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Applications of general variational inequalities
to coincidence point results

By ALIREZA AMINI-HARANDI (Isfahan) and SZILÁRD LÁSZLÓ (Cluj-Napoca)

Abstract. In this paper we obtain some existence results of solution for general

variational inequalities. As applications several coincidence and fixed point results are

provided.

1. Introduction

The variational inequality theory has its origin in the works of Stampac-

chia (see [28]) and Fichera (see [9]). This theory provides us very powerful

techniques for studying problems arising in various branches of mathematics but

also in mechanics, transportation, economics equilibrium or contact problems in

elasticity. For instance, the moving boundary value problem can be characterized

by a class of variational inequalities, the traffic assignment problem is a variational

inequality problem, the free boundary value problem can be studied effectively in

the framework of variational inequalities (see [1], [3], [6]).

During the last decades, the variational inequality theory has imposed itself,

due to its importance, and has been subject of a dynamical evolution reflected
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in a number of generalizations, studied and applied in various directions (see, for

instance, [2], [8], [9], [12], [13], [19], [28]).

General variational inequalities, which were introduced and studied by Noor,

can be used to study a wide class of problems including unilateral, moving bound-

ary, obstacle, free boundary and equilibrium problems arising in various areas of

pure and applied sciences (see [19]).

Let H be a Hilbert space and let C be a nonempty, closed and convex subset

of H. Noor considered the following problem, called general variational inequality

(see [19], [20], [23]). For two continuous mappings T, g : H → H, find u ∈ g−1(C)

such that

⟨T (u), g(v)− g(u)⟩ ≥ 0, for all v ∈ g−1(C).

Noor remarked (see [19]), that if C∗ = {u ∈ H|⟨u, v⟩ ≥ 0, for all v ∈ C} is

a polar cone of the convex cone C ⊆ H, then the general variational inequality

is equivalent to finding u ∈ H, such that g(u) ∈ C, T (u) ∈ C∗, ⟨T (u), g(u)⟩ = 0,

which is known as the general nonlinear complementarity problem.

If C = H, then the general variational inequality problem is equivalent to

finding u ∈ H, such that ⟨T (u), g(v)⟩ = 0, for all g(v) ∈ H which is known as the

weak formulation of the boundary value problem.

For a concrete third-order obstacle boundary value problem, that may be

characterized by a general variational inequality see [21], [25].

The problem of general variational inequalities has been extended by Noor

to the case when the operators involved are set-valued.

Let C(H) be the family of all nonempty compact subsets of H. Let T : H →
C(H) be a set-valued operator, and let g : H → H be a single-valued operator.

Let K be a nonempty, closed and convex set inH. Consider the problem of finding

x ∈ H, g(x) ∈ K, u ∈ T (x) such that

⟨u, g(y)− g(x)⟩ ≥ 0, for all g(y) ∈ K.

This problem is called a multivalued variational inequality. It has been shown,

that a wide class of multivalued odd-order and nonsymmetric, free, obstacle, mov-

ing equilibrium and optimization problems arising in pure and applied sciences

can be studied via the multivalued variational inequality, (see [22]). While exis-

tence results of the solution for the classical Stampacchia variational inequalities

were abundant in the last years (see for instance [16]), this is not the case of

general variational inequality, respectively of multivalued variational inequality.

Some variants of the general variational inequality problem, respectively the mul-

tivalued variational inequality problem (see [29]) have also been studied in [13],
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[14] and [15] in a Banach space context. In these papers several existence results

of the solution for these problems were established in the case the operator g is

of type ql and the operators involved possess some continuity properties. Recall

that the operator g : D ⊆ X → Y is of type ql (see [13]), if for every x, y ∈ D,

and every z ∈ [x, y]∩D, one has g(z) ∈ [g(x), g(y)], where X and Y are real linear

spaces and [x, y] denotes the closed line segment with the endpoints x respectively,

y. Moreover, it has been shown by examples that the existence results of solution

for these problems, obtained in the papers mentioned above, fail outside of the

class of ql type operators.

