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Explicit description of three-dimensional homogeneous
Ricci solitons

By ERNANI RIBEIRO JR. (Fortaleza) and JOÃO FILHO SILVA (Acarape)

Abstract. The purpose of this article is to describe explicitly the three-dimensional

homogeneous Ricci soliton with isometry group of dimension 4. That with the work of

Baird and Danielo [3] with isometry group of dimension 3 complete the description

of all simply connected three-dimensional homogeneous Ricci solitons. We describe the

family of vectors field in S2×R, H2×R and Nil3 that provides a Ricci soliton structure.

1. Introduction

Ricci solitons appeared in the seminal work of Richard Hamilton [9] on

the Ricci flow. They model the formation of singularities in the Ricci flow and

correspond to self-similar solutions, i.e. they are stationary points of this flow in

the space of metrics modulo diffeomorphisms and scalings. Thus, classifying Ricci

solitons or understanding their geometry is definitely an important issue.

Definition 1. A Ricci soliton is a Riemannian manifold (Mn, g), n ≥ 2,

endowed with a vector field X satisfying

Ric+
1

2
LXg = λg, (1.1)

where λ is a constant and L stands for the Lie derivative.
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If X is the gradient vector field of a function f on Mn such a manifold is

called a gradient Ricci soliton. In this case, (1.1) becomes

Ric+∇2f = λg, (1.2)

where ∇2f stands for the Hessian of f .

The Ricci soliton (Mn, g,X, λ) will be called expanding, steady or shrinking

if λ < 0, λ = 0 or λ > 0, respectively. Moreover, when either the vector field X

is trivial, or the potential f is constant, the Ricci soliton will be called trivial,

otherwise it will be a nontrivial Ricci soliton.

Perelman [11] proved that compact Ricci solitons are always of gradient

type. More precisely, if (Mn, g,X, λ) is a Ricci soliton with Mn compact then

there exists a smooth f ∈ C∞(M), called the Perelman potential, such that

X = ∇f . On the other hand, a smooth vector field X in a compact manifold can

be decomposed as a sum X = Y +∇h, where Y is a divergence free smooth vector

field and h ∈ C∞(M), called Hodge-de Rham potential. In [1], Aquino, Barros

and Ribeiro shed light on the Perelman potential of a compact Ricci soliton,

showing that the Perelman potential is, (up to a multiplication by a constant

factor), the Hodge-de Rham potential. Homogeneous gradient Ricci solitons have

been studied in [13], where it is shown that any gradient Ricci soliton is rigid,

more precisely, it is a flat bundle N ×ΓRk, where N is Einstein and the potential

function reduces to a function on Rk as in the Gaussian soliton.

The classification of simply connected homogeneous spaces in dimension three

is well known, see [14]. They are divided in three groups in accord to the dimension

of their isometry groups. Precisely, they have isometry groups of dimension 3,

4, and 6. Those with isometry groups of dimension 6 are the simply connected

space forms S3(κ2), R3, H3(−κ2). Thus their metrics are Einstein and the Ricci

soliton structures are well known, see details in the survey paper [4].

The simply connected three dimensional homogeneous spaces with isometry

groups of dimension 3 have the geometry of the Lie group Sol3. Baird and

Danielo [3], described all the Ricci soliton structures of Sol3. They showed that

Ricci soliton structures of Sol3 are non-gradient Ricci solitons (Sol3, X, λ), where

X is a vector field in special class of vector fields and λ < 0. More precisely, they

wrote:

“up to addition of a Killing vector field, the soliton flows on Nil and on Sol

are unique; the soliton flows on S2×R and H2×R are unique; the only soliton

flows on S3 and H3 are given by Killing vector fields; the only non-Killing

solitons on R3 are the well-know Gaussian solitons”. [see page 27.]
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Therefore, Baird and Danielo have proved the uniqueness of three-dimen-

sional homogeneous Ricci solitons up to Killing vector fields. Thus, we have a

big family of Ricci solitons structures in this kind. We point out that two vector

fields X1 and X2 on a Riemannian manifold (Mn, g) satisfying Ricci solitons

equation differ in a homothetic vector field and they differ in a Killing vector

field if and only if λ1 = λ2. It is important to observe that the existence of non-

