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On conformally flat (α, β)-metrics with relatively isotropic
mean Landsberg curvature
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and YANGYANG ZOU (Chongqing)

Abstract. In this paper, we study conformally flat (α, β)-metrics in the form of

F = αφ(β/α), where α is a Riemannian metric and β is a 1-form on the manifold. We

prove that conformally flat weak Landsberg (α, β)-metrics must be either Riemannian

metrics or locally Minkowski metrics. Further, we prove that, if φ(s) is a polynomial in s,

then conformally flat (α, β)-metrics with relatively isotropic mean Landsberg curvature

must also be either Riemannian metrics or locally Minkowski metrics.

1. Introduction

The study on conformal geometry has a long and venerable history. From

the beginning, conformal geometry has played an important role in physical the-

ories. The conformal geometry of Riemannian metrics have been well studied

by many geometers. There are many important local and global results in Rie-

mannian conformal geometry, which in turn lead to a better understanding on

Riemann manifolds. More generally, the conformal properties of a Finsler metric

deserve extra attention. The Weyl theorem states that the projective and confor-

mal properties of a Finsler space determine the metric properties uniquely ([15],

[17]). Two Finsler metrics F and F̃ on a manifold M are said to be conformally

related if there is a scalar function σ(x) on M such that F̃ = eσ(x)F . In [2],
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S. Bacso and the first author studied the conformal transformations between

two Finsler metrics which preserve Ricci curvature, Landsberg curvature, mean

Landsberg curvature and S-curvature respectively. A Finsler metric is called con-

formally Berwald Finsler metric if it is conformally related to a Berwald metric.

M. Hashiguchi and Y. Ichijyō proved that a Finsler manifold is a conformally

Berwald manifold if and only if it is a so-called Wagner manifold ([10]). C. Vincze

also characterized conformally Berwald Finsler manifolds in [19]. Particularly, a

Finsler metric which is conformally related to a Minkowski metric is called con-

formally flat Finsler metric. In [12], Y. Ichijyō and M. Hashiguchi defined a

conformally invariant linear connection in a Finsler space with an (α, β)-metric

and gave a condition that a Randers metric is conformally flat based on their

connection. Later, S. Kikuchi found a conformally invariant Finsler connection

and gave a necessary and sufficient condition for a Finsler metric to be confor-

mally flat by a system of partial differential equations under an extra condition

([14]). By using Kikuchi’s conformally invariant Finsler connection, S.-i. Hojo,

M. Matsumoto and K. Okubo studied conformally Berwald Finsler spaces

and its applications to (α, β)-metrics ([11]). On the other hand, L. Kang has

proved that any conformally flat Randers metric of scalar flag curvature is projec-

tively flat and classified completely conformally flat Randers metrics of scalar flag

curvature ([13]). Further, he characterized conformally flat and projectively flat

(α, β)-metrics. Recently, the first author and G. Chen proved that, if φ = φ(s) is

a polynomial in s, the conformally flat weak Einstein (α, β)-metric F = αφ(β/α)

must be either a locally Minkowski metric or a Riemannian metric. Moreover,

they prove that conformally flat (α, β)-metrics with isotropic S-curvature are also

either locally Minkowski metrics or Riemannian metrics (See [4]).

In Finsler geometry, there are several very important non-Riemannian qu-

antities. The Cartan torsion C is a primary quantity. There is another quantity

which is determined by the Busemann–Hausdorff volume form, that is the so-

called distortion τ . The vertical differential of τ on each tangent space gives rise

to the mean Cartan torsion I := τykdxk. C, τ and I are the fundamental geo-

metric quantities which characterize Riemannian metrics among Finslers metrics.

Differentiating C along geodesics gives rise to the Landsberg curvature L. The

horizontal derivative of τ along geodesics is the so-called S-curvature S := τ;ky
k.

The horizontal derivative of I along geodesics is called the mean Landsberg cur-

vature J := I;ky
k. The Riemann curvature measures the shape of the space while

the non-Riemannian quantities describe the change of the “color” on the space.