In this paper we obtain some existence results of the solution for general

variational inequalities without assuming that the operators involved are of type

ql. We do not assume any continuity property of the operators involved, instead

we work with some sequential conditions imposed on these operators. We use

these results to obtain some new coincidence point results in Hilbert spaces.

In what follows let X be a real Banach space and let X∗ be the topological

dual of X. We denote by ⟨x∗, x⟩ the value of the linear and continuous functional

x∗ ∈ X∗ in x ∈ X. Consider the set K ⊆ X, and let A : K → X∗ and a : K → X

be two given operators.

We deal with the following formulation of the general variational inequality

problem, denoted by V IS(A, a,K) (see [13]). Find an element x ∈ K, such that

⟨A(x), a(y)− a(x)⟩ ≥ 0, for all y ∈ K.

We denote by idK the identity mapping on K, that is,

idK : K → K, idK(x) = x, for all x ∈ K.

Obviously, when a ≡ idK , then V IS(A, a,K) reduces to Stampacchia varia-

tional inequality, V IS(A,K) (see [28]), that is, find x ∈ K such that

⟨A(x), y − x⟩ ≥ 0, for all y ∈ K.

The outline of the paper is the following. In the next section we obtain

several existence result of the solution for general variational inequalities. These

results will be used in Section 3 for providing some unknown coincidence point

results in Hilbert spaces. Also here, as corollaries, several fixed point theorems

are obtained.
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2. Solution existence

In the sequel let X be a real Banach space and let X∗ be the topological

dual of X. Recall that the operator T : D ⊆ X → X∗ is called weak to ∥ · ∥-
sequentially continuous at x ∈ D, if for every sequence (xn) ⊆ D that converges

weakly to x ∈ D, the sequence (T (xn)) ⊆ X∗ converges to T (x) ∈ X∗ in the

topology of the norm of X∗. We say that T is weak to ∥·∥-sequentially continuous

on D ⊆ X, if has this property at every point x ∈ D. Let us mention, that

the compact operators between two Banach spaces, in particular the Fredholm

integral operators, have this continuity property.

The operator T : D ⊆ X → X is called weak to weak-sequentially continuous

at x ∈ D, if for every sequence (xn) ⊆ D that converges weakly to x ∈ D, the

sequence (T (xn)) ⊆ X converges weakly to T (x) ∈ X. We say that T is weak

to weak-sequentially continuous on D ⊆ X, if has this property at every point

x ∈ D.

The following result was established in [13].

Proposition 2.1 (Corollary 4.1 [13]). Let A : K ⊆ X → X∗ be a given

operator. If A is weak to ∥·∥-sequentially continuous andK is weakly compact and

convex, then Stampacchia variational inequality, V IS(A,K), admits solutions.

Now we are able to provide a result concerning on existence of the solution

of V IS(A, a,K). We need the following concept. Let Z and Y be two arbitrary

sets. Recall that the inverse of a mapping f : Z → Y is defined as the set-valued

mapping f−1 : Y ⇒ Z, f−1(y) = {z ∈ Z : f(z) = y}. A single valued selection

of the set-valued map F : Z ⇒ Y is the single valued map f : Z → Y satisfying

f(z) ∈ F (z) for all z ∈ Z.

Theorem 2.1. Let K ⊆ X and let A : K → X∗ and a : K → X be

two given operators. Assume that a(K) is weakly compact and convex. Assume

further, that for every sequence (xn) ⊆ K the following condition is satisfied: if

the sequence (a(xn)) ⊆ a(K) converges weakly to a(x) ∈ a(K) then the sequence

(A(xn)) ⊆ X∗ is norm convergent to A(x) ∈ X∗. Then V IS(A, a,K) admits

solutions.

Proof. Consider b : a(K) → K a single valued selection of a−1. Let (un) ⊆
a(K) a weakly convergent sequence to u ∈ X. Then due to the weak compactness

of a(K) we have u ∈ a(K). We show that (A ◦ b)(un) → (A ◦ b)(u), n → ∞.

Since (un) ⊆ a(K) there exists a sequence (xn) ⊆ K such that un = a(xn),

n ∈ N. Analogously u = a(x) for some x ∈ K. Note that a(b(un)) = un, n ∈ N
and a(b(u)) = u, hence the sequence (a(b(un))) converges weakly to a(b(u)).
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According to the hypothesis of the theorem

(A ◦ b)(un) → (A ◦ b)(u), n → ∞.

Hence, the operator A◦b : a(K) → X∗ is weak to ∥·∥-sequentially continuous.

According to Proposition 2.1 there exists u ∈ a(K) such that,

⟨(A ◦ b)(u), v − u⟩ ≥ 0, for all v ∈ a(K).

Since for every y ∈ K there exists v ∈ a(K) such that a(y) = v, we obtain the

following general nonlinear variational inequality (see [24]),

⟨(A ◦ b)(u), a(y)− u⟩ ≥ 0, ∀y ∈ K.

Observe that a(b(u)) = u. Thus,

⟨A(b(u)), a(y)− a(b(u))⟩ ≥ 0, for all y ∈ K,

or equivalently, b(u) ∈ K is a solution of V IS(A, a,K). �

Remark 2.1. The condition: (a(xn)) ⊆ a(K) converges weakly to a(x) ∈
a(K) then the sequence (A(xn)) ⊆ X∗ is norm convergent to A(x) ∈ X∗, in

the hypothesis of Theorem 2.1 implies that a−1(a(x)) ⊆ A−1(A(x)) for every

x ∈ K. Indeed, let x ∈ K. Since a(K) is weakly sequentially closed, there exists

a sequence (a(xn)) ⊆ a(K) converging to a(x) in the weak topology of X. But

then the sequence (A(xn)) converges strongly to A(x). Let y ∈ a−1(a(x)). Then

a(y) = a(x) hence (A(xn)) converges strongly to A(y). Therefore A(y) = A(x),

hence y ∈ A−1(A(x)).

The next Corollary allows us to obtain the conclusion of Theorem 2.1 in

conditions that can more easily be verified.

Corollary 2.1. Assume that K is weakly compact, a is weak to weak-

sequentially continuous and a(K) is convex. Assume further, that for every se-

quence (xn) ⊆ K the following condition holds: if the sequence (a(xn)) ⊆ a(K)

converges weakly to a(x) ∈ a(K) then the sequence (A(xn)) ⊆ X∗ is norm con-

vergent to A(x) ∈ X∗. Then V IS(A, a,K) admits solutions.

Proof. We show that a(K) is weakly compact, and the conclusion follows

from Theorem 2.1. By Eberlein–S̆mulian theorem, (see, for instance, [7]) a(K) is

weakly compact if and only if is weakly sequentially compact. To prove that a(K)

is weakly sequentially compact, let (un) be an arbitrary sequence in a(K). Then
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there exists a sequence (xn) ⊆ K such that un = a(xn), n ∈ N. We show that

(a(xn)) has a weakly convergent subsequence in a(K). Since (xn) is a sequence in

the weakly compact set K, (xn) has a weakly convergent subsequence (note that

by Eberlein–S̆mulian theorem K is weakly sequentially compact, that is, every

sequence in K has a convergent subsequence). Let (xni) be a subsequence of

(xn) that is weakly convergent to x ∈ K. Since a is weak to weak sequentially

continuous (a(xni)) converges weakly to a(x) and the proof is completed. �

Recall that the operator T : D ⊆ X → X∗ is called monotone (see [4], [5],

[17], [18], [10]) if for all x, y ∈ D one has ⟨T (x)− T (y), x− y⟩ ≥ 0.

We say that T is monotone relative to the operator t : D → X, if for all

x, y ∈ D, we have ⟨T (x)− T (y), t(x)− t(y)⟩ ≥ 0.

Obviously, if t ≡ idD we obtain the definition of monotonicity. T is called

continuous on finite dimensional subspaces, if for every finite dimensional sub-

space M ⊆ X the restriction of T to D ∩M is weak continuous, that is, for

every sequence (xn) ⊆ D ∩M converging to x ∈ M the sequence (A(xn)) ⊆ X∗

converges to A(x) in the weak topology of X∗ (see [26]).

