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Dedicated to Professor Lajos Tamdssy on the occassion of his ninetieth birthday

Abstract. In the present paper we give a complete description of the Chern—Rund
connection defined by a left invariant Randers metric on the 3 dimensional Heisenberg
group.

1. Introduction

Randers metric is a Finsler metric which is defined as the sum of a Rie-
mannian metric and a 1-form. It is an object that shows strong non-Riemannian
characters. The history of Randers metric goes back to G. RANDERS’ research
on general relativity [16]. Since then it has been widely applied in many areas,
including electron optics and biology. (A more detailed account can be found
in [1].) Randers metric can be naturally deduced as the solution of the famous
Zermelo navigation problem [3].

In Chapter 11 of [2] the authors give six reasons to study Randers metric.
Number 5 is that Randers metrics are computable and this may lead to a better
understanding of Finsler metrics. Our strategy in this paper was the same, we
specialized our original problem of left invariant Finsler metrics on two-step nil-
potent groups (presented in [17]) to Randers metric on Heisenberg group. The
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straight motivation of the original study was P. EBERLEIN’s comprehensive work
[7] for the Riemannian case.

In the previous paper [17] we computed some geometric quantities such as
curvature and flag curvature for a general left invariant Finsler metric on a two-
step nilpotent group. In the first step we gave an explicit formula for the Chern—
Rund connection. That paper had limitations, the reference vector for the Chern—
Rund connection was chosen from the center of the respective Lie algebra. In
the present paper we give a complete description of the Chern—Rund connection
defined by a left invariant Randers metric on the 3-dimensional Heisenberg group.
The Randers perturbation vector lies in the center of the Lie algebra in this paper.

2. Conventions

2.1. Finsler metrics and the Chern—Rund connection. Through this paper
we use [2] as a basic reference for foundations of Finsler geometry. We consider
metric structures on a differentiable manifold N and ’differentiable’ means C°°-
differentiable. The module of tangent vector fields over N is denoted by X(N).

Definition 2.1. A Finsler manifold (N, F) is a differentiable manifold N
equipped with a Finsler metric F'. A Finsler metric on N is a continuous map,
F: TN — R differentiable outside the zero section and satisfying three conditions:

(1) F is positively homogeneous,
(2) if F(X) =0 then X =0,
(3) F is strong convex.

In the sequel we fix a nowhere vanishing vector field W € X(N), the so called
reference vector field. Generally such a vector field does not exist globally and
we arrange that all objects live on an open subset U C N, where the reference
vector field exists.

Definition 2.2. The osculating Riemann metric (, )y, is determined by the
Finslerian fundamental function F' and by the reference vector field W € X(N)
in the following way:

1 02F%(W, + sX, +tY,)
X Yohw = 5 dsot

. peEN, X,Y €X(N). (1)

s,t=0

Definition 2.3. For X,Y,Z € X(N),

1 03
CW(vaypa Zp) =

i o0 2
= 15r0591 F=(Wy +1rX,+sY, +1tZ,)

r,s,t=0
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is the (osculating) Cartan tensor. Its (1,2)-type version is defined by

Civ: X(N) x X(N) = X(N), (Cy(X,Y),Z),, =Cw(X,Y,Z).
For the Cartan tensor we have
Cw(W, X,Y)=Cw (X, WY)=Cw(X,Y, W) =0. (2)

Theorem 2.4 ([15]). The Chern-Rund connection VW : X(N) x X(N) —
X(N) w.r.t. the reference vector field W satisfies

2(VXY,2),, =X (Y. Z)y +Y(Z, X)y — Z(X,Y )y + (X, Y], 2y
—(IV, Z], X)y + (12, X],Y )y — 20w (VEW,Y, Z)
— 20w (VY W, Z, X) 4+ 20w (VY W, X, Y). (3)

The Chern—Rund connection is torsion-free, that is,

VY -VV¥X - [X,Y] =0, (4)
and almost metric, that is,

X (Y, Z)y =(VXY,Z),, + (Y, VX Z),, + 20w (VX WY, Z).

In order to get all the local components of the Chern—Rund connection w.r.t.
a local base, it is sufficient to show that it can be eliminated from the right hand
side of (3). We can do it with the following simple algorithm.