Killing homothetic vector fields is a very restrictive condition. Indeed, if a three-

dimensional homogeneous Riemannian manifold admits a non-Killing homothetic

vector field then it is locally conformally flat; for more details see [6]. Hence the

only three-dimensional homogeneous spaces which may admit two-distinct Ricci

soliton constants are locally conformally flat ones.

In [2], Baird showed an explicit description of Ricci solitons structures on

Nil4 by using ODE technics. Inspired on ideas developed in Baird’s work we

shall describe explicitly the Ricci soliton structures of simply connected three-

dimensional homogeneous spaces with isometry group of dimension 4. In fact, a

simply connected homogeneous space with isometry group of dimension 4 is Rie-

mannian fibration over a space form N2
κ of dimension 2 having constant sectional

curvature κ. In other words, there is a Riemannian submersion π : E3(κ, τ) → N2
κ

with fibers diffeomorphic either to S1 or to R depending whether N2
κ is compact

or not. The vector field E3 tangent to the fibers is a Killing vector field such that

∇XE3 = τX × E3 for all X ∈ X(M), where τ is a constant called curvature of

the bundle. So, it is well-known the following classification

M = Mκ,τ =





S2κ × R, κ > 0 and τ = 0;

H2
κ × R, κ < 0 and τ = 0;

Nil3(κ, τ)(Heisenberg space), κ = 0 and τ 6= 0;

P̃Sl2(κ, τ), κ < 0 and τ 6= 0;

S3r (Berger sphere), κ > 0 and τ 6= 0.

We now show examples of Ricci solitons structures on S2κ × R, H2
κ × R and

Nil3(k, τ).

Example 1. Let (M3, g) be either S2κ × R or H2
κ × R and let ϕ : M → R

be a function given by ϕ(x, y, t) = κt. Taking into account local coordinates

{E1, E2, E3}, which will be defined in the next section, we consider X ∈ X(M)

given by X = ϕE3. Under these conditions, (M, g,X, λ) is a Ricci soliton with

λ = κ. Moreover X = ∇f , where f : M → R is given by f(x, y, t) = κt2/2.

The existence of Ricci soliton structure on Nil3 is well-known. Since Nil3 is

not locally conformally flat any Ricci soliton structure differs from a given one by
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a Killing vector field, for more details see [7]. In [3] appeared an example of Ricci

soliton structure on Nil3, here we shall show a different example.

Example 2. Let (M3, g) = Nil3(k, τ) be and let ϕ1, ϕ2, ϕ3 : M3 → R be

functions given by ϕ1(x, y, t) = −4τ2x, ϕ2(x, y, t) = −4τ2y and ϕ3(x, y, t) =

−8τ2t. Moreover, let X ∈ X(M) given by X =
∑3

i=1 ϕiEi, where {E1, E2, E3}
will be defined in the next section. Then (M, g,X, λ) is a non gradient expanding

Ricci soliton and λ = −6τ2.

In our first result we shall describe the family of vector fields on S2κ × R
and H2

κ × R that gives a Ricci soliton structure. To this end, we consider local

coordinates {E1, E2, E3} according to next section. We now announce our first

result.

Theorem 1. Let (M3, g,X, λ) be a three-dimensional homogeneous Ricci

soliton. We assume that (M3, g) is either S2κ × R or H2
κ × R. Then λ = κ and

X = ϕ1E1 + ϕ2E2 + ϕ3E3,

where ϕ1, ϕ2 and ϕ3 are smooth functions on M3 given by

(1) ϕ1(x, y, t) = {3κa(x2 − y2)− 2κbxy + 2cy + 3a}ρ,
(2) ϕ2(x, y, t) = {κb(x2 − y2) + 6κaxy − 2cx− b}ρ,
(3) ϕ3(x, y, t) = κt+ d,

a, b, c, d ∈ R and ρ = 2
1+κ(x2+y2) .