In what follows we present a well known existence results of solution for

Stampacchia variational inequality V IS(A,K). The following classical result con-

cerning on the existence of the solution of V I(A,K), is due to Hartmann and

Stampacchia (see [11]).

Proposition 2.2. Let X be a reflexive Banach space, let K be a weakly

compact convex nonempty subset of X. If A : K → X∗ is a monotone operator,

continuous on finite dimensional subspaces then V IS(A,K) admits solutions.

In what follows we provide a result concerning on the existence of the solution

of general variational inequalities.

Theorem 2.2. Assume that the Banach space X is reflexive. Let A : K ⊆
X → X∗ be monotone relative to a : K → X, where a(K) is weakly compact and

convex. Assume further, that for every finite dimensional subset L ⊆ a(K) and

for every sequence (xn) ⊆ K, such that a(xn) ∈ L for every n ∈ N, the following

condition holds: if the sequence (a(xn)) ⊆ L converges to a(x) ∈ a(K) then the

sequence (A(xn)) ⊆ X∗ is weakly convergent to A(x) ∈ X∗. Then V IS(A, a,K)

admits solutions.

Proof. Consider b : a(K) → K a single valued selection of a−1 and let

u, v ∈ a(K). Then ⟨(A ◦ b)(u) − (A ◦ b)(v), u − v⟩ = ⟨A(x) − A(y), a(x) − a(y)⟩,
where x = b(u), y = b(v). Since A is monotone relative to a, we have ⟨A(x) −
A(y), a(x)− a(y)⟩ ≥ 0, hence, the operator A ◦ b : a(K) → X∗ is monotone.
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Let M be a finite dimensional subspace of X and let L = M ∩ a(K). Let

(un) ⊆ L be a sequence convergent to u ∈ a(K). Since M is finite dimensional

subspace it is closed. Hence, according to the weak compactness of a(K) we get

that u ∈ L. We have to show that the sequence ((A ◦ b)(un)) ⊆ X∗ converges

to (A ◦ b)(u) ∈ X∗ in the weak topology of X∗. Since (un) ⊆ a(K) there exists

(xn) ⊆ K such that un = a(xn), n ∈ N. Analogously u = a(x) for some x ∈ K.

Since b : a(K) → K is a single valued selection of a−1, observe that a(b(un)) =

un ∈ L, n ∈ N and a(b(u)) = u ∈ L. Hence (a(b(un))) converges to a(b(u)).

According to the hypothesis of the theorem the sequence (A(b(un))) ⊆ X∗

converges weakly to A(b(u)) ∈ X∗ when n → ∞, which shows that A ◦ b is

continuous on finite dimensional subspaces. Hence, according to Proposition 2.2

there exists u ∈ a(K) such that,

⟨(A ◦ b)(u), v − u⟩ ≥ 0, for all v ∈ a(K).

Since for every y ∈ K there exists v ∈ a(K) such that a(y) = v, we obtain

⟨(A ◦ b)(u), a(y)− u⟩ ≥ 0, ∀y ∈ K.

Observe that a(b(u)) = u. Thus,

⟨A(b(u)), a(y)− a(b(u))⟩ ≥ 0, for all y ∈ K,

or equivalently, b(u) ∈ K is a solution of V IS(A, a,K). �

Remark 2.2. Observe, that if K is weakly compact and a is weak to weak-

sequentially continuous then, according to the proof of Corollary 2.1, a(K) is

weakly compact, hence we have the following corollary.

Corollary 2.2. Let the Banach space X be reflexive. Assume that K is

weakly compact, a(K) is convex and a is weak to weak-sequentially continuous.

Let A be monotone relative to a and assume further, that for every finite dimen-

sional subset L ⊆ a(K) and for every sequence (xn) ⊆ K, such that a(xn) ∈ L

for every n ∈ N, the following condition holds: if the sequence (a(xn)) ⊆ L con-

verges to a(x) ∈ a(K) then the sequence (A(xn)) ⊆ X∗ is weakly convergent to

A(x) ∈ X∗. Then V IS(A, a,K) admits solutions.