Algorithm 2.5 (‘Local strategy’). Let (E;) be an orthonormal base w.r.t.
< ’ >W
1. Choose X,Y € {W, E;} such that all the terms in the right hand side of (3)
are explicitly known while computing for <V‘§(VY, Ei>W'
2. Set
VY =) (VYY,E), Ei

3. Repeat the previous steps until all the local components of the Chern—Rund
connection are known.

We give further details. For the first six terms of the right hand side of (3) we
use the abbreviation Aw (X,Y, Z). In these terms the Chern-Rund connection
does not occur.
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la. Considering (2), equation (3) implies that
2(VWW, E;),, = Aw (W, W, E;),
i.e. VW is explicitly known:

VW =Y Aw (W, W, E;)E;.

1b. Let S € {E;}. From equation (3) we have
2(V§W,E;),, = Aw(S,W, E;) — 2Cw (Viy W, E;, S). (5)

Here V%W is known from the previous step, and we get VgVW.
le. Let S, T € {Ez}

2(V§' T, E;),, = Aw(S, T, E;) — 2Cw (VY W, T, E;)
— 20w (Vi W, E;, S) + 20w (VE, W, S, T). (6)

Here all the terms in the right hand side are known from 1b.

2.2. Left invariant Randers metrics on 3-dimensional
Heisenberg group.

Definition 2.6. Let Z = span Z be a 1-dimensional vector space spanned by
the element Z. Let (X,Y) be any basis of R2. Define [X,Y] = —[Y, X] = Z with
all other brackets zero. The Lie algebra N' = Z®R? is the 3-dimensional Heisen-
berg algebra. Moreover, let (,) denote the positive definite inner product on N’
for which (X,Y, Z) is an orthonormal base. Thus span(X,Y’) is the orthogonal
complement of Z for which we use the notation Z-+.

Let {N,(,)} denote the three-dimensional Heisenberg group, i.e. N is a
simply connected 2-step nilpotent group with Lie algebra A and (,) is the left
invariant Riemannian metric induced by left translations from the original metric
given on N. In this paper we shall regard the elements of N as left invariant
vector fields on N determined by their values at the identity of N. We remark
that the first three terms of the right hand side of (3) vanish for left invariant
vector fields.

Left invariant Cartan tensor and Chern—Rund connection can be derived
from a left invariant Finsler metric. To be more precise let W € A and we may
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regard V"W as a bilinear mapping from N x N — AN. Similarly the trilinear
function Cy lives on N, too:

Cw: NxNxN-=R
It is well-known that for Xy € N with property || Xo|| < 1 the function
FN SR, X o f(X) = VX, X) + (X0, X) (7)

defines a Minkowski functional on A, therefore it can be extended to a left-
invariant Randers type Finsler metric F on the Lie group N by left translations.
Excluding the case Xy = 0, the remaining Randers metrics are non-Riemannian
[2, p. 283]. By a direct computation we can express (,)y, and Cw(,,) in terms
of the Riemannian metric.

Proposition 2.7 ([8], [10]). Let W € N and (W, W) = 1. Then

(U, V)w = (U, V) + (Xo,U) (X0, V) — (Xo, W) (W,U) (W, V)
+ (X0, U) (W, V) + (Xo, W) (U, V) + (X0, V) (W,U) (8)

and

Cw UV, X) = 5 S0 (X0, W) (IW,U) (W, V) (W, X)

[U,V,X]
- <X07 W> <X, V> <U’ W> - <X07X> <W, V> <Wv U> + <X07 U> <X7 V>} (9)

where Z[UMX] refers to the cyclic sum with respect to U, V, X.

3. Determination of the Chern—Rund connection

In the present paper we assume that the Randers-type Minkowski functional
(7) on the three-dimensional Heisenberg algebra (= span(X,Y, Z), as in Defini-
tion 2.6) is determined by Xg = £Z € Z, (0 < £ < 1) i.e. it is distinguished
algebraically by the one-dimensional center of the Lie algebra. The reference
vector W is supposed to be normalized w.r.t. (,) in the sequel.

We use the so called Berwald-Modr frame ([11], [14]) for computation.
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3.1. The Berwald-Modr frame. A. MOOR used in the paper [14] a special
orthonormal frame which was a generalization of the Berwald frame of two-
dimensional Finsler spaces. We adapt the original definition to our context. The
first base vector is the normalized reference vector W:

1
Eil=—— W
(W, W)y

The second base vector is the normalized Cartan vector.

