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Additive local invertibility preservers

By M. BENDAOUD (Meknès), M. JABBAR (Meknès) and M. SARIH (Meknès)

Abstract. Let L(X) be the algebra of all bounded linear operators on a complex

Banach space X, and for a nonzero vector x ∈ X and T ∈ L(X), let σT (x) denote

the local spectrum of T at x. We characterize additive surjective maps ϕ on L(X)

which satisfy 0 ∈ σϕ(T )(x) if and only if 0 ∈ σϕ(T )(x) for every x ∈ X and T ∈ L(X).

Extensions of this result to the case of different Banach spaces are also established. As

application, additive maps from L(X) onto itself that preserve the inner local spectral

radius zero of operators are classified.

1. Introduction and statement of the main results

Throughout this paper, X and Y will denote complex Banach spaces and

L(X,Y ) will denote the space of all bounded linear operators from X into Y .

As usual, when X = Y we simply write L(X) instead of L(X,X). The local

resolvent set of an operator T ∈ L(X) at a vector x ∈ X, ρT (x), is the set of all

λ in the complex field C for which there exists an open neighborhood Uλ of λ in

C and an X-valued analytic function f : Uλ → X such that (µ− T )f(µ) = x for

all µ ∈ Uλ. Its complement in C, denoted by σT (x), is called the local spectrum

of T at x, and is a compact (possibly empty) subset of the usual spectrum σ(T )
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of T . The inner local spectral radius of T at x, ιT (x), is defined by

ιT (x) := sup{ε ≥ 0 : x ∈ XT (C \D(0, ε))},

where D(0, ε) denotes the open disc of radius ε centered at 0 and XT (C \D(0, ε))

is the so-called glocal spectral subspace of T associated with C \D(0, ε), that is,

the set of all x ∈ X for which there is an X-valued analytic function f on D(0, ε)

such that (λ− T )f(λ) = x for all λ ∈ D(0, ε). The local spectral radius of T at x

is given by the formula rT (x) := lim supn→+∞ ∥Tnx∥ 1
n . The inner local (resp.

local) spectral radius of T at x coincides with the minimum (resp. maximum)

modulus of σT (x) provided that T has the single-valued extension property; see

[17] and [18]. Recall that T is said to have the single-valued extension property

(abbreviated SVEP) if for every open subset U of C, the equation (µ−T )f(µ) = 0,

(µ ∈ U), has no nontrivial X-valued analytic solution f on U . For example, every

operator T ∈ L(X) for which the interior of the set of its eigenvalues is empty

enjoys this property.

Local spectra are a useful tool for analyzing operators, furnishing information

well beyond that provided by classical spectral analysis. They play a very natural

role in automatic continuity and in harmonic analysis, for instance in connection

with the Wiener–Pitt phenomenon. The books [2], [19] and [17] give an extensive

account of the local spectral theory, as well as investigations and applications in

numerous fields.

On the problem of describing mappings preserving local spectra at a fixed

nonzero vector, we mention: [16], where linear mappings on matrix spaces pre-

serving the local spectrum at a fixed nonzero vector are characterized, [13], [14]

concerned with the infinite dimensional case, and in [6], [7] preserver problems

that have to do with locally spectrally bounded linear maps or additive local

spectrum compressors on the matrix spaces and on L(X) are considered. While,

non-linear preserver problems on the subject were studied in [4] and [8]. On the

subject focused on linear or additive mappings preserving local spectra at all

vectors, we mention: [12] where it was shown that the only additive map ϕ on

L(X) satisfying σϕ(T )(x) = σT (x) for all x ∈ X and T ∈ L(X) is the identity,

and [15] that deal with surjective linear local spectral radius zero preservers. In

this paper, by strengthening the preservability condition, we consider surjective

additive maps ϕ on L(X) that preserve the local invertibility of operators in both

directions, that is, those maps ϕ such that for every T ∈ L(X) and x ∈ X we

have 0 ∈ σϕ(T )(x) if and only if 0 ∈ σT (x). We prove the following version of the

above mentioned result [12, Theorem 1.1].
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Theorem 1.1. Let X be a complex Banach space of dimension at least two.

A surjective additive map ϕ from L(X) into itself satisfies

0 ∈ σϕ(T )(x) ⇐⇒ 0 ∈ σT (x) (T ∈ L(X), x ∈ X) (1)

if and only if there exists a nonzero scalar c such that ϕ(T ) = cT for all T ∈ L(X).

Remark 1.2. The following example shows that the assumption X is of di-

mension at least two cannot be removed in this theorem. In [1] it is proved that

there exists a nowhere continuous automorphism ϕ of the field C. Obviously, ϕ

is bijective and additive, and satisfies (1). However, it is not a scalar multiple of

the identity since it not continuous.

In the case of two different Banach spaces, Theorems 1.3 and 1.4 below

improve [12, Theorems 1.3 and 1.5].

Theorem 1.3. Let A ∈ L(X,Y ). If ϕ : L(X) → L(Y ) be a surjective linear

map satisfying

0 ∈ σϕ(T )(Ax) ⇐⇒ 0 ∈ σT (x) (T ∈ L(X), x ∈ X),

then A is invertible and there exists a nonzero scalar c such that ϕ(T ) = cATA−1

for all T ∈ L(X).

Theorem 1.4. Let B ∈ L(Y,X). If ϕ : L(X) → L(Y ) be a surjective linear

map satisfying

0 ∈ σϕ(T )(y) ⇐⇒ 0 ∈ σT (By) (T ∈ L(X), y ∈ Y ),

then B is invertible and there exists a nonzero scalar c such that ϕ(T ) = cB−1TB

for all T ∈ L(X).

The following is a variant of Theorem 1.1.

Theorem 1.5. Let X and Y be infinite dimensional complex Banach spaces

and ϕ : L(X) → L(Y ) be a surjective additive map for which there exists B ∈
L(Y,X) such that for every y ∈ Y we have

0 ∈ σϕ(T )(y) ⇐⇒ 0 ∈ σT (By) (T ∈ L(X)). (2)

Then B is invertible and there exists a nonzero scalar c such that ϕ(T ) = cB−1TB

for all T ∈ L(X).
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As consequences, the following theorems, extending the main result of [10],

describe additive mappings that preserve the inner local spectral radius zero of

operators.

Theorem 1.6. Let X be a complex Banach space of dimension at least two.

A surjective additive map ϕ from L(X) into itself satisfies

ιϕ(T )(x) = 0 ⇐⇒ ιT (x) = 0 (T ∈ L(X), x ∈ X)

if and only if there exists a nonzero scalar c such that ϕ(T ) = cT for all T ∈ L(X).

Theorem 1.7. Let X and Y be infinite dimensional complex Banach spaces

and ϕ : L(X) → L(Y ) be a surjective additive map for which there exists B ∈
L(Y,X) such that for every y ∈ Y we have

ιϕ(T )(y) = 0 ⇐⇒ ιT (By) = 0 (T ∈ L(X)).

Then B is invertible and there exists a nonzero scalar c such that ϕ(T ) = cB−1TB

for all T ∈ L(X).

The obtained results in Theorems 1.6 and 1.7 lead to inner local spectral

radius versions of the main results of [15] which describe surjective linear maps

on L(X) that are local spectral radius zero-preserving.

2. Proof of the main results

We first fix some notation and terminology. The duality between the Banach

spaces X and its dual, X∗, will be denoted by ