=[\sqrt{D}], p_{1}=a_{0} a_{1}+1$ and $p_{m+2}=a_{m+2} p_{m+1}+p_{m}$ for $m \geq 0$. By (ii) of Lemma 3, we get from (7) that

$$
\begin{gathered}
u_{1}+v_{1} \sqrt{D}=P_{s^{\prime}}+q_{s^{\prime}} \sqrt{D} \geq P_{s^{\prime}}+\sqrt{D} \geq \\
\geq\left(a_{0} \prod_{j=0}^{\left(s^{\prime}-3\right) / 2}\left(a_{2 j+1}+a_{2 j+2}\right)-a_{0}\right)+\sqrt{D}>a_{0} \prod_{j=0}^{\left(s^{\prime}-3\right) / 2}\left(a_{2 j+1}+1\right) \geq \\
\geq a_{0} \prod_{i=1}^{r}\left(a_{m_{i}}+1\right)\left(a_{m_{i}^{\prime}}+1\right)>a_{0}\left(\prod_{i=1}^{r} \frac{\sqrt{D}}{p^{z_{1} i}}\right)^{2}=\frac{a_{0} D^{r}}{p^{z_{1} r(r+1)}}>D^{r / 2},
\end{gathered}
$$

since $a_{0}=[\sqrt{D}]$. The lemma is proved.
Lemma 5 ([5, Formula 3.76]). For any $m \in \mathbb{N}$ and any complex numbers α, β, we have

$$
\alpha^{m}+\beta^{m}=\sum_{i=0}^{[m / 2]}(-1)^{i}\left[\begin{array}{c}
m \\
i
\end{array}\right](\alpha+\beta)^{m-2 i}(\alpha \beta)^{i},
$$

where

$$
\left[\begin{array}{c}
m \\
i
\end{array}\right]=\frac{(m-i-1)!m}{(m-2 i)!i!} \in \mathbb{N}, \quad i=0, \cdots,[m / 2] .
$$

Lemma 6 ([2, Theorem 6•10•3]). Let $a / b, a^{\prime} / b^{\prime}, a^{\prime \prime} / b^{\prime \prime} \in \mathbb{Q}$ be positive with $a b^{\prime}-a^{\prime} b= \pm 1$. If $a^{\prime \prime} / b^{\prime \prime}$ lies in the interval $\xi=\left(a / b, a^{\prime} / b^{\prime}\right)$, then there exist $k, k^{\prime} \in \mathbb{N}$ such that $a^{\prime \prime}=a k+a^{\prime} k^{\prime}$ and $b^{\prime \prime}=b k+b^{\prime} k^{\prime}$.

Let α be an algebraic number of degree d with the minimal polynomial

$$
a_{0} z^{d}+\cdots+a_{d-1} z+a_{d}=a_{0} \prod_{i=1}^{d}\left(z-\sigma_{i} \alpha\right), \quad a_{0}>0
$$

where $\sigma_{1} \alpha, \cdots, \sigma_{d} \alpha$ are all conjugates of α. Then

$$
h(\alpha)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \max \left(1,\left|\sigma_{i} d\right|\right)\right)
$$

is called the logarithmic absolute height of α.
Lemma 7. Let α_{1}, α_{2} be real algebraic numbers with $\alpha_{1}>1$ and $a_{2}>1$, and let r denote the degree of $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$. Let $b_{1}, b_{2} \in \mathbb{N}$, and let $b=b_{1} / r h\left(\alpha_{2}\right)+b_{2} / r h\left(\alpha_{1}\right)$. For any $T \geq 1$, if $0.52+\log b \geq T$ and $\Lambda=b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2} \neq 0$, then

$$
\log |\Lambda|>-70\left(1+\frac{0.1137}{T}\right)^{2} r^{4} h\left(\alpha_{1}\right) h\left(\alpha_{2}\right)(0.52+\log b)^{2}
$$

Proof. Let $B=\log \left(5 c_{4} / c_{1}\right)+\log b, K=\left[c_{1} r^{3} B h\left(\alpha_{1}\right) h\left(a_{2}\right)\right], L=$ $\left[c_{2} r B\right], R_{1}=\left[c_{3} r^{3 / 2} B^{1 / 2} h\left(\alpha_{2}\right)\right]+1, S_{1}=\left[c_{3} r^{3 / 2} B^{1 / 2} h\left(\alpha_{1}\right)\right]+1, R_{2}=$ $\left[c_{4} r^{2} B h\left(\alpha_{2}\right)\right], S_{2}=\left[c_{4} r^{2} B h\left(\alpha_{1}\right)\right], R=R_{1}+R_{2}-1, S=S_{1}+S_{2}-1$, where $c_{1}, c_{2}, c_{3}, c_{4}$ are positive constants. Notice that $(u-1 / T) v<[u v] \leq u v$ for any real numbers u, v with $u \geq 0$ and $v \geq T$. By the proof of [3, Theorems 1 and 3], if $B \geq T$,

$$
\begin{gather*}
\sqrt{c_{1}}=\frac{\varrho+1}{(\log \varrho)^{3 / 2}}+\sqrt{\frac{(\varrho+1)^{2}}{(\log \varrho)^{3}}+\frac{\varrho+1}{T \log \varrho}}, \quad c_{2}>\frac{2}{\log \varrho} \tag{8}\\
c_{3}=\max \left(\sqrt{c_{1}}, \sqrt{c_{2}}\right), \quad c_{4}=\sqrt{2 c_{1} c_{2}}+\frac{1}{T}
\end{gather*}
$$

then

$$
\begin{equation*}
\log |\Lambda|>-\left(c_{1} c_{2} \log \varrho+1\right) r^{4} h\left(\alpha_{1}\right) h(\alpha) B^{2} \tag{9}
\end{equation*}
$$

where ϱ is a positive constant with $\varrho>1$. Set $\varrho=5.803$. We can choose $c_{1}, c_{2}, c_{3}, c_{4}$ such that (8) holds and such that

$$
\begin{equation*}
c_{1} c_{2} \log \varrho+1<70\left(1+\frac{0.1137}{T}\right)^{2}, \quad B<0.52+\log b \tag{10}
\end{equation*}
$$

Substituting (10) into (9), the lemma is proved.
Lemma 8 ([7, Theorem I•2]). Let $a, k, \ell, q, r, s \in \mathbb{N}$ be such that $2 \nmid k \ell$ and q is not a square. If there exist $X, \Delta \in \mathbb{Z}$ such that

$$
X^{2}+\Delta=a^{2} q^{k}, \quad a^{2} q^{k} \geq 4^{1+s / r}|\Delta|^{2+s / r}
$$

then

$$
\left|\frac{Y}{a q^{\ell / 2}}-1\right|>\frac{2^{3}\left(3^{4} a^{2} q^{k} / 4\right)^{1 / s}}{3^{7} a^{5} q^{(3+\nu / 2) k}} q^{-(1+\nu) \ell / 2},
$$

for any $Y \in \mathbb{N}$, where ν satisfies $q^{k \nu}=9 a^{2}\left(3^{4} a^{2} q^{k} / 4\right)^{r / s}$.

3. Proof of theorem for exceptional cases

Throughout this section we assume that (D, p) is exceptional. Let (X_{1}, Y_{1}, Z_{1}) and $u_{1}+v_{1} \sqrt{D}$ be the least solution of (5) and the fundamental solution of (4) respectively, and let

$$
\begin{array}{ll}
\varepsilon=X_{1}+Y_{1} \sqrt{D}, & \bar{\varepsilon}=X_{1}-Y_{1} \sqrt{D} \\
\varrho=u_{1}+v_{1} \sqrt{D}, & \bar{\varrho}=u_{1}-v_{1} \sqrt{D} \tag{12}
\end{array}
$$

Now we suppose that $N(D, p)>3$. Then (1) has four solutions $\left(x_{i}, n_{i}\right)$ $(i=1, \cdots, 4)$, where $\left(x_{j}, n_{j}\right)(j=1,2,3)$ satisfy (3). By the proof of [4, Theorem 1], we have $n_{4}>n_{3}, 2 \nmid n_{4}$ and

$$
\begin{align*}
x_{i}+\delta_{i} \sqrt{D}= & \varepsilon^{n_{i}} \bar{\varrho}^{s_{i}}, \delta_{i} \in\{-1,1\}, s_{i} \in \mathbb{Z}, 0 \leq s_{i} \leq n_{i} \tag{13}\\
& \operatorname{gcd}\left(n_{i}, s_{i}\right)=1, i=1, \cdots, 4 .
\end{align*}
$$

Since $p<D$ by (2), we find from $n_{1}=1$, and $1<\left(x_{1}+\sqrt{D}\right) /\left(x_{1}-\sqrt{D}\right)<$ $4 D<\varrho^{2}$ that $\left(X_{1}, Y_{1}, Z_{1}\right)=\left(x_{1}, 1,1\right)$ by Lemma 1. Together with (13) this implies that $\delta_{1}=1$ and $s_{1}=0$.

Assertion 1. $\delta_{2}=-1$ and $s_{2}=1$.
Proof. Let $X+Y \sqrt{D}=\varepsilon^{m}=\varepsilon^{n_{2}}, u+v \sqrt{D}=\varrho^{s_{2}}$. From (2) and (13) we get

$$
\begin{equation*}
x_{2}=X u-D Y v, \delta_{2}=Y u-X u, X, Y, u, v \in \mathbb{Z} \tag{14}
\end{equation*}
$$

Recalling that $\left(X_{1}, Y_{1}, Z_{1}\right)=\left(x_{1}, 1,1\right)$, we have $X \equiv 2^{m-1} x_{1}^{m}(\bmod p)$ and $Y \equiv 2^{m-1} x_{1}^{m-1}(\bmod p)$. From (14), we get $x_{2} \equiv 2^{m-1} x_{1}^{m}\left(u-x_{1} u\right)$ $(\bmod p)$ and $\delta_{2} \equiv 2^{m-1} x_{1}^{m-1}\left(u-x_{1} v\right)(\bmod p)$, since $x_{1}^{2} \equiv D(\bmod p)$. Hence, $\delta_{2} \equiv x_{2} / x_{1} \equiv-1(\bmod p)$ by (2). Since $p \geq 3$ and $\delta_{2} \in\{-1,1\}$, we get $\delta_{1}=-1$.

Since $m>1$, by Lemma 3 of [1], we see from (13) that $s_{2} \neq 0$. If $m=2$, then $s_{2}=1$ by (13). If $(D, p, m)=(22,3,3)$, then from $x_{2}-\sqrt{D}=$ $7-\sqrt{22}=(5+\sqrt{22})^{3}(197-42 \sqrt{22})=\varepsilon^{3} \varrho$, we get $s_{2}=1$. If $m \geq 3$ and $s_{2}>1$, then from (13) we have

$$
\begin{equation*}
\left(x_{1}+\sqrt{D}\right)^{m}>\frac{1}{p^{m}}\left(x_{1}+\sqrt{D}\right)^{m}\left(x_{2}+\sqrt{D}\right)=\frac{\varepsilon^{m}}{x_{2}-\sqrt{D}}=\varrho^{s_{2}} \geq \varrho^{2} \tag{15}
\end{equation*}
$$

On the other hand, by (2),

$$
\sqrt{D}> \begin{cases}3^{m-2}, & \text { if } p=3 \\ p^{m-1}, & \text { if } p \neq 3 \text { and } m \geq 3\end{cases}
$$

Therefore, by Lemma 4,

$$
\varrho^{2}> \begin{cases}D^{m-2}, & \text { if } p=3 \tag{16}\\ D^{m-1}, & \text { if } p \neq 3 \text { and } m \geq 3\end{cases}
$$

Since $x_{1}+\sqrt{D}<2.05 \sqrt{D}$, the combination of (15) and (16) yields

$$
(2.05)^{m}> \begin{cases}D^{m / 2-2}, & \text { if } p=3 \\ D^{m / 2-1}, & \text { if } p \neq 3 \text { and } m \geq 3\end{cases}
$$

This is impossible except $(D, p, m)=(22,3,3)$. Thus $s_{2}=1$ the assertion is proved.

Assertion 2. There exists some $k, k^{\prime} \in \mathbb{N}$ such that

$$
\begin{gathered}
n_{4}=\left\{\begin{array}{l}
m k+(2 m+1) k^{\prime}, \\
(m+1) k+(2 m+1) k^{\prime},
\end{array}\right. \\
x_{4}+\delta_{4} \sqrt{D}= \begin{cases}\left(x_{2}-\sqrt{D}\right)^{k}\left(x_{3}+\sqrt{D}\right) k^{\prime}, & \text { if } p=3, \\
\left(\frac{p^{m}+1}{2}+2 a \sqrt{D}\right)^{k}\left(x_{3}-\sqrt{D}\right)^{k^{\prime}}, & \text { if } p \neq 3 .\end{cases}
\end{gathered}
$$

Proof. By (2) and (13) we have

$$
x_{3}+\sqrt{D}= \begin{cases}\left(x_{1}+\sqrt{D}\right)\left(x_{2}-\sqrt{D}\right)^{2}, & \text { if } p=3 \\ \left(x_{1}-\sqrt{D}\right)\left(x_{2}+\sqrt{D}\right)^{2}, & \text { if } p \neq 3\end{cases}
$$

Recalling that $\left(\delta_{1}, s_{1}\right)=(1,0)$ and $\left(\delta_{2}, s_{2}\right)=(-1,1)$ by Assertion 1, we get

$$
x_{3}+\sqrt{D}= \begin{cases}\varepsilon^{2 m+1} \bar{\varrho}^{2}, & \text { if } p=3 \tag{17}\\ \bar{\varepsilon}^{2 m+1} \varrho^{2}, & \text { if } p \neq 3 .\end{cases}
$$

For any solution (x, n) of (1), let

$$
\Lambda(x, n)=\log \frac{x+\sqrt{D}}{x-\sqrt{D}}
$$

and let $\alpha=(\log \varepsilon / \bar{\varepsilon})) / \log \varrho^{2}$. By Lemma 5 of [1], $n_{4} \geq 2 n_{3}+n_{2}=5 m+2$. From (2), $m \geq 3$ for $p=3$ and $m \geq 2$ for $p \neq 3$. So we have

$$
\begin{align*}
\Lambda\left(x_{2}, n_{2}\right) & >\left\{\begin{array}{ll}
\log \frac{3^{2 m}-14 \cdot 3^{m}+1}{4 \cdot 3^{m}}>\log \frac{4}{3}, & \text { if } p=3 \\
\log \frac{p^{2 m}-2(2 p-1) p^{m}+1}{(p-1) p^{m}}>\log \frac{4(p-1)}{p}, & \text { if } p \neq 3
\end{array}\right\}> \tag{18}\\
& >\Lambda\left(x_{3}, n_{3}\right)>\Lambda\left(x_{4}, n_{4}\right) .
\end{align*}
$$

When $p=3$, by (17) and Assertion 1, we have

$$
\begin{equation*}
\frac{1}{m}-\alpha=\frac{\Lambda\left(x_{2}, n_{2}\right)}{m \log \varrho^{2}}>0, \quad \alpha-\frac{2}{2 m+1}=\frac{\Lambda\left(x_{3}, n_{3}\right)}{(2 m+1) \log \varrho^{2}}>0 \tag{19}
\end{equation*}
$$

Since

$$
\left|\alpha-\frac{s_{4}}{n_{4}}\right|=\frac{\Lambda\left(x_{4}, n_{4}\right)}{n_{4} \log \varrho^{2}},
$$

we see from (18) and (19) that s_{4} / n_{4} lies in the interval $\xi=(1 / m, 2 / 2 m+$ $1)$). Therefore, by Lemma 6, we get

$$
\begin{equation*}
s_{4}=k+2 k^{\prime}, \quad n_{4}=m k+(2 m+1) k^{\prime}, \quad k, k^{\prime} \in \mathbb{N} . \tag{20}
\end{equation*}
$$

When $p \neq 3$, by (2) and Assertion 1, we have

$$
\begin{equation*}
\frac{p^{m}+1}{2}+2 a \sqrt{D}=\left(x_{1}+\sqrt{D}\right)\left(x_{2}-\sqrt{D}\right)=\varepsilon^{m+1} \bar{\varrho} . \tag{21}
\end{equation*}
$$

Since

$$
\begin{gather*}
\log \frac{\left(p^{m}+1\right) / 2+2 a \sqrt{D}}{\left(p^{m}+1\right) / 2-2 a \sqrt{D}}>\log \frac{p^{2 m}-2(2 p-1) p^{m}+1}{p^{m+1}}> \tag{22}\\
>\Lambda\left(x_{3}, n_{3}\right)>\Lambda\left(x_{4}, n_{4}\right)
\end{gather*}
$$

by (18), we see from

$$
\begin{aligned}
\alpha-\frac{1}{m+1} & =\left(\log \frac{\left(p^{m}+1\right) / 2+2 a \sqrt{D}}{\left(p^{m}+1\right) / 2-2 a \sqrt{D}}\right) /(m+1) \log \varrho^{2}>0 \\
\frac{2}{2 m+1}-\alpha & =\frac{\Lambda\left(x_{3}, n_{3}\right)}{(2 m+1) \log \varrho^{2}}>0
\end{aligned}
$$

that s_{4} / n_{4} lies in the interval $\xi=(1 /(m+1), 2 /(2 m+1))$. Hence, by Lemma 6, we get

$$
\begin{equation*}
s_{4}=k+2 k^{\prime}, n_{4}=(m+1) k+(2 m+1) k^{\prime}, k, k^{\prime} \in \mathbb{N} \tag{23}
\end{equation*}
$$

Thus, the assertion follows immediately from (13), (17), (20), (23) and Assertion 1.

Assertion 3. If $p=3$, then $k+k^{\prime}-1 \geq 2 \cdot 3^{m-1}$.
Proof. Let $\varepsilon_{2}=x_{2}+\sqrt{D}, \bar{\varepsilon}_{2}=x_{2}-\sqrt{D}, \varepsilon_{3}=x_{3}+\sqrt{D}, \bar{\varepsilon}_{3}=$ $x_{3}-\sqrt{D}$, and let

$$
\begin{equation*}
X+Y \sqrt{D}=\varepsilon_{2}^{k}, \quad X^{\prime}+Y^{\prime} \sqrt{D}=\varepsilon_{3}^{k^{\prime}} \tag{24}
\end{equation*}
$$

Then, by Lemma $5, X, Y, X^{\prime}, Y^{\prime} \in \mathbb{Z}$ satisfy

$$
\begin{align*}
X & =\frac{1}{2}\left(\varepsilon_{2}^{k}+\bar{\varepsilon}_{2}^{k}\right)=\frac{1}{2} \sum_{i=0}^{[k / 2]}(-1)^{i}\left[\begin{array}{c}
k \\
i
\end{array}\right]\left(\varepsilon_{2}-\bar{\varepsilon}_{2}\right)^{k-2 i}\left(\varepsilon_{2} \bar{\varepsilon}_{2}\right)^{i}= \\
& =\frac{1}{2} \sum_{i=0}^{[k / 2]}(-1)^{i}\left[\begin{array}{c}
k \\
i
\end{array}\right]\left(2 x_{2}\right)^{k-2 i} 3^{m i} \equiv 2^{k-1} x_{2}^{k} \equiv \frac{1}{2^{k+1}}\left(\bmod 3^{m}\right), \\
Y & =\frac{1}{2 \sqrt{D}}\left(\varepsilon_{2}^{k}-\bar{\varepsilon}_{2}^{k}\right)=\frac{\varepsilon_{2}^{k}-\bar{\varepsilon}_{2}^{k}}{\varepsilon_{2}-\bar{\varepsilon}_{2}} \equiv \varepsilon_{2}^{k-1}+\bar{\varepsilon}_{2}^{k-1} \equiv \tag{25}\\
& \equiv\left(2 x_{2}\right)^{k-1} \equiv \frac{1}{2^{k-1}}\left(\bmod 3^{m}\right), \\
X^{\prime} & =\frac{1}{2}\left(\varepsilon_{3}^{k^{\prime}}+\bar{\varepsilon}_{3}^{k^{\prime}}\right) \equiv 2^{k^{\prime}-1} x_{3}^{k^{\prime}} \equiv \frac{(-1)^{k^{\prime}}}{2^{k^{\prime}+1}}\left(\bmod 3^{2 m+1}\right), \\
Y^{\prime} & =\frac{1}{2 \sqrt{D}}\left(\varepsilon_{3}^{k^{\prime}}-\bar{\varepsilon}_{3}^{k^{\prime}}\right)=\frac{\varepsilon_{3}^{k^{\prime}}-\bar{\varepsilon}_{3}^{k^{\prime}}}{\varepsilon_{3}-\bar{\varepsilon}_{3}} \equiv \frac{(-1)^{k^{\prime}-1}}{2^{k^{\prime}-1}}\left(\bmod 3^{2 m+1}\right)
\end{align*}
$$

By Assertion 2, we get from (24) and (25) that

$$
\begin{equation*}
\delta_{4}=X Y^{\prime}-X^{\prime} Y \equiv \frac{(-1)^{k^{\prime}-1}}{2^{k+k^{\prime}-1}} \quad\left(\bmod 3^{m}\right) \tag{26}
\end{equation*}
$$

Since $2 \nmid m n_{4}$, we see from (20) that $k+k^{\prime}-1 \equiv 0(\bmod 2)$. Further, by (26), we get $2^{k+k^{\prime}-1} \equiv \pm 1\left(\bmod 3^{m}\right)$. Therefore $k+k^{\prime}-1 \equiv 0(\bmod 2$. $\left.3^{m-1}\right)$. Notice that $k, k^{\prime} \in \mathbb{N}$ and $k+k^{\prime}-1>0$. Thus $k+k^{\prime}-1 \geq 2 \cdot 3^{m-1}$. The assertion is proved.

Assertion 4. If $p \neq 3$ and $p^{m-1} \geq 20$, then $k^{\prime}-1 \geq 2 p^{m-1}$.
Proof. Let $\varepsilon_{2}^{\prime}=\left(p^{m}+1\right) / 2+2 a \sqrt{D}, \bar{\varepsilon}_{2}^{\prime}=\left(p^{m}+1\right) / 2-2 a \sqrt{D}$, and let

$$
\begin{equation*}
X+Y \sqrt{D}=\varepsilon_{2}^{\prime k}, \quad X^{\prime}+Y^{\prime} \sqrt{D}=\varepsilon_{3}^{k^{\prime}} \tag{27}
\end{equation*}
$$