Hence Finsler spaces are “colorful” geometric spaces. It is found that the flag

curvature is closely related to these non-Riemannian quantities (see [5], [18]).
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By the definition, J/I can be regarded as the relative growth rate of the mean

Cartan torsion along geodesic. We call a Finsler metric F is of relatively isotropic

mean Landsberg curvature if F satisfies J + cF I = 0, where c = c(x) is a scalar

function on the Finsler manifold. In particular, when c = 0, Finsler metrics

with J = 0 are called weak Landsberg metrics. Many known Finsler metrics

satisfy J + cF I = 0 (see [5], [6], [18]). B. Li and Z. Shen characterized weak

Landsberg metrics in (α, β)-metrics and showed that there exist weak Landsberg

metrics which are not Landsberg metrics in dimension greater than two ([16]).

Further, the first author and H. Wang and M. Wang studied and characterized

(α, β)-metrics with relatively isotropic mean Landsberg curvature ([8]).

In this paper, we first study and characterize conformally flat weak Landsberg

(α, β)-metrics and obtain the following theorem.

Theorem 1.1. Any conformally flat weak Landsberg (α, β)-metric F =

αφ
(
β
α

)
on a manifold M must be either a Riemannian metric or a locally Min-

kowski metric.

Further, we study conformally flat (α, β)-metrics with relatively isotropic

mean Landsberg curvature. We get the following theorem.

Theorem 1.2. Let F = αφ(s), s = β
α be a conformally flat (α, β)-metric

on a manifold M , where φ(s) is a polynomial in s. If F is of relatively isotropic

mean Landsberg curvature, then it is either a Riemannian metric or a locally

Minkowski metric.

2. Preliminary

Let M be an n-dimensional C∞ mainfold and TM denote the tangent bundle

of M . A Finsler metric on M is a function F : TM → [0,∞) with the following

properties:

(1) F is C∞ on TM\{0};
(2) F (x, λy) = λF (x, y), ∀λ > 0;

(3) the fundamental tensor (gij(x, y)) is positive definite, where

gij(x, y) :=
1

2

[
F 2

]
yiyj (x, y).

We call the pair (M,F ) an n-dimensional Finsler manifold.
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Let (M,F ) be a Finsler manifold. For any non-zero vector y = yi ∂
∂xi ∈ TxM ,

F induces an inner product gy on TxM as follows

gy(u, v) := gij(x, y)u
ivj ,

where u = ui ∂
∂xi ∈ TxM , v = vi ∂

∂xi ∈ TxM .

For a Finsler metric F , the geodesics are characterized by the following sys-

tem of 2nd order ordinary differential equations:

d2xi

dt2
+ 2Gi

(
x,

dx

dt

)
= 0,

where

Gi :=
1

4
gil

{
[F 2]xkylyk − [F 2]xl

}
(1)

and (gij) = (gij)
−1. Gi are called the geodesic coefficients of F .

Let

Cijk :=
1

4

[
F 2

]
yiyjyk =

1

2

∂gij
∂yk

.

Define symmetric trilinear form C := Cijk(x, y)dx
i ⊗ dxj ⊗ dxk on TM\{0}. We

call C the Cartan torsion. The mean Cartan torsion I = Iidx
i is defined by

Ii := gjkCijk.

Further, we have ([5], [18])

Ii = gjkCijk =
∂

∂yi

[
ln
√
det(gjk)

]
. (2)

On the slit tangent bundle TM\{0}, the Landsberg curvature L := Lijkdx
i⊗

dxj ⊗ dxk is defined by Lijk := Cijk;mym, where “; ” denotes the horizontal

covariant derivative with respect to F . Further, L can be expressed as

Lijk = −1

2
FFym [Gm]yiyjyk . (3)

A Finsler metric is called the Landsberg metric if Lijk = 0. The mean Landsberg

curvature J := Jidx
i is defined by

Ji := gjkLijk. (4)

It is easy to see that Ji = Ii;mym. A Finsler metric is called the weak Landsberg

metric if J = 0. More generally, if F satisfies J + cF I = 0, where c = c(x) is a
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scalar function on the manifold, then it is said to be of relatively isotropic mean

Landsberg curvature.