It is worth pointing out that if a = b = c = d = 0 in the previous theorem

we obtain Example 1. In the sequel we construct the family of vector fields on

Nil3 that provides a Ricci soliton structure. To do this, we recall that Nil3 admits

global coordinates and then we choose the orthonormal frame {E1, E2, E3} as in

the next section. With these settings we have the following theorem.

Theorem 2. Let (Nil3, X, λ) be a Ricci soliton. Then λ = −6τ2 and

X = ϕ1E1 + ϕ2E2 + ϕ3E3,

where ϕ1, ϕ2 and ϕ3 are smooth functions on M3 given by

(1) ϕ1(x, y, t) = −4τ2x+ ay + b,

(2) ϕ2(x, y, t) = −ax− 4τ2y + c,

(3) ϕ3(x, y, t) = τ{a(x2 + y2)− 2(cx− by)− 8τt+ d}
and a, b, c, d ∈ R.
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Moreover, taking a = b = c = d = 0 in the previous theorem we obtain

Example 2. On the other hand, it is very important to emphasize the non-

existence of Ricci soliton structures on P̃Sl2, which was proved by Baird and

Danielo in [3]. In fact, they proved the following result.

Theorem 3 ([3]). P̃Sl2 does not admit any Ricci soliton structure.

We now deduce a characterization for gradient three-dimensional homogene-

ous Ricci solitons. More exactly, we have the following theorem.

Theorem 4. Let (M3, g,∇f, λ) be a non flat gradient three-dimensional

homogeneous Ricci soliton. Then (M3, g) is isometric to either S2κ×R or H2
κ×R.

Moreover, λ = κ and ∇f = ϕE3, where ϕ(x, y, t) = κt+ c and c ∈ R.
It was recently proved in [5] that a three-dimensional complete noncompact

non-flat shrinking gradient soliton is a quotient of the round cylinder S2×R by a

subgroup of the Iso(S2 ×R). Replacing the assumption of non-flat shrinking gra-

dient soliton by homogeneous shrinking Ricci soliton we may combine Theorem 1

with Theorem 4 to deduce the following corollary.

Corollary 1. Let (M3, g,X, λ) be a non-flat three-dimensional homogeneous

shrinking Ricci soliton. Then (M3, g) is isometric to S2κ × R.
Finally, we recall that Nil3 admits a non gradient Ricci soliton structure, for

more details see Example 2, see also [8] and [7]. In particular, Theorem 4 shows

that every Ricci soliton structure on Nil3 is non gradient. This fact appeared

in [3] by different argument.

2. Preliminares

In this section we shall develop a few tools concerning three-dimensional ho-

mogeneous manifolds in order to prove our results. For comprehensive references

on such a theory, we indicate for instance [14].

2.1. Non compact homogeneous Riemannian manifold. Observe that the

projection π : M3
κ,τ → M2

κ, given by π(x, y, t) = (x, y) is a Killing submersion,

where M2
κ is endowed with the metric ds2 = ρ2(dx2 + dy2) and ρ = 2

1+κ(x2+y2)

if κ 6= 0 and ρ = 1 if κ = 0. The natural orthonormal frame on N2
κ is given

by {e1 = ρ−1∂x, e2 = ρ−1∂y}. Moreover, translations along of the fibers are

isometries, therefore E3 is a Killing vector field. Since {e1, e2} is an orthonormal

referential on N2
κ , we may take a horizontal lifting of {e1, e2} to {E1, E2} jointly
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with E3 to obtain an orthonormal referential {E1, E2, E3} on M3
κ,τ . Moreover,

since {∂x, ∂y} is a natural referential forM2
κ, then a natural referential for M3

κ,τ is

{∂x, ∂y, ∂t}, where ∂t is tangent to the fibers, thus, E3 = ∂t. Using this referential

we have the following lemma for non compact three-dimensional homogeneous

manifold which can be found in [14].