3. Coincidence points

In this section we obtain several coincidence point results for two given map-

pings by using the existence results of the solution for general variational in-

equalities established in the previous section. Let X and Y be two arbitrary sets
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and let f, g : X → Y be two given mappings. Recall that a point x ∈ X is a

coincidence point of f and g if f(x) = g(x). If X = Y and g ≡ idX then a

coincidence point x ∈ X of f and g is called a fixed point of f , that is f(x) = x.

A considerable number of problems concerning on the existence of the solution of

nonlinear inequalities, arising in different areas of mathematics, can be treated as

a coincidence point or fixed point problem (see, for instance, [27]).

In the sequel H denotes a real Hilbert space identified with its dual.

The following coincidence point result is an easy consequence of Theorem 2.1.

Theorem 3.1. Let K ⊆ H and let f, g : K → H be two given mappings.

Assume that f(K) ⊆ g(K) and g(K) is weakly compact and convex. Assume

further, that for every sequence (xn) ⊆ K the following condition holds: if the

sequence (g(xn)) ⊆ g(K) converges weakly to g(x) ∈ g(K) then the sequence

(g(xn) − f(xn)) ⊆ H converges to g(x) − f(x) ∈ H in the topology of the norm

of H. Then f and g have a coincidence point.

Proof. It can be easily verified that the operators A : K → H, A(x) =

g(x)−f(x) and a : K → H, a(x) = g(x) satisfy the assumptions of the hypothesis

of Theorem 2.1. Hence, V IS(g − f, g,K) admits solutions.

Let x ∈ K be a solution of V IS(g−f, g,K). Then we have ⟨g(x)−f(x), g(y)−
g(x)⟩ ≥ 0 for all y ∈ K. Since f(K) ⊆ g(K) choose y ∈ K such that g(y) = f(x).

Then ⟨g(x)− f(x), f(x)− g(x)⟩ ≥ 0, or equivalently −∥f(x)− g(x)∥2 ≥ 0, which

leads to f(x) = g(x). �

Corollary 3.1. Let K ⊆ H be a weakly compact set, let f : K → H and

g : K → H be two mappings, such that g is weak to weak-sequentially continuous

and g(K) is convex. Assume that for every sequence (xn) ⊆ K the following

condition holds: if the sequence (g(xn)) ⊆ g(K) converges weakly to g(x) ∈ g(K)

then the sequence (g(xn) − f(xn)) ⊆ H is norm convergent to g(x) − f(x) ∈ H.

If f(K) ⊆ g(K) then f and g have a coincidence point.

Proof. According to the proof of Corollary 2.1, g(K) is weakly compact.

The conclusion follows from Theorem 3.1. �

The next corollary provides sufficient conditions for the existence of a fixed

point of a given mapping.

Corollary 3.2. Let K ⊆ H be a weakly compact and convex set, let f :

K → H be a given mapping such that f(K) ⊆ K. Assume that for every sequence

(xn) ⊆ K the following condition holds: if the sequence (xn) ⊆ K converges

weakly to x ∈ K then the sequence (xn − f(xn)) ⊆ H is norm convergent to

x− f(x) ∈ H. Then f has a fixed point.
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Proof. The conclusion follows from Theorem 3.1 by taking g ≡ idK . �

In finite dimensional Hilbert spaces the weak topology and the topology of

the norm are equivalent, hence we have the following corollaries.

Corollary 3.3. Let K ⊆ Rn and let f, g : K → Rn be two given mappings.

Assume that f(K) ⊆ g(K) and g(K) is compact and convex. Assume further,

that for every sequence (xn) ⊆ K the following condition holds: if the sequence

(g(xn)) ⊆ g(K) converges to g(x) ∈ g(K) then the sequence (f(xn)) ⊆ Rn

converges to f(x) ∈ Rn. Then f and g have a coincidence point.

The next result can be viewed as a coincidence point version of Brouwer fixed

point theorem.

Corollary 3.4. Let K ⊆ Rn be a compact set, let f, g : K → Rn be two

given mappings, such that g is continuous, g(K) is convex and f(K) ⊆ g(K).