(α, β)-metrics form a rich class of computable Finsler metrics. They play

an important role in Finsler geometry (see [3]). The important applications of

(α, β)-metrics in physics and biology(ecology) have also been found. The study

for (α, β)-metircs can help us to understand better geometric properties of Finsler

metrics in general case. Hence, it is worthy of doing study for such metrics deeply.

Let α =
√
aij(x)yiyj be a Riemannian metric and β = bi(x)y

i be a 1-form on a

manifold M . An (α, β)-metric is a scalar function on TM defined by

F := αφ(s), s =
β

α
,

where φ = φ(s) is a C∞ function on an open interval (−b0, b0). By a direct

computation and a lemma in linear algebra, one gets

det(gij) = φn+1(φ− sφ′)n−2
[
(φ− sφ′) + (b2 − s2)φ′′]det(aij),

where b := ‖βx‖α. Using the above formula, one can easily prove that for Rie-

mannian metric α and 1-form β with ‖βx‖α < b0, x ∈ M , the function F =

αφ(β/α) is a positive definite Finsler metric if and only if the function φ satisfies

φ(s) > 0, φ(s)− sφ′(s) + (ρ2 − s2)φ′′(s) > 0, |s| ≤ ρ < b0. (5)

Such (α, β)-metrics are said to be regular. For any s with |s| < b0, taking ρ = |s|
in (5), we obtain

φ(s)− sφ′(s) > 0, |s| < b0. (6)

See [9]. In particular, when φ = 1+s, the metric F = αφ(β/α) is just the Randers

metric F = α+ β. In this case, b0 = 1.

In this paper, we will focus on studying regular (α, β)-metrics. Let “|” denote

the covariant derivative with respect to the Levi–Civita connection of α. Denote

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i),

sij := ailslj , rij := ailrlj , ri := bjrji, si := bjsji,

where (aij) := (aij)
−1 and bj := ajkbk. We put r0 := riy

i, s0 := siy
i, r00 :=

rijy
iyj , si0 := sijy

j , etc. Let Gi and Gi
α denote the geodesic coefficients of F

and α respectively in the same coordinate system. Then we have ([9])

Gi = Gi
α + αQsi0 + {−2Qαs0 + r00}{Ψbi +Θα−1yi}, (7)
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where

Q : =
φ′

φ− sφ′ ,

Θ : =
φφ′ − s(φφ′′ + φ′φ′)

2φ
[
(φ− sφ′) + (b2 − s2)φ′′] ,

Ψ : =
φ′′

2
[
(φ− sφ′) + (b2 − s2)φ′′] .

Let

∆ : = 1 + sQ+ (b2 − s2)Q′,

Φ : = −(n∆+ 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′,

Ψ1 : =
√
b2 − s2∆

1
2

[√
b2 − s2Φ

∆
3
2

]′
,

hj : = bj − α−1syj .

By (3), (4), (7), the mean Landsberg curvature of the (α, β)-metric F = αφ(β/α)

is given by (see [8], [16])

Jj = − 1

2α4∆

{ 2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ
′
)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+ α
[
− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0

+ α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

}
. (8)

Here, yj = aijy
i.

3. The Proof of Theorem 1.1

Now we are in the position to prove the theorems. For our aim, we need the

following formula for the mean Cartan torsion of (α, β)-metrics.

Lemma 3.1 ([8]). For an (α, β)-metric F = αφ
(
β
α

)
, the mean Cartan torsion

is given by

Ii = − 1

2F

Φ

∆
(φ− sφ′)hi. (9)

By Deicke’s theorem, a Finsler metric is Riemannian if and only if I = 0. By

(6) and Lemma 3.1, we have the following
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Lemma 3.2 ([8]). An (α, β)-metric F is a Riemannian metric if and only if

Φ = 0.

Let
J := Jjb

j .