Lemma 1. Rewriting the referential {E1, E2, E3} in terms of {∂x, ∂y, ∂t},
we have:

(1) If κ 6= 0, then E1 = 1
ρ∂x + 2κτy∂t, E2 = 1

ρ∂y − 2κτx∂t and E3 = ∂t.

(2) If κ = 0, then E1 = ∂x − τy∂t, E2 = ∂y + τx∂t and E3 = ∂t.

Moreover, considering M3
κ,τ endowed with the metric

g =

{
dx2 + dy2 + [τ(ydx− xdy) + dt]2, if κ = 0

ρ2(dx2 + dy2) + [2κτρ (xdy − ydx) + dt]
2
, if κ 6= 0,

we have the following identities for the Riemannian connection





∇E1E1 = κyE2 ∇E1E2 = −κyE1 + τE3 ∇E1E3 = −τE2

∇E2E1 = −κxE2 − τE3 ∇E2E2 = κxE1 ∇E2E3 = τE1

∇E3E1 = −τE2 ∇E3E2 = τE1 ∇E3E3 = 0.

(2.1)

In particular, we obtain from the above identities the following relations for the

Lie brackets:

[E1, E2] = −κyE1 + κxE2 + 2τE3 (2.2)

and

[E2, E3] = [E1, E3] = 0. (2.3)

We may assume without loss of generalities that κ = −1, 0 or 1.

As a consequence of the previous lemma we obtain the following result for

the Ricci tensor of a three-dimensional non compact homogeneous Riemannian

manifold with isometry group of dimension 4.

Proposition 1. Let (M3
κ,τ , g) be a simply connected non compact three-

dimensional homogeneous Riemannian manifold with four-dimensional isometry

group. Then the referential {E1, E2, E3} diagonalizes the Ricci tensor. More

precisely, we have

Ric = (κ− 2τ2)g − (κ− 4τ2)E[
3 ⊗ E[

3, (2.4)

where E[
3 stands for the 1-form associated to E3.
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Proof. Since {E1, E2, E3} is an orthonormal frame, we can write the Ricci

tensor as follows

Ric(X,Y ) =

3∑

j,k=1

〈X,Ej〉〈Y,Ek〉Ric(Ej , Ek). (2.5)

In order to compute Ric(Ej , Ek) first we consider Ric(Ej , Ej). The first term

is

Ric(E1, E1) = 〈∇E2∇E1E1 −∇E1∇E2E1 +∇[E1,E2]E1, E2〉
+ 〈∇E3

∇E1
E1 −∇E1

∇E3
E1 +∇[E1,E3]E1, E3〉

= 〈∇E2

(
κyE2

)
+∇E1

(
κxE2 + τE3

)− κy∇E1E1 + κx∇E2E1 + 2τ∇E3E1, E2〉

+ 〈∇E3

(
κyE2

)
+∇E1

(
τE2

)
, E3〉 = 2κ

ρ
− κ2(x2 + y2)− 2τ2 = κ− 2τ2.

In a similar way we obtain

Ric(E2, E2) = κ− 2τ2

and

Ric(E3, E3) = 2τ2.

We now claim that Ric(Ej , Ek) = 0 for j 6= k. Indeed, let us compute only

Ric(E1, E2).

Ric(E1, E2) = 〈∇E3∇E1E2 −∇E1∇E3E2 +∇[E1,E3]E2, E3〉
= 〈∇E3

(− κyE1 + τE3

)−∇E1

(
τE1

)
, E3〉

= −κy〈∇E3E1, E3〉 − τ〈∇E1E1, E3〉 = 0.

which finishes our claim. Therefore, using (2.5) we deduce that

Ric(X,Y ) =

3∑

j=1

〈X,Ej〉〈Y,Ej〉Ric(Ej , Ej). (2.6)

This completes the proof. ¤

3. Key lemmas

In this section we shall present some lemmas that will be crucial for our

purposes. To this end, we shall state a corollary concerning mixed derivatives.
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Corollary 2. Under the choice of the given referential the following rules

hold for all smooth function f on M .