Definition 3.1 (c.f. [12]). The Cartan vector w.r.t. W is the unique vector
Cw € N such that

VS € N1 (S, Cw )y = (trace Ciyy)(S) = trace(U — Cj (S, U)). (10)
It follows directly from the definition that
(W, Cw )y = trace(U — Ciyy, (W, U)) = trace(U + 0) = 0,

i.e. the Cartan vector w.r.t W is always orthogonal to W. Deicke’s classical
theorem states that YW : Cy = 0 if and only if the metric is Euclidean [4].
However, Cy = 0 is possible for some W in the non-Euclidean case.

Proposition 3.2. If W ¢ Z then Cy # 0.

PRrROOF. Let (X; = W, X5, X3) be an orthonormal base w.r.t. (,), g;; =
(Xi, Xj)y (99) = (95)7 " and S = (S, X;) X; = ¢ (S, Xi)y, X; an arbitrary
vector. From the definition of the trace operator it follows that

3
trace{U = Ciyy(S,U)} = Y (X, Ciy (S, X0)) = g7 (Ci (S, Xi), X))y
i=1
Equation (9) gives

1

3
Cw (X2, X2, Xo) = 3 (X0, X2), Cw(X2, X, X3)= 5 (X0, X3),
1 3
Cw (X3, X3,X2) = B (X0, X2), Cw(X3,X3,X3)= 3 (Xo,X3),  (12)

and all the terms Cy (X1, X;, X;) vanish. Substituting (12) into (11) we have

(irace CR)(S) = 5(67 +9%) ((X0,5) — (Xo, W) (S, W) (13)
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Substitute Z for S:

(Cw, Zhyy = (raceC)(2) = S(67 + 6™) (X0, 2) — (X0, W) (2, W)

= 2P+ e - (2 W), (14

g%2,9%% > 0 because (¢g%) is positive definite. ¢ # 0 because the space is non-
Riemannian. From the Cauchy—Schwarz inequality we have 1 — (Z, W>2 >0, and
equality holds if and only if W = £Z7. 0

In the paper [17] the case of W € Z was completely described. The following
proposition shows that this case has a Riemannian flavour for the Randers metric.

Proposition 3.3.

<X>X>Z:£+1’ <X7Y>Z:07 <KY>Z:£+17
(X,2), =0, Y,\2), =0, (2.2),=(1+¢)? (15)

and all the local components of the Cartan tensor Cz are zero.
The next Proposition specializes Proposition 8 of [17] for the Randers metric.

Proposition 3.4. The Iocal components of the Chern-Rund connection VZ
w.r.t. base (X,Y,Z) are

1 1
ViX =0, Viy = 3% ViX = ~5% VZY =0,

§+1

§+1 _ &+l
2

Y, Viv =ViZ= X,

ViX =V%Z =~ 5

VZZ =0.

From here we suppose that W ¢ Z and the second base vector is given by

1
Fr=—#¥9¥—Cw.
>T VCw.Cwyw

E3 completes (E1, E>) such that (£, Es, E3) is orthonormal w.r.t. (,)y, . (Later
we fix the orientation of the triplet.)

Lemma 3.5. If the Randers-type Minkowski functional on the three-dimen-
sional Heisenberg algebra is determined by Xo = £Z € Z, then [Cyw, W] = 0.
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PRrROOF. It is enough to see that if a vector S satisfies (S, Cw )y, = 0 and
(S, W), = 0 then (S, Xo)y, =0, i.e. Cw € span(W, Z).
We prove that if (S, Cw )y, = 0 and (S, W), = 0 then (S, Xo) = 0. By (8)

(S, W)y = (1 + (Xo, W))((S, W) + (X0, 5)). (16)
Using the Cauchy-Schwarz inequality
(Xo,W)* < (Xo, Xo) (W, W) =€ <1, (17)

from which it follows that 1+ (X, W) # 0.
By (13) and (16) conditions (S, Cw )y, = (S, W), = 0 imply that

(X0, S) — (Xo, W) (S, W) =0 (18)
(Xo,S) + (S,W) =0, (19)

from which it follows
(S, W) (1 + (Xo,W)) =0.

Again, by (17) we have

(S, W) =0, (20)
and (19) implies that

(Xo,S) = 0. (21)
Substituting (20) and (21) into (8) we have (S, Xo)y, = 0. O

The proof of the following statement has already been shown previously, but
we formulate the result separately for future reference.

Corollary 3.6. If a vector S satisfies (S, Cw )y, = 0 and (S, W), = 0 then

(S, Xo)w = 0 and (S, Xo) = (S,W) = 0. In particular,
(E3,Xo0)y =0 and (E3,Xo) = (B3, W) =0. (22)
3.2. The case of W ¢ Z. To compute the Cartan tensor, we require a simple

technical lemma.

Lemma 3.7. If the Randers-type Minkowski functional on the three-dimen-
sional Heisenberg algebra is determined by Xo = £Z € Z, then for the Berwald—
Modér frame we have

(W, Ez) + (Xo, E2) =0 (23)
(B3, E2) =0 (24)
(1+ (X0, W)) (B, Ba) — (X0, B2)?) = 1 (25)

(Es3, Es) (14 (X0, W)) = 1. (26)
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Proor. All statements follow directly from Proposition 2.7. In more detail,
using (8) we have

0= (W, Ea)y, = (W, Ea) + (Xo, W) (Xo, E2) — (Xo, W) (W, W) (W, Ey)
+ (X0, W) (W, E3) + (X0, W) (W, E3) + (X0, Ez) (W, W)
= (14 (X0, W))((W, Ez) + (X0, E2))

by the fact that (W, W) =1. 14 (Xo, W) # 0 by (17), which gives (23).
Similarly,

0 = (E3, Ez)y, = (B3, E2) + (Xo, E3) (Xo, Ez) — (Xo, W) (W, Es) (W, E)
+ (Xo, E3) (W, Ez) + (Xo, W) (E3, E2) + (Xo, E2) (W, E3) ,
but since (Xg, E3) = 0, and (W, E3) = 0 (cf. Corollary 3.6)
- (]. + <)(07 W>) <.E37 E2> .

which, since 1 + (Xo, W) # 0, yields (24).
We next prove (25).

1 = (Ey, Ba)yy, = (Ea, Ba) + (Xo, B2)” — (Xo, W) (W, Es)?
+ (Xo, E2) (W, Ez) + (Xo, W) (E2, E2) + (Xo, E2) (W, E3) ,
because of (Xg, Eq) = — (W, Es)
= (BEy, o) — (X0, E2)? — (X0, W) (X0, E3) + (Xo, W) (Ey, Es)
= (1+ (X, W) <<E2,E2) - <X0,E2>2> .
Finally, we prove (26).
1= (B3, Es)y, = (Es, Es) + (Xo, Bs)® — (Xo, W) (W, Es)”
+ (Xo, Es) (W, Es) + (Xo, W) (E3, E3) + (Xo, E3) (W, E3) ,
but since (Xo, E5) = 0, (cf. (22))
= (E3, E3) (14 (Xo, W)) . O
Corollary 3.8. With the notations and hypotheses above,

€ — (w1

where w = ||W||lw = 1+ (Xo, W). Moreover, (Z, E3) > 0.

242w -1
<Z,E2>2 = <E27E2> = “711]’

w3
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PROOF. From (8) we get (W, W)2, = (14 (X, W))2. Since (26),
1+ (Xo, W) > 0, and we proved that w =1+ (Xo, W).
Substituting Z and Cy for S in (13) we get

(Cw,2) =5 (5% + 4) (X0, 2) = (X0, W) (Z,W))

= g (2 +9) ¢ (1= (zW)?)

and

(Cw,Cw) == (9% + ¢%) (X0, Cw) — (Xo, W) (Cw, W))

N W N W

It follows that
2
(Cw, Z)w (Xo,Cw) _ 5(1 —zw )
(Cw,Cw) w ’

1.e. 5 (1 - <Z, W>2)

<E25Z>W <E25X0> = w

Applying (8) again, we obtain

2
(Z, By = w? (2, By) = % (Xo, E») .

Thus 21 i ) 2
T N AL el Ui

(97 + ¢°°) (X0, Cw) (1 + (X0, W)), by (22).

The second statement is a straightforward consequence of this result and (25).

By (14), € and (Z, Es)y, = w? (Z, E3) have the same sign.

O

To proceed further, we need to know the local components of the Cartan

tensor.

Proposition 3.9.