According to the analysis for (25), $X, Y, X^{\prime}, Y^{\prime}$ satisfy

$$
\begin{aligned}
X & \equiv \frac{1}{2}\left(\bmod p^{m}\right), & Y & \equiv 2 a\left(\bmod p^{m}\right) \\
X^{\prime} & \equiv \frac{(-1)^{k^{\prime}}}{2^{k^{\prime}+1} a^{k^{\prime}}}\left(\bmod p^{m}\right), & Y^{\prime} & \equiv \frac{(-1)^{k^{\prime}-1}}{(2 a)^{k^{\prime}-1}}\left(\bmod p^{m}\right)
\end{aligned}
$$

By Assertion 2, we get from (27) and (28) that

$$
\delta_{4}=X^{\prime} Y-X Y^{\prime} \equiv \frac{(-1)^{k^{\prime}}}{(2 a)^{k^{\prime}-1}} \quad\left(\bmod p^{m}\right)
$$

This implies that

$$
\begin{equation*}
(2 a)^{k^{\prime}-1} \equiv \pm 1 \quad\left(\bmod p^{m}\right) \tag{29}
\end{equation*}
$$

Since $p=4 a^{2}+1$, we see from (29) that

$$
\begin{equation*}
k^{\prime}-1 \equiv 0 \quad\left(\bmod 2 p^{m-1}\right) \tag{30}
\end{equation*}
$$

Since $p^{n_{4}}>D^{2}$, we have

$$
\begin{align*}
& \log \frac{x_{4}+\sqrt{D}}{x_{4}-\sqrt{D}}=\log \left(1+\frac{2 \sqrt{D}}{x_{4}-\sqrt{D}}\right)= \tag{31}\\
= & \frac{2 \sqrt{D}}{x_{4}} \sum_{j=0}^{\infty} \frac{1}{2 j+1}\left(\frac{D}{x_{4}^{2}}\right)^{j}<\frac{4 \sqrt{D}}{x_{4}}<\frac{4}{\sqrt{D}} .
\end{align*}
$$

By Assertion 2 and (22), if $p^{m-1} \geq 20$ and $k \geq k^{\prime}$, then

$$
\begin{gathered}
\log \frac{x_{4}+\sqrt{D}}{x_{4}-\sqrt{D}}=\left|k \log \frac{\varepsilon_{2}^{\prime}}{\bar{\varepsilon}_{2}^{\prime}}-k^{\prime} \log \frac{\varepsilon_{3}}{\bar{\varepsilon}_{3}}\right|= \\
=\left(k-k^{\prime}\right) \log \frac{\varepsilon_{2}^{\prime}}{\bar{\varepsilon}_{2}^{\prime}}+k^{\prime}\left(\log \frac{\varepsilon_{2}^{\prime}}{\overline{\varepsilon_{2}}}-\log \frac{\varepsilon_{3}}{\overline{\varepsilon_{3}}}\right)> \\
>\left(k-k^{\prime}\right) \log \left(p^{m}-4\right)+k^{\prime}\left(\log \left(p^{m-1}-4\right)-\log \left(4-\frac{1}{p}\right)\right)>1,
\end{gathered}
$$

which contradicts (31). Thus $k^{\prime}>k$, and $k^{\prime}-1 \equiv 0\left(\bmod 2 p^{m-1}\right)$ by (30). The assertion is proved.

Assertion 5. If $(D, 3)$ is special, and $D \neq 22$, 3478, then $N(D, 3)=3$.
Proof. Notice that $3788^{2}+37=3^{15}$. by the definitions as in Lemma 8 , we may put $X=3788, \Delta=37, a=1, q=3, k=15, r=2, s=3$ and $\nu=0.9217$. Then we have

$$
\begin{equation*}
\left|\frac{Y}{3^{\ell / 2}}-1\right|>3^{-51-0.96085 \ell} \tag{32}
\end{equation*}
$$

for any $\ell, Y \in \mathbb{N}$ with $2 \nmid \ell$. If $N(D, 3)>3$, then from (32) we get

$$
\begin{equation*}
\left|\frac{x_{4}}{3^{n_{4} / 2}}-1\right|>3^{-51-0.96085 n_{4}} \tag{33}
\end{equation*}
$$

since $2 \nmid n_{4}$. We see from (2) that $D<3^{2 m}$, hence

$$
\begin{equation*}
\frac{x_{4}}{3^{n_{4} / 2}}-1=\frac{D}{3^{n_{4} / 2}\left(x_{4}+3^{n_{4} / 2}\right)}<\frac{3^{2 m}}{2 \cdot 3^{n_{4}}} \tag{34}
\end{equation*}
$$

The combination of (33) with (34) yields

$$
\begin{equation*}
50.4+2 m>0.03915 n_{4} \tag{35}
\end{equation*}
$$

On the other hand, by Assertions 2 and 3, we have

$$
\begin{equation*}
n_{4}=m k+(2 m+1) k^{\prime} \geq m\left(k+k^{\prime}-1\right)+2 m+1 \geq 2 \cdot 3^{m-1} m+2 m+1 \tag{36}
\end{equation*}
$$

From (35) and (36),

$$
50.4+2 m>0.03915\left(2 \cdot 3^{m-1} m+2 m+1\right)
$$

whence we conclude that $m \leq 5$, since $2 \nmid m$. The assertion is proved.
Assertion 6. If (D, p) is special, $p \neq 3$ and $\max (D, p)>2 \cdot 10^{9}$, then $N(D, p)=3$.

Proof. Let

$$
\alpha_{1}=\frac{\left(p^{m}+1\right) / 2+2 a \sqrt{D}}{\left(p^{m}+1\right) / 2-2 a \sqrt{D}}, \quad \alpha_{2}=\frac{x_{3}+\sqrt{D}}{x_{3}-\sqrt{D}}
$$

By Assertion 2, we get

$$
\begin{equation*}
\log \frac{x_{4}+\sqrt{D}}{x_{4}-\sqrt{D}}=\left|k \log \alpha_{1}-k^{\prime} \log \alpha_{2}\right|>0 \tag{37}
\end{equation*}
$$

Since $\alpha_{1} \alpha_{2}$ satisfy

$$
\begin{gathered}
p^{m+1} \alpha_{1}^{2}-2\left(\left(\frac{p^{m}+1}{2}\right)^{2}+4 a^{2} D\right) \alpha_{1}+p^{m+1}=0 \\
p^{2 m+1} \alpha_{2}^{2}-2\left(x_{3}^{2}+D\right) \alpha_{2}+p^{2 m+1}=0
\end{gathered}
$$

respectively, we have

$$
\begin{equation*}
h\left(\alpha_{1}\right)=\log \left(\frac{p^{m}+1}{2}+2 a \sqrt{D}\right), \quad h\left(\alpha_{2}\right)=\log \left(x_{3}+\sqrt{D}\right) \tag{38}
\end{equation*}
$$

By Lemma 7, we have

$$
\begin{gather*}
\left|k \log \alpha_{1}-k^{\prime} \log \alpha_{2}\right|> \tag{39}\\
>\exp \left(-70\left(1+\frac{0.1137}{T}\right)^{2} 2^{4} h\left(\alpha_{1}\right) h\left(\alpha_{2}\right)(0.52+\log b)^{2}\right)
\end{gather*}
$$

for any $T \geq 1$, where

$$
\begin{equation*}
b=\frac{k}{2 h\left(\alpha_{2}\right)}+\frac{k^{\prime}}{2 h\left(\alpha_{1}\right)}, \tag{40}
\end{equation*}
$$

which satisfies $0.52+\log b>T$. We may choose $T=10$ and then from (39) we get

$$
\begin{equation*}
\left|k \log \alpha_{1}-k^{\prime} \log \alpha_{2}\right|>\exp \left(-1146 h\left(\alpha_{1}\right) h\left(\alpha_{2}\right)(0.52+\log b)^{2}\right) \tag{41}
\end{equation*}
$$

By Assertions 2 and 4, the combination of (41) with (31) yields

$$
\begin{align*}
& \log 4 \sqrt{D}+1146 h\left(\alpha_{1}\right) h\left(\alpha_{2}\right)(0.52+\log b)^{2}>\log x_{4}>\log p^{n_{4} / 2}= \\
& =\frac{1}{2}\left((m+1) k+(2 m+1) k^{\prime}\right) \log p>k^{\prime} \log p^{m+1 / 2} \tag{42}
\end{align*}
$$

When $m=2$, we get $h\left(\alpha_{1}\right)<\log \left(p^{2}+1\right)$ and $h\left(\alpha_{2}\right)<\log 2 x_{3}<$ $\log 3 p^{2+1 / 2}$ by (38). Since $k^{\prime}>k$ by Assertion 4, we obtain from (40) and (42) that

$$
\frac{\log 4 \sqrt{D}}{h\left(\alpha_{1}\right) h\left(\alpha_{2}\right)}+1146(0.52+\log b)^{2}>\frac{k^{\prime}}{h\left(\alpha_{1}\right)}\left(1+\frac{\log 3}{\log p^{2+1 / 2}}\right)>b
$$

whence we conclude that $b<160000$. Further, since $k^{\prime} / 2 h\left(\alpha_{1}\right)<b$ by (40) and $k^{\prime}-1 \geq 2 p$ by Assertion 4, we get

$$
2 p+1 \leq k^{\prime}<320000 h\left(\alpha_{1}\right)<320000 \log \left(p^{2}+1\right)
$$

It implies that $p<4200000$ and $D<2 \cdot 10^{19}$ by (2).
When $m \geq 3$, we get $h\left(\alpha_{1}\right)<\log \left(p^{m}+1\right)$ and $h\left(\alpha_{2}\right)<\log 3 p^{m+1 / 2}$ by (38). Then, by (42) we also obtain that $b<160000$. Since $p \leq p^{m / 3}$ in this case, we can conclude $p^{m}<9 \cdot 10^{9}$ and $D<10^{16}$ by the same way. Thus the assertion is proved.

By Assertion 5 and 6, the theorem holds for the exceptional cases.

4. Proof of theorem for the non-exceptional cases

Throughout this section we assume that the pair (D, p) is not exceptional.

Lemma 9. Let $(x, n),\left(x^{\prime}, n^{\prime}\right),\left(x^{\prime \prime}, n^{\prime \prime}\right)$ be solutions of (1) with $n<$ $n^{\prime}<n^{\prime \prime}$. Then $2 \nmid n^{\prime \prime}$ and either $n^{\prime \prime} \geq 2 n^{\prime}+\max (3, n)$ or $p^{n^{\prime \prime}}>4 p^{8 n^{\prime} / 3} / 9$.

Proof. By Lemma 5 of [1], we have $2 \nmid n^{\prime \prime}, n^{\prime \prime} \geq 2 n^{\prime}+\max (3, n)$ and $p^{n^{\prime}}<2\left(p^{\left(n^{\prime \prime}-2 n^{\prime}\right) / 2}+1\right)^{3}$. Since $p^{n^{\prime \prime}-2 n^{\prime}} \geq 3^{3}$, we get $p^{n^{\prime \prime}}>4 p^{a n^{\prime} / 3} / 9$. The lemma is proved.

Lemma 10 ([1, Theorem 1]). Let $(x, n),\left(x^{\prime}, n^{\prime}\right)$ be two solutions of (1) with $n^{\prime}>n$. Then $p^{n} \leq \max \left(2 \cdot 10^{6}, 600 D^{2}\right)$.

Lemma 11. Let $(x, n),\left(x^{\prime}, n^{\prime}\right)$ be two solutions of (1) with $n^{\prime}>n$. Then $p^{n^{\prime}}>4 \sqrt{D}$.