(1) If τ = 0, then ∂2
xyf = ∂2

yxf, ∂
2
xtf = ∂2

txf and ∂2
ytf = ∂2

tyf .

(2) If κ = 0, then ∂2
xyf = ∂2

yxf, ∂
2
xtf = ∂2

txf and ∂2
ytf = ∂2

tyf .

(3) If κ 6= 0 and τ 6= 0, then ∂2
xyf = ∂2

yxf, ∂
2
xtf = ∂2

txf and ∂2
ytf = ∂2

tyf .

Proof. Using (2.2) and τ = 0 we have

[E1, E2]f = −κ

ρ
y∂xf +

κ

ρ
x∂yf. (3.1)

On the other hand

[E1, E2]f =
∂x
ρ

(
∂y
ρ
f

)
− ∂y

ρ

(
∂x
ρ
f

)
. (3.2)

Now we compare (3.1) with (3.2) to deduce ∂2
xyf = ∂2

yxf . In a similar way we show

that ∂2
xtf = ∂2

txf and ∂2
ytf = ∂2

tyf , which gives the first statement. Proceeding

we have

[E1, E3]f = (∂x − τy∂t)(∂tf)− ∂t(∂xf − τy∂tf)

= ∂2
xtf − τy∂2

ttf − ∂2
txf + τy∂2

ttf = 0, (3.3)

which gives ∂2
xtf = ∂2

txf . Using [E2, E3] = 0 we have ∂2
ytf = ∂2

tyf . We now use

that [E1, E2] = 2τE3 to deduce the last claim of the second item. The proof of

the last item is analogous. ¤
Lemma 2. Let

(
M3, g,X, λ

)
be a three-dimensional homogeneous Ricci so-

liton. If E1, E2 and E3 are given by Lemma 1, then the following assertions

hold:

E1〈X,E1〉 − κy〈X,E2〉 = λ− (κ− 2τ2). (3.4)

E2〈X,E2〉 − κx〈X,E1〉 = λ− (κ− 2τ2). (3.5)

E3〈X,E3〉 = λ− 2τ2. (3.6)

E2〈X,E1〉+ E1〈X,E2〉+ κ(y〈X,E1〉+ x〈X,E2〉) = 0. (3.7)

E3〈X,E1〉+ E1〈X,E3〉+ 2τ〈X,E2〉 = 0. (3.8)

E3〈X,E2〉+ E2〈X,E3〉 − 2τ〈X,E1〉 = 0. (3.9)

Proof. By using equation (1.1) we can write

LXg(Ei, Ej) = 2
(
λδij − Ric(Ei, Ej)

)
. (3.10)

From definition of the Lie derivative and the compatibility of the metric we have

Ei〈X,Ej〉+ Ej〈X,Ei〉 − 〈X,∇EiEj +∇EjEi〉 = 2
(
λδij −Rij

)
. (3.11)

Now, a straightforward computations using Lemma 1 and (3.11) gives the desired
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statement. For instance, if i = j we have Ei〈X,Ei〉 − 〈X,∇Ei
Ei〉 =

(
λ − (κ −

2τ2) + (κ − 4τ2)δi3
)
. Since ∇E1E1 = κyE2,∇E2E2 = κxE1 and ∇E3E3 = 0 we

easily obtain the first three statements. The other ones are obtained by the same

way and we left its check in for the reader. ¤

We now deduce a fundamental proposition.

Proposition 2. Let
(
Mn, g

)
a Riemannian manifold with non-null constant

scalar curvature. We suppose that (Mn, g,X, λ) is a nontrivial structure of Ricci

soliton. Then this structure is unique up to Killing vector field.