By (8), we get

Lemma 3.3 ([16]). For an (α, β)-metric F = αφ
(
β
α

)
, the quantity J is given

by
J = − 1

2α2∆

{
Ψ1(r00 − 2αQs0) + αΨ2(r0 + s0)

}
, (10)

where Ψ2 := 2(n+ 1)(Q− sQ′) + 3Φ
∆ .

By (8) and (9), we have the following ([8])

Jj + c(x)FIj =
(−1)

2α4∆

{ 2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+ α
[
− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0

+ α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

+ c(x)α4Φ(φ− sφ′)hj

}
. (11)

Further, we need the following lemmas.

Lemma 3.4 ([1]). Let F be an (α, β)-metric. Then F is locally Minkowskian

if and only if α is flat and bi|j = 0 (that is, β is parallel with respect to α).

Lemma 3.5. If φ = φ(s) satisfies Ψ1 = 0, then F is Riemannian.

Proof. Ψ1 = 0 means that
[√

b2−s2Φ

∆
3
2

]′
= 0. Then Λ(s) :=

√
b2−s2Φ

∆
3
2

is a

constant for |s| ≤ b < b0. Letting s = b yields Λ(s) = 0. Thus Λ(s) ≡ 0, which

implies that Φ = 0. By Lemma 3.2, F is Riemannian. ¤

Now, assume that F = αφ(β/α) is conformally flat, that is, F is conformally

related to a Minkowski metric F̃ . Then there exists a scalar function σ = σ(x)

on the manifold, so that F̃ = eσ(x)F . It is easy to see that F̃ = α̃φ(β̃/α̃). We have

α̃ = eσ(x)α, β̃ = eσ(x)β,

which are equivalent to

ãij = e2σ(x)aij , b̃i = eσ(x)bi.

Let “‖” denote the covariant derivative with respect to the Levi–Civita con-

nection of α̃. Putting σi :=
∂σ
∂xi and σi := aijσj . The Christoffel symbols Γi

jk of
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α and the Christoffel symbols Γ̃i
jk of α̃ are related by

Γ̃i
jk = Γi

jk + δijσk + δikσj − σiajk.

Hence we can obtain

b̃i‖j =
∂b̃i
∂xj

− b̃sΓ̃
i
jk = eσ(bi|j − bjσi + brσ

raij). (12)

By Lemma 3.4, for Minkowski metric F̃ , b̃i‖j = 0. Thus we have

bi|j = bjσi − brσ
raij , (13)

rij =
1

2
(σibj + σjbi)− brσ

raij , sij =
1

2
(σibj − σjbi), (14)

rj = −1

2
(brσ

r)bj +
1

2
σjb

2, sj =
1

2
(brσ

r)bj − 1

2
σjb

2, (15)

ri0 =
1

2
[σiβ + (σry

r)bi]− σrb
ryi, si0 =

1

2
[σiβ − (σry

r)bi]. (16)

Further, we have

r00 = (σry
r)β − (σry

r)α2, (17)

r0 =
1

2
(σry

r)b2 − 1

2
(σrb

r)β, s0 =
1

2
(σry

r)β − 1

2
(σry

r)b2. (18)

By (18), it is easy to see that, for conformally flat (α, β)-metrics,

r0 + s0 = 0, (19)

which is equivalent to the length of β with respect to α being a constant.

In order to overcome the difficulty in computation, we take an orthonormal

basis at any point x with respect to α such that

α =

√√√√
n∑

i=1

(yi)2, β = by1,

where b := ‖βx‖α. Then we take the following coordinate transformation in TxM

(see [7]), ψ : (s, uA) → (yi):

y1 =
s√

b2 − s2
ᾱ, yA = uA, 2 ≤ A ≤ n, (20)
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where ᾱ =
√∑n

i=2(u
A)2. We have

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ. (21)

By (14)–(18) and (20), (21), we have

r00 = −bσ1ᾱ
2 +

bsσ̄0ᾱ√
b2 − s2

, (22)

r0 =
1

2
b2σ̄0 = −s0, (23)

r10 =
1

2
bσ̄0, rA0 =

1

2

σAbsᾱ√
b2 − s2

− (bσ1)uA, (24)

s1 = 0, sA = −1

2
σAb

2, (25)

s10 = −1

2
bσ̄0, sA0 =

1

2

σAbsᾱ√
b2 − s2

, (26)

h1 = b− s2

b
, hA = −

√
b2 − s2suA

bᾱ
, (27)

here, σ̄0 := σAu
A.

Proof of Theorem 1.1. Assume that F is a weak Landsberg metric, then

it satisfies J = 0. Putting r0+s0 = 0 into (10), we get Ψ1 = 0 or r00−2αQs0 = 0.

If Ψ1 = 0 , by Lemma 3.5, F is Riemannian.

If r00 − 2αQs0 = 0, by (21), (22) and (23), we get

−bσ1ᾱ
2 +

bσ̄0√
b2 − s2

(b2Q+ s)ᾱ = 0. (28)

Note that ᾱ2 is a quadratic form in (uA) and ᾱ is a irrational expression of (uA).

We have the following (also see Lemma 6.1 in [18])

σ1 = 0, (b2Q+ s)σA = 0.

If φ = φ(s) > 0 satisfies b2Q+ s = 0, we can get φ = k
√
b2 − s2 (see [7]). In this

case, F is Riemannian. If b2Q + s 6= 0, then σA = 0. Together with σ1 = 0, we

know that σ = constant. Hence F is Minkowskian. ¤
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4. The Proof of Theorem 1.2

Assume that F is a conformally flat (α, β)-metric with relatively isotropic

mean Landsberg curvature. By (11) and r0 + s0 = 0, we get

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj + α

[
− α2Q′s0hj + αQ(α2sj − yjs0)

+ α2∆sj0 + α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

+ c(x)α4Φ(φ− sφ′)hj = 0. (29)

Letting j = 1 in (29), we have

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)h1 + α

[
− α2Q′s0h1 + αQ(α2s1 − y1s0)

+ α2∆s10 + α2(r10 − 2αQs1)− (r00 − 2αQs0)y1

]Φ
∆

+ c(x)α4Φ(φ− sφ′)h1 = 0. (30)

Putting (21)-(27) into (30), and multiplying the resulting equation by 2∆(b2 −
s2)5/2, we get

2b2
(
b2 − s2)3/2∆(bΦφc− bΦsφ′c−Ψ1σ1

)
ᾱ4

+ b2(b2 − s2)σ̄0

(
b4ΦQ′ − b2Φ∆− b2ΦQ′s2

+ 2b2Ψ1∆Q+ b2Φ+ b2ΦQs+ 2Ψ1∆s
)
ᾱ3 = 0. (31)

From (31), we get

∆
[
bΦ(φ− sφ′)c−Ψ1σ1

]
= 0, (32)

σ̄0

(
b4ΦQ′ − b2Φ∆− b2ΦQ′s2 + 2b2Ψ1∆Q+ b2Φ+ b2ΦQs+ 2Ψ1∆s

)
= 0. (33)

Note that ∆ = Q′(b2 − s2) + sQ+ 1. Simplifying (33) yields,
(
b2Ψ1∆Q+Ψ1∆s

)
σ̄0 = 0,

that is,

Ψ1∆
(
b2Q+ s

)
σ̄0 = 0. (34)

Letting j = A in (29), we have

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hA + α

[− α2Q′s0hA

+ αQ(α2sA − yAs0) + α2∆sA0 + α2(rA0 − 2αQsA)− (r00 − 2αQs0)yA
]Φ
∆

+ c(x)α4Φ(φ− sφ′)hA = 0. (35)
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Putting (21)–(27) into (35) and by using the similar method in the case of j = 1,

we can get

−(s∆+ s+ b2Q)b2ΦσAᾱ
2

+
[
(s∆+ s+ b2Q)b2Φ+ 2s(b2Q+ s)Ψ1∆

]
σ̄0uA = 0, (36)

s(b2 − s2)
[
b(φ− sφ′)Φc−Ψ1σ1

]
∆uA = 0. (37)

It is easy to see that (37) is equivalent to (32). Further, Multiplying (36) by uA,

we get

s(b2Q+ s)Ψ1∆σ̄0ᾱ
2 = 0. (38)

It is easy to see that (38) is equivalent to (34).

In summary, conformally flat (α, β)-metrics with relatively isotropic mean

Landsberg curvature satisfy (32) and (34).

If b2Q+s = 0, we have φ = k
√
b2 − s2 (see proof of Theorem 1.1), which is a

irrational expression of s and a contradiction with the assumption that φ = φ(s)

is a polynominal in s. Then we have b2Q+ s 6= 0. From (34), we have Ψ1 = 0 or

σA = 0.

If Ψ1 = 0, by Lemma 3.5, F is Riemannian. In this case, Φ = 0 by Lemma 3.2.

Hence (32) holds.

If Ψ1 6= 0, then σA = 0. In the following, we prove that σ1 = 0 from (32)

when Ψ1 6= 0.

By the assumption, φ(s) is a polynomial in s. Assume that

φ = 1 + a1s+ a2s
2 + · · ·+ amsm, (39)

here a1, a2, . . . , am are numbers independent of s and am 6= 0.

Firstly we consider the situation of m > 1 in (39).

Simplifying (32) and multiplying it by ∆2, we get
{
[−sΦ+ (b2 − s2)Φ′]∆− 3

2
(b2 − s2)Φ∆′

}
σ1 − b∆2Φ(φ− sφ′)c = 0. (40)

Putting (39) into (40) and multiplying it by

2
[− 1 + a2s

2 + 2a3s
3 + · · ·+ (m− 1)amsm

]
,

by using maple program, we can obtain the following

k1nbca
8
ms8m−1 + (k2n+ k3)bcam−1a

7
ms8m−2 + · · ·+

i=7∑

i=1

ηib
i = 0, (41)
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where k1, k2 and k3 are non-zero constants depending on m. For example,

when m = 2, k1 = −108, k2 = −405, k3 = 27;

when m = 3, k1 = −6144, k2 = −33024, k3 = 384;

when m = 4, k1 = −81000, k2 = −490725, k3 = 2025;

when m = 10,k1 = −174653820, k2 = −1260771237, k3 = 264627

and when m = 100, k1 = −19794060593980200, k2 = −156773780240111397,

k3 = 2969406029, etc. Further, ηi (1 ≤ i ≤ 7) are polynomials of a1, a2, a3 and

a4 independent of s and m,

η1 = −2ca1 − 2cna1;

η2 = −(n+ 1)a21;

η3 = −12(n+ 1)ca1a2 − 12ca3;

η4 = −4(n+ 1)a21a2 + 24a22 − 6na1a3 + 48a4;

η5 = −24c(n+ 1)a1a
2
2 − 48ca2a3;

η6 = −4(n+ 1)a21a
2
2 + 48a22 − 12na1a2a3 − 108a23 + 96a2a4;

η7 = −16c(n+ 1)a1a
2
2 − 48ca22a3. (42)

We must point out that, when m = 2, a3 = a4 = 0 in (42) while when m = 3,

a4 = 0 in (42).

From (41), we can see that k1nbca
8
m = 0. Thus we have c = 0. By (32), we

have σ1 = 0. Together with σA = 0, we know that σ is a constant, which means

that F is a locally Minkowski metric.

Secondly, we consider the situation of m = 1 in (39). In this case, F is a

Randers metirc. In [6], the first author and Z. Shen have proved that a Randers

metric F = α+ β is of relatively isotropic mean Landsberg curvature if and only

if it is of isotropic S-curvature (S = (n+ 1)cF ) and β is closed. Further, in [13],

L. Kang has proved that conformally flat Randers metric with almost isotropic

S-curvature must be either a Riemannian metric or a Minkowski metric. This

completes the proof of Theorem 1.2.
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