3
Cw(Eq, Eo, Ey) = 3 (Xo, Ba) ,

CW(E27 E27 E3) = 07
CW(E37 E37 Ed) = 07

—_

Cw(Es, B3, Ey) = 3 (Xo, Eo) .
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PrOOF. Equation (9) implies that for arbitrary U
2Cw (Ez, B2,U) = 3 (Xo, W) (W, E2)* (W, U)
= 2(Xo, W) (W, Ep) (E2, U) = (Xo, W) (W,U) (E2, E3)
— (X0, U) (W, E2)* = 2 (Xo, Bs) (W, U) (W, E)
2 (Xo, Ea) (Ea, U) + (Xo,U) (Ez, Ea) (32)
Let U = E,. (23) gives
2Cw (Es, Eo, E5) = 3 (X, W) (W, E2>3 —3(Xo, W) (W, Es) (E2, E2)
—3(Xo, Ba) (W, E2)? + 3 (Xo, Ea) (Ea, E»)
= 3(Xo, W) (W, E2)” — 3 (Xo, W) (W, Ez) (Ez, Ez)
—3(Xo, E2)® + 3 (X, Ea) (Ea, Es)
= 3(1 + (X0, W)) (X0, Ea) ((E2, Ea) — (X0, E2)?)
=3 (Xo, Ea), by (25).

Thus, (28) holds.
Similarly, let U = E3 in (32).

2Cw (Es, By, E3) = 3 (Xo, W) (W, Eg)* (W, E3)
—2(Xo, W)Y (W, E3) (Es, E3) — (X0, W) (W, E3) (Es, E5)
— (Xo, E3) (W, Es)? — 2(Xo, Ea) (W, E3) (W, Ey)
+ 2(Xo, E2) (Eq, E3) + (X0, E3) (B9, Es)
= 2(Xo, W) (Xo, E2) (E2, E3) + 2 (Xo, Ea) (E», E3), by (23)
=0, by (24),
which provides (29).
Again, from (9) we have
2Cw (B3, B3, U) = 3(Xo, W) (W, Es)* (W, U)
— (Xo, W) (E3,U) (E3, W) — (Xo, W) (Es, E3) (U, W)
— (X0, U) (W, )" = 2(Xo, Ey) (W,U) (W, Es)
+ (Xo,U) (E3, E3) + 2 (Xo, E3) (U, E3) . (33)

(
)

Set U = Ej.
2y (Es, B, U) = 3(Xo, W) (W, E3)° — 3(Xo, W) (Es, Es) (E3, W)
—3(Xo, Es) (W, E3)* + 3 (X, E3) (Es3, Es) .
By Corollary 3.6 we have (30).
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Finally, substitute U = Fs in (33).
20y (Es, B3, Ea) = 3 (Xo, W) (W, E3)? (W, Ey)
—2(Xo, W) (Es, Ea) (B2, W) — (X0, W) (Es, E3) (E2, W)
— (Xo, Ea) (W, E3)* — 2(Xo, Es) (W, Ez) (W, Es)
+ (Xo, E2) (E3, E3) + 2(Xo, E3) (E2, E3)
= (Es5, E3) (X0, E2) (1 4+ (Xo,W)), by Corollary 3.6
= <X0,E2> 5 by (26) O
Now, we give an explicit formula for F5.Since we are in a three-dimensional
setting, F'3 can be constructed as a cross product of Fy and F,, where cross pro-
duct is determined by the scalar product (, ). However, (E3, W) = (E3, E3) = 0,
thus FE3 should be parallel to W x FE5 where the cross product x now refers to

the scalar product (,). In fact, E5 = £W x FEs, as we see from the following
statement.

Proposition 3.10. ||W x Es|lw = 1 where X denotes the cross product
w.r.t. the scalar product ().

PROOF. Substituting into (8) we have
IW x Eslfy = (1+ (Xo, W))IW x Ex|.
Now we calculate |W x Es|| separately. From (23) and (25) we find that
W x Bz = [W* - | E2||* — (W, E»)®

= (Eq, E2) — (X0, B2)° = ﬁ 0
We fix now the the direction of E3 by F3 =W X Es.
Lemma 3.11. With the notations and hypotheses above,
(B3, Er] = (E2, Z) Z (34)
(B, Ba] = (B2, B2 (W, 2) + € (2, Ex)) Z. (35)

PROOF. In view of the relation [U,V] = (U x V,Z) Z, we obtain from the
triple product identity that

(B3, Er] = (W x E2) x By, Z) Z = (W, E1) (B2, Z) — (B2, Er) (W, Z))Z

= (B2, 2) (1+ (W, X0))Z = (B2, 7) 7.

A similar computation shows (35). O
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Proposition 3.12. If the Randers-type Minkowski functional on the three-
dimensional Heisenberg algebra is determined by Xo =£Z € Z (0 < £ < 1), the
reference vector W ¢ Z and |W|| = 1 then

VAW =fiE;, VAW =foE;, VAW = f3E, (36)
where f1, fa, f3 are functions of w = ||[W/||w . Explicitly, we have
fl = <[E37 E1]7 W>W ’

fa= (<[E37W]’E2>W + <[E37E2]7W>W - <[E37W]7W>W <X07E2> )7

1
2
fz= %( (B3, W), Ba)yr + (B2, B3], W)y, — ([E3, W], W)y, (Xo, Ea) ).

ProoF. We follow the ‘local strategy’. From (3) we determine the coordi-
nates of VIv'W w.r.t. the Berwald-Moér frame. Since

2(VIWW, Ei)y, = = (W, Ei, Wy + ([Bi, W, W)y = =2(W, B, W)y
it follows that
(VWW,E1),, =0, (VyW,E), =0, (ViW,Es), = (Es,W],W)y .
which formulae lead to ViyW = ([E3, W], W), Es, thus
Vi By = ([Bs, 7], Er )y Es and Vi W = ([E3, E1],W)y, Es = f1Es.
Similarly, (3) yields

- 2<[E37W]7W>WCW(E?MU7E2)
Thus
(Ve W, Ey),, =0, (Vg W,E), =0

and from (31)

2(VIL W, Es),, = — (W, Es], Ba)yy + ([Bs, Ea], W)y,
—([Es, W], W)y, (Xo, E2) =2f,

and this implies that Vi W = foEs.
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Finally,

2(Vg, W, U),, = ([Es, W],U)y, — ((W,U], Es)y, + (U, Es], W)y,
-2 <[E3’ W]’W>WCW(E3a U, E3)7

which yields to
(VW Ey), =0, (Vg W,Es), =0

and
<vg3’E2>W = <[E37W}7E2>W+<[E27E3]’W>W_ <[E37W}7W>W <X0vE2> = 2fs,

which gives the last statement of (36).
We show that f1 depends only on w. Combining (34) with (8) we obtain

fi= <E2,Z> <ZaW>W :w(£+ <Z7W>) <E27Z>'

In Corollary 3.8 we computed (Ea, Z) directly from w, moreover we have

w—1
<27W>ZT
Thus
2= (w—-1)? w—1Y\ 1 /& —(w—1)> w—1
= e w@* f)_f w @* f)'

Argument similar to that of the previous statement shows that

<[E37 W]7E2>W = w’ <Z7 E2>2 )
and

<[E2’E3}7W>W - <[E37W}7W>W <X07E2> = <Z7 W>2 + <X0>W> .

Combining these relations yields f3 = %w.
Finally,
w Zrw-—1 w—1
f2:f3+<[E3aE2]?W>W:2_§U}<1+£2> O
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Proposition 3.13. If the Randers-type Minkowski functional on the three-
dimensional Heisenberg algebra is determined by Xo = £€Z € Z (0 < £ < 1),
the reference vector W ¢ Z and |W|| = 1 then the local components of the
Chern-Rund connection VW w.r.t. Berwald-Modr frame are

Vi By = %Eg, Vi Ey=VpE = %

Vi B = Vi, Bs + B3, B1] = %EQ,

E3, Vi Ey= f1E3,

Vi, Es = Vi By + (B, Es) = _%El + f5Ea,

fs

(Xo, E2) E3,

where w = ||W||lw, f1, f2, f3 are defined in Proposition 3.12, and

fa= N 2 (Xo, E2) + ij (Xo, E2)

1
fs = ([B2, B3], Ba)y, — gfzs (Xo, E2) .

PrOOF. The proof is similar to that given in the Proposition 3.12. (]

4. The flag curvature of left invariant Randers metrics
on 3-dimensional Heisenberg group

The geometry of any Lie group with left invariant Riemannian metric reflects
strongly the algebraic structure of the corresponding Lie algebra. Papers e.g. by
J. Worr, J. MILNOR ([13], [18]) serve many evidence for this statement. As
an example we recall P. Eberlein’s result for 2-step nilpotent groups with left
invariant Riemannian metric.