Proof. We notice that if (Mn, g) admit two Ricci soliton structures

(Mn, g,X, λ) and (Mn, g, Y, µ), then L(X−Y )g = 2(λ− µ)g. Now, we may invoke

[10] to conclude that X − Y is a Killing vector field and λ = µ, that was to be

proved. ¤

Next, we consider the Heisenberg space with a Ricci soliton structure to

deduce the following lemma.

Lemma 3. Let (Nil3, X, λ) be a Ricci soliton. Then 〈X,E1〉 and 〈X,E2〉 do
not depend on the variable t. In particular, λ = −6τ2.

Proof. First, we recall that on Nil3 we have κ = 0. Moreover, from Propo-

sition 2 and Example 2 we deduce that λ = −6τ2. Now, taking the derivative of

(3.8) in the direction of ∂x we have

E3∂x〈X,E1〉 = −∂xE1〈X,E3〉 − 2τ∂x〈X,E2〉. (3.12)

Moreover, by using (3.6), (3.8) and (3.9) we have

E3E3〈X,E1〉 = −2τE3〈X,E2〉 (3.13)

and

E3E3〈X,E2〉 = 2τE3〈X,E1〉. (3.14)

Next, since κ = 0 we derive (3.4) in the direction of E3 to deduce

E3∂x〈X,E1〉 − τyE3E3〈X,E1〉 = 0. (3.15)

A straightforward computation shows that combining (3.12), (3.13), (3.15) and

(3.6) we get

2τE1〈X,E2〉 = −∂2
xx〈X,E3〉. (3.16)

Whence, by using (3.7) we have

2τE2〈X,E1〉 = ∂2
xx〈X,E3〉. (3.17)
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On the other hand, from (3.7) it is not difficult to check that

∂2
xx〈X,E3〉 = ∂2

yy〈X,E3〉. (3.18)

In the same way we have ∂2
xy〈X,E3〉 = 0. So, we may use (3.6) to conclude that

∂2
xx〈X,E3〉 is constant. Then we derive (3.17) with respect to E3 to obtain

∂2
yt〈X,E1〉 = −τx∂2

tt〈X,E1〉. (3.19)

Proceeding, we derive (3.4) in the direction of ∂y and substituting (3.19), we have

∂2
xy〈X,E1〉 = τ(∂t〈X,E1〉 − τxy∂2

tt〈X,E1〉). (3.20)

Now, taking the derivative of (3.17) in direction of ∂x and using (3.15) it follows

that

∂2
xy〈X,E1〉 = −τ(∂t〈X,E1〉+ τxy∂2

tt〈X,E1〉).
Furthermore, we compare the last equality with (3.20) to obtain

E3〈X,E1〉 = 0. (3.21)

Hence, we can compare with (3.13) to deduce

E3〈X,E2〉 = 0, (3.22)

which finishes the proof of the lemma. ¤

4. Proof of the results

4.1. Proof of Theorem 1.

Proof. First, from Proposition 2 and Example 1 we deduce that λ = κ. On

the other hand, we recall that τ = 0 gives E1 = 1
ρ∂x and E2 = 1

ρ∂y. Hence from

(3.8) we have ∂2
yt〈X,E1〉+κy∂x〈X,E3〉+ 1

ρ∂
2
yx〈X,E3〉 = 0. Using once more (3.8)

and Corollary 2 we deduce

1

ρ
∂2
xy〈X,E3〉 = κyρ∂t〈X,E1〉 − ∂2

yt〈X,E1〉.