Proof. Since $x^{\prime 2}-x^{2}=p^{n}\left(p^{n^{\prime}-n}-1\right)$, we have $x^{\prime}-\zeta x=2 a p^{n}$, where $\zeta \in\{-1,1\}, a \in \mathbb{N}$. If $\zeta=1$, then

$$
p^{n^{\prime}}=p^{n}+4 a p^{n} x+4 a^{2} p^{2 n}>4 a p^{n} \sqrt{D} \geq 4 p^{n} \sqrt{D}
$$

since $x>\sqrt{D}$. If $\zeta=-1$, then

$$
\begin{equation*}
p^{n^{\prime}}=p^{n}\left(1+4 a\left(a p^{n}-x\right)\right) \tag{43}
\end{equation*}
$$

It follows that $a>x / p^{n}>\sqrt{D} / p^{n}$. Hence, from (43), we get $p^{n^{\prime}}>4 \sqrt{D}$. The lemma is proved.

Lemma 12. Let $(x, n),\left(x^{\prime}, n^{\prime}\right)$ be two solutions of (1) with $p^{n}>p^{n^{\prime}}<$ D. If $D \geq 25000$, then $\log \varrho<1.1(\log D)^{2}$.

Proof. Under the assuimptions, by Lemma 4 of [4],

$$
\begin{gather*}
n=Z_{1} t, n^{\prime}=Z_{1} t^{\prime}, x+\delta \sqrt{D}=\varepsilon^{t} \bar{\varrho}^{s}, x^{\prime}+\delta^{\prime} \sqrt{D}=\varepsilon^{t^{\prime}} \bar{\varrho}^{s^{\prime}} \tag{44}\\
\\
\delta, \delta^{\prime} \in\{-1,1\},
\end{gather*}
$$

where $s, t, s^{\prime}, t^{\prime} \in \mathbb{Z}$ such that

$$
0 \leq s \leq t, 0 \leq s^{\prime} \leq t^{\prime}, 1 \leq t \leq t^{\prime}, \operatorname{gcd}(s, t)=\operatorname{gcd}\left(s^{\prime}, t^{\prime}\right)=1
$$

If $s t^{\prime}=s^{\prime} t$, then there exists $k \in \mathbb{N}$ such that $s^{\prime}=s k$ and $t^{\prime}=t k$. Since $t^{\prime}>t$, we get $k>1$ and $x^{\prime}+\delta^{\prime} \sqrt{D}=(x+\delta \sqrt{D})^{k}$ by (44). This is impossible by Lemma 3 of [1]. Hence $s t^{\prime} \neq s^{\prime} t$, and by (44),

$$
\begin{equation*}
\left|t^{\prime} \log (x+\delta \sqrt{D})-t \log \left(x^{\prime}+\delta^{\prime} \sqrt{D}\right)\right|=\left|s^{\prime} t-s t^{\prime}\right| \log \varrho \geq \log \varrho \tag{45}
\end{equation*}
$$

Since $D>p^{n^{\prime}}>p^{n}$, we have $(1+\sqrt{2}) \sqrt{D}>x^{\prime}+\sqrt{D}>x+\sqrt{D}>2 \sqrt{D}$ and $\log D / \log p^{z_{1}}>t^{\prime}>t$. Therefore

$$
\begin{gathered}
\left|t^{\prime} \log (x+\delta \sqrt{D})-t \log \left(x^{\prime}+\delta^{\prime} \sqrt{D}\right)\right|<t^{\prime} \log (x+\sqrt{D})+t \log \left(x^{\prime}+\sqrt{D}\right) \\
<\frac{\log D}{\log p^{Z_{1}}}(2 \log (1 \sqrt{2})+\log D)<1.1(\log D)^{2}
\end{gathered}
$$

since $p^{Z_{1}} \geq 3$ and $D \geq 25000$. On combining this with (45) yields the lemma.

Assertion 7. If $\max (D, p)>10^{65}$, then $N(D, p) \leq 3$.
Proof. By the proof of [1, Theorem 2], it suffices to prove that the assertion holds for $D>25000, D>40 p^{2}$ and D is not a sqare. This implies that $\max (D, p)=D$.

Suppose that $N(D, p)>3$. Then (1) has four solutions $\left(x_{i}, n_{i}\right)(i=$ $1, \ldots, 4)$ with $n_{1}<n_{2}<n_{3}<n_{4}$. By Lemma 4 of [4], we have

$$
\begin{equation*}
n_{i}=Z_{1} t_{i}, x_{i}+\delta_{i} \sqrt{D}=\varepsilon^{t_{i}} \bar{\varrho}^{s_{i}}, \delta_{i} \in\{-1,1\}, i=1, \ldots, 4, \tag{46}
\end{equation*}
$$

where the s_{i}, t_{i} are integers such that

$$
\begin{equation*}
0 \leq s_{i} \leq t_{i}, \quad \operatorname{gcd}\left(s_{i}, t_{i}\right)=1, \quad i=1, \ldots, 4 \tag{47}
\end{equation*}
$$

If $p^{n_{2}}>D$, by Lemmas 9 and 10 , we get

$$
600 D^{2}=\max \left(2 \cdot 10^{6}, 600 D^{2}\right)>p^{p_{3}}>4 p^{8 n_{2} / 3} / 9>4 D^{8 / 3} / 9>600 D^{2}
$$

a contradiction. Hence $p^{n_{2}}<D$.
By Lemma 11, we have $p^{n_{2}}>4 \sqrt{D}$. Further, by Lemma 9 ,

$$
\begin{equation*}
p^{n_{3}}>4 p^{8 n_{2} / 3} / 9>18 D^{4 / 3} \tag{48}
\end{equation*}
$$