Theorem (EBERLEIN, [7]). II = span(X,Y) C N, where (X,Y) is ortho-
normal pair. Let K(I) = K(X,Y) is the sectional curvature map. Then

K(X,Y) = XY X.Yev

1
K(X,Z)= Z||j(Z)X||2, Xev,zez

K(Z,2*)=0, Z,7*cZ
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where Z is the center of the Lie algebra, V is the orthogonal complement of the
center w.r.t. the left invariant Riemannian metric and j(Z): V — V is defined by
G(2)X,Y)=([X,Y],Z) for all X, Y € V.

The purpose of this section is to generalise this result to left invariant Randers
metrics on the 3-dimensional Heisenberg group. We note that S. DENG and Z. Hu
have recently obtained some remarkable results for curvatures of homogeneous
Randers metrics ([5], [6], [9]).

The flag curvature of the Finsler manifold IV is determined by a basepoint
p € N, the flagpole W € T, N and an edge (transverse vector) U € T,N by the
formula

<R(U7 W)W7 U>W
<U7 U>W <VV7 W>W - <U, W>$/V

K(IL,W) = K(IT) = (37)

where IT = span(U, W) and R is the affine curvature tensor of the Chern-Rund
connection (see e.g. [2, Section 3.9.]).

Theorem 4.1. If the Randers-type Minkowski functional on the three-
dimensional Heisenberg algebra (= span(X,Y,Z), as in Definition 2.6 is deter-
mined by Xog =¢Z € Z (0 < £ < 1) and W = Z, then the flag curvature of the
Chern—Rund connection is

1
K(II) = 1 for all U € span(X,Y).

PRrROOF. Let U = aX + BY. From relations in Proposition 3.4 we get

1)2 1)2
R(U, W)W = O‘@I ) X+ﬁ(§j: Yy,
and an easy calculation gives the statement. O

In what follows W € span(X,Y’) and we get special case of Proposition 3.13.

Proposition 4.2 (With the notations from Proposition 3.13).
If W € span(X,Y') then span(X,Y) = span(E1, F3) and Ey = —¢E; + Z. More-
over, f1 =&, fo = % — €2 fy =6~ %, fs= %, and the local components of the
Chern—Rund connection w.r.t. Berwald-Moor frame are

1 3
Vi Br=¢Bs, Vi, By =V, B = (2 - 52) B, Vi E»=¢ <£2 - 4) Es,

1 1
Vi By = §E2, Vi Es = —¢E) — §E2,
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1 1 1 3
Vi, Es = (52 - 2) Ey + ZEE% Vi, Es = —5E1 - 1£E27

1
Vi, Bs = =1 €Fs.

PROOF. FEj is always orthogonal to the centrum (in both senses, i.e. with
respect to the euclidean scalar product (,) and osculating scalar product (, ),
see Corollary 3.6), which means that E3 € span(X,Y).

Substituting into (8) we have

(B, Z)y =§ (38)
W,Wy =1 (39)
(Z,Z)y, =1+ €% (40)

It follows that E; = W and
(Bv,—€E1+Z)y, =0 (—EE1+Z,-EEL+Z)y, =1 (B3, (B + Z)y, =0.

Thus Fy = —&F1 + Z or Ey = £€E7 — Z. From Corollary 3.8 we know that
sgn (7, Es) = sgn > 0 and this fact implies Fy = —{F;+Z. Now, the statements
are simple consequences of Proposition 3.13. ([l

Theorem 4.3. If the Randers-type Minkowski functional on the three-
dimensional Heisenberg algebra is determined by Xg = £Z € Z (0 < £ < 1)
and W € span(X,Y), then the the flag curvature of the Chern—-Rund connection
is

a) K(II) = EiT_S <0 for all U € span(X,Y)
b) K(I) ==& >0 for U = Z.

PRrROOF. Let U = aFy + BE3. From Proposition 4.2 we have

£ -3
4

RUW)W = §>—"Ej,

SO

2 _ 2
<R(U7 W)Wa U>W = ﬁg 4 3 <E3,0ZE1 +6E3>W = BQ¥

Applying (38)—(40), the denominator of (37) is 32 and statement 4.3) holds.
Let U = Z. A simple substitution into Proposition 4.2 gives
1—¢&2

R(ZW)W = — > Ep,
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and we have

1—¢2 1—¢&2
(R(ZW)W,Z)y, = — (B2, EW + Ea)yy, = —
Moreover, from (38)—(40) we get
(U.U)y (W W)y = (U W)y =1,
then we obtain statement 4.3. O
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