Now we derive (3.9) in the direction of ∂x and we compare with (3.9) to infer

1

ρ
∂2
xy〈X,E3〉 = κxρ∂t〈X,E2〉 − ∂2

xt〈X,E2〉,
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then

∂2
yt〈X,E1〉 − ∂2

xt〈X,E2〉 = κρ(y∂t〈X,E1〉 − x∂t〈X,E2〉). (4.1)

Now, taking the derivative of (3.7) in the direction of E3 we have

∂2
yt〈X,E1〉+ ∂2

xt〈X,E2〉 = −κρ(y∂t〈X,E1〉+ x∂t〈X,E2〉), (4.2)

hence, we combine (4.1) and (4.2) to obtain

∂2
xt〈X,E2〉 = −κyρ∂t〈X,E1〉 (4.3)

and

∂2
yt〈X,E1〉 = −κxρ∂t〈X,E2〉. (4.4)

Next, taking the derivative of (3.4) and (3.5) in the direction of E3, we also have

∂2
xt〈X,E1〉 = κyρ∂t〈X,E2〉, (4.5)

and

∂2
yt〈X,E2〉 = κxρ∂t〈X,E1〉. (4.6)

Computing the derivative of (4.3) with respect to ∂y and using (4.4), we obtain

∂3
xyt〈X,E2〉 = κρ[(κy2ρ− 1)∂t〈X,E1〉+ κxy∂t〈X,E2〉],

and deriving (4.6) with respect to ∂x and using (4.5), we have

∂3
xyt〈X,E2〉 = κρ[(1− κx2ρ)∂t〈X,E1〉+ κxy∂t〈X,E2〉],

hence, ∂t〈X,E1〉 = 0 and it follows from (4.5) that ∂t〈X,E2〉 = 0. Then 〈X,E1〉
and 〈X,E2〉 do not depend on the variable t. On the other hand, since τ = 0

using (3.6), (3.8) and (3.9) we also obtain that 〈X,E3〉 depends only on t.

Letting f = 1
ρ 〈X,E1〉 and h = 1

ρ 〈X,E2〉 we use (3.4) and (3.5) to obtain

∂xf = ∂yh. (4.7)

Moreover, from (3.7) we also obtain

∂yf = −∂xh. (4.8)

In particular, f and g satisfy Cauchy-Riemann. Next, using equation (3.4) we

have
1

ρ
∂xf = κ(xf + yh). (4.9)
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From this we have
1

ρ
∂3
yxxf + κy(∂2

xxf + ∂2
yyf) = 0. (4.10)

Furthermore, we use Corollary 2, equation (4.10) and that f satisfies Cauchy–

Riemann to conclude that

∂3
yyyf = −∂3

yxxf = 0.

Since 〈X,E1〉 does not depend on the variable t, we obtain

f = 3Ay2 + 2By + C, (4.11)

where A,B,C ∈ C∞(M) are functions that depend only on x. Moreover, it

follows from identity (4.7) that

h = (∂xA)y
3 + (∂xB)y2 + (∂xC)y +D, (4.12)

where D ∈ C∞(M) is a function depending only of x.

On the other hand, substituting (4.11) and (4.12) in (4.9) we get

(3κ∂xA)y
4 + (2κ∂xB)y3 + [3(1 + κx2)∂xA+ κ∂xC]y2 + 2(1 + κx2)(∂xB)y

+(1+κx2)∂xC =κ[(2∂xA)y
4+(2∂xB)y3+[6xA+ 2∂xC]y2+(4xB+2D)y+2xC].

So, we obtain ∂xA = 0 and then we can write A = −κa, where a ∈ R. It follows
that

(κ∂xC)y2 + 2(1 + κx2)(∂xB)y + (1 + κx2)∂xC

= κ[(−6κax+ 2∂xC)y2 + (4xB + 2D)y + 2xC]

and comparing both sides we have




∂xC = 6aκx

(1 + κx2)∂xB = κ(2xB +D)

(1 + κx2)∂xC = 2κxC

. (4.13)

We notice that the third equation of (4.13) gives

(1 + κx2)∂2
xxC = 2κC.