Assume that for every sequence (xn) ⊆ K the following condition holds: if the

sequence (g(xn)) converges to g(x) ∈ g(K) then the sequence (f(xn)) converges

to f(x) ∈ Rn. Then there exists x0 ∈ K such that f(x0) = g(x0).

The following coincidence point result is obtained via Theorem 2.2.

Theorem 3.2. Let K ⊆ H and let f, g : K → H be two given mappings,

such that
∥g(x)− g(y)∥2 ≥ ⟨f(x)− f(y), g(x)− g(y)⟩ for all x, y ∈ K.

Assume that f(K) ⊆ g(K) and g(K) is weakly compact and convex. Assume

further, that for every finite dimensional subset L ⊆ g(K) and for every sequence

(xn) ⊆ K, such that g(xn) ∈ L for every n ∈ N, the following condition holds: if

the sequence (g(xn)) ⊆ L converges to g(x) ∈ g(K) then the sequence (f(xn)) ⊆
H converges to f(x) ∈ H in the weak topology of H. Then f and g have a

coincidence point.

Proof. We show that the operators A : K → H, A(x) = g(x) − f(x) and

a : K → H, a(x) = g(x) satisfy the assumptions in the hypothesis of Theorem 2.2.

Let L ⊆ g(K) be a finite dimensional subset . It is obvious that if the

sequence (g(xn)) ⊆ L converges to g(x) ∈ g(K) and the sequence (f(xn)) ⊆ H

converges to f(x) ∈ H in the weak topology of H then the sequence (g(xn) −
f(xn)) ⊆ H converges to g(x)− f(x) ∈ H in the weak topology of H.

From ∥g(x)− g(y)∥2 ≥ ⟨f(x)− f(y), g(x)− g(y)⟩ for all x, y ∈ K we obtain

⟨g(x)− g(y), g(x)− g(y)⟩ ≥ ⟨f(x)− f(y), g(x)− g(y)⟩ for all x, y ∈ K, or equiva-

lently
⟨(g − f)(x)− (g − f)(y), g(x)− g(y)⟩ ≥ 0
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for all x, y ∈ K, which shows that g − f is monotone relative to g.

Hence, according to Theorem 2.2, V IS(g − f, g,K) admits solutions.

Let x ∈ K be a solution of V IS(g−f, g,K). Then we have ⟨g(x)−f(x), g(y)−
g(x)⟩ ≥ 0 for all y ∈ K. Since f(K) ⊆ g(K) choose y ∈ K such that g(y) = f(x).

Then ⟨g(x)− f(x), f(x)− g(x)⟩ ≥ 0, or equivalently −∥f(x)− g(x)∥2 ≥ 0, which

leads to f(x) = g(x). �

As an immediate consequence we obtain the following fixed point result.

Corollary 3.5. Let K ⊆ H be a weakly compact and convex set, let f :

K → H be a given mapping such that f(K) ⊆ K. Assume that f is continuous on

finite dimensional subspaces and ∥x− y∥2 ≥ ⟨f(x)− f(y), x− y⟩ for all x, y ∈ K.

Then f has a fixed point.

Proof. The conclusion follows from Theorem 3.2 by taking g ≡ idK . �

Remark 3.1. Note that if f is g-nonexpansive, that is ∥f(x)−f(y)∥ ≤ ∥g(x)−
g(y)∥ for all x, y ∈ K, then the condition ∥g(x)−g(y)∥2 ≥ ⟨f(x)−f(y), g(x)−g(y)⟩
for all x, y ∈ K in the hypothesis of Theorem 3.2 is satisfied, since for all x, y ∈ K

we have

∥g(x)− g(y)∥2 ≥ ∥f(x)− f(y)∥∥g(x)− g(y)∥ ≥ ⟨f(x)− f(y), g(x)− g(y)⟩.

It particular, if f is nonexpansive, then the condition ∥x−y∥2 ≥ ⟨f(x)−f(y), x−y⟩
for all x, y ∈ K in Corollary 3.5 is satisfied, since in this case we have

∥x− y∥2 ≥ ∥f(x)− f(y)∥∥x− y∥ ≥ ⟨f(x)− f(y), x− y⟩ for all x, y ∈ K.
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