Furthermore, we see from the proof of Theorem 2 of [4] that if $D>10^{30}$, then

$$
\begin{equation*}
t_{3}+t_{4}>\frac{x_{3} \log \varrho}{4 \sqrt{D}}=\frac{1}{4}\left(1+\frac{p^{n_{3}}}{D}\right)^{1 / 2} \log \varrho>D^{1 / 6} \log \varrho \tag{49}
\end{equation*}
$$

by (48).
Let $\alpha_{1}=\varepsilon / \bar{\varepsilon}, \alpha_{2}=\varrho$. By (11) and (12), α_{1} and α_{2} satisfy $p^{Z_{1}} \alpha_{1}^{2}-$ $2\left(X_{1}^{2}+D Y_{1}^{2}\right) \alpha_{1}+p^{Z_{1}}=0$ and $\alpha_{2}^{2}-2 u_{1} \alpha_{2}+1=0$ respectively. So we have $h\left(\alpha_{1}\right)=\log \varepsilon$ and $h\left(\alpha_{2}\right)=\frac{1}{2} \log \varrho$. Notice that $1<\varepsilon / \bar{\varepsilon}<\varrho^{2}$ by Lemma 1 . We get $\varepsilon^{2}<\varepsilon \bar{\varepsilon} \varrho^{2}=p^{Z_{i}} \varrho^{2}$. So we have $\varepsilon<p^{Z_{1} / 2} \varrho$ and $h\left(\alpha_{1}\right)<\log p^{Z_{1} / 2} \varrho$.

By Lemma 7, we get

$$
\begin{align*}
\mid t_{4} \log \alpha_{1} & -2 s_{4} \log \alpha_{2} \mid>\exp \left(-1146 h\left(\alpha_{1}\right) h\left(\alpha_{2}\right)(0.52+\log b)^{2}\right)> \tag{50}\\
> & \exp \left(-1146\left(\log p^{Z_{1} / 2} \varrho\right)(\log \varrho)(0.52+\log b)^{2}\right)
\end{align*}
$$

where

$$
\begin{equation*}
b=\frac{t_{4}}{2 h\left(\alpha_{2}\right)}+\frac{s_{4}}{h\left(\alpha_{1}\right)} \leq t_{4}\left(\frac{1}{2 \log \varrho}+\frac{1}{\log p^{Z_{1} / 2} \varrho}\right) . \tag{51}
\end{equation*}
$$

On the other hand, by (31) and (46),

$$
\begin{equation*}
\left|t_{4} \log \alpha_{1}-2 s_{4} \log \varrho\right|=\log \frac{x_{4}+\sqrt{D}}{x_{4}-\sqrt{D}}<\frac{4 \sqrt{D}}{x_{4}} \tag{52}
\end{equation*}
$$

since $p^{n_{4}}>p^{n_{3}}>D^{4 / 3}$. The combination of (50) and (52) yields

$$
\log 4 \sqrt{D}+1146\left(\log p^{Z_{1} / 2} \varrho\right)(\log \varrho)(0.52+\log b)^{2}>\log x_{4}>\frac{t_{4}}{2} \log p^{Z_{1}}
$$

whence we get

$$
\begin{gather*}
1+1146\left(\frac{1}{2}+\frac{\log \varrho}{\log p^{Z_{1}}}\right)> \\
\frac{\log 4 \sqrt{D}}{(\log \varrho)\left(\log p^{Z_{1}}\right)}+1146\left(\frac{1}{2}+\frac{\log \varrho}{\log p^{Z_{1}}}\right)(0.52+\log b)^{2}>\frac{b}{2} . \tag{53}
\end{gather*}
$$

We conclude from (53) that

$$
\begin{equation*}
b<20000(\log \varrho)(\log \log \varrho)^{2} \tag{54}
\end{equation*}
$$

Since $b>t_{4} / 2 \log \varrho$ by (51), we get from (54) that

$$
\begin{equation*}
t_{4}<40000(\log \varrho)^{2}(\log \log \varrho)^{2} \tag{55}
\end{equation*}
$$

Notice that $t_{3}=\log p^{n_{3}} / \log p^{Z_{1}}<\log 600 D^{2}$ by Lemma 10. From (49) and (55), we get

$$
\begin{equation*}
\log 600 D^{2}+40000(\log \varrho)^{2}(\log \log \varrho)^{2}>D^{1 / 6} \log \varrho \tag{56}
\end{equation*}
$$

From (56),

$$
\begin{equation*}
5+40000(\log \varrho) \log \log \varrho)^{2}>D^{1 / 6} \tag{57}
\end{equation*}
$$

since $\varrho>\sqrt{D}$. By Lemma 12 , we have $\log \varrho<1.1(\log D)^{2}$, since $p^{n_{2}}<D$. On applying this together with (57), we obtain $D<10^{65}$. Thus, the assertion is proved.

The combination of Assertions 5, 6 and 7 yields the theorem.

References

[1] F. Beukers, On the generalized Ramanujan-Nagell equation II, Acta Arith. 39 (1981), 113-123.
[2] L.-K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, 1982.
[3] M. Laurent, Linear forms in two logarithms and interpolation determinants, $A p$ pendix of Linear Independence of Logarithms of Algebraic Numbers by M. Waldschmidt, Matscience Lecture Notes, Madras, 1992.
[4] M. H. Le, On the generalized Ramanujan-Nagell equation $x^{2}-D=p^{n}$, Acta Arith. 58 (1991), 289-298.
[5] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, MA, 1983.
[6] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig, 1929.
[7] N. Tzanakis and J. Wolfskill, On the diophantine equation $y^{2}=4 q^{n}+4 q+1$, J. Number Theory 23 (1986), 219-237.

LE MAOHUA
HUNAN NORMAL UNIVERSITY
DEPARTMENT OF MATHEMATICS
P. O. BOX 410081

CHANGSHA, HUNAN
P. R. CHINA
(Received July 15, 1993; revised January 5, 1994)