Whence we may invoke the first equation of (4.13) to obtain

C = 3a(κx2 + 1). (4.14)

Now, using that A = −κa jointly with (4.14), (4.11) and (4.12) we obtain the
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following relations

1

ρ
〈X,E1〉 = −3κay2 + 2By + 3a(κx2 + 1) (4.15)

and
1

ρ
〈X,E2〉 = (∂xB)y2 + 6aκxy +D, (4.16)

which substituted in (4.8) yields ∂2
xxB = 0.

Proceeding, we can write B = −κbx + c, where b, c ∈ R. Now, we compare

with the second equation of (4.13) to obtain D = κbx2−2cx− b, then from (4.15)

and (4.16) we deduce

〈X,E1〉 = [3κa(x2 − y2)− 2κbxy + 2cy + 3a]ρ, (4.17)

and

〈X,E2〉 = [κb(x2 − y2) + 6κaxy − 2cx− b]ρ. (4.18)

Since 〈X,E3〉 depends only on t we invoke (3.6) to conclude that 〈X,E3〉 = κt+d,

where d ∈ R. Therefore, using this last identity, (4.17) and (4.18) we complete

the proof of the theorem. ¤

4.2. Proof of Theorem 2.

Proof. First, from Lemma 3 it follows that λ = −6τ2. Moreover, by Lemma

3 we also have that 〈X,E1〉 does not depend on the variable t. Taking into account

the value of E2 we may use (3.17) to obtain

∂y〈X,E1〉 = a, (4.19)

where a = ∂2
xx〈X,E3〉/2τ , that is constant. But, using (3.4) we deduce

∂x〈X,E1〉 = −4τ2. (4.20)

Next, from (4.19) and (4.20) we get

〈X,E1〉 = −4τ2x+ ay + b, (4.21)

where b is constant.

On the other hand, using again Lemma 3 we conclude that 〈X,E2〉 does not
depend on the variable t. Therefore, equation (3.16) yields

∂x〈X,E2〉 = −a. (4.22)
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Whence using (3.5) we arrive at

∂y〈X,E1〉 = −4τ2. (4.23)

From (4.22) and (4.23) we have

〈X,E2〉 = −ax− 4τ2y + c, (4.24)

where c is constant.

Substituting (4.24) in (3.8) and using (3.6) we obtain

∂x〈X,E3〉 = 2τ(ax− c). (4.25)

Moreover, substituting (4.21) in (3.8) and using (3.6) we also obtain

∂y〈X,E3〉 = 2τ(ay + c). (4.26)

So, it follows from (3.6), (4.25) and (4.26) that

〈X,E3〉 = τ [a(x2 + y2)− 2(cx− by)− 8τt+ d],

which finishes the proof of the theorem. ¤

4.3. Proof of Theorem 4.

Proof. Let us suppose that there is a gradient Ricci soliton structure on

Nil3. Then using equation (3.6) we have

E3E3〈∇f,E1〉 = 0. (4.27)

Taking the derivative of (3.8) in the direction of E3 and using (3.6) and (4.27) we

deduce

E3〈∇f,E2〉 = 0. (4.28)

In a similar way we also obtain

E2〈∇f,E3〉 = 0. (4.29)

Then comparing (4.28) and (4.29) with (3.9) we obtain 〈∇f,E1〉 = 0, which is a

contradiction by Theorem 2. Moreover, using Theorem 3 it follows that we can

not have a Ricci soliton structure on P̃Sl2. Therefore, if (M3, g,∇f, λ) is a 3-

dimensional homogeneous gradient Ricci soliton, then (M3, g) is either S2κ ×R or

H2
κ×R. From Proposition 1 we have Ric ≥ 0 and Ric ≤ 0, respectively. Therefore,

we may apply Proposition 3 of [12] to conclude Ric(∇f,∇f) = 0, which implies

once more from Proposition 1 that

κ
(〈∇, E1〉2 + 〈∇, E2〉2) = 0.

From what it follows that 〈∇f,E1〉 ≡ 〈∇f,E2〉 ≡ 0. So, it is sufficient to use

Theorem 1 to get the promised result. ¤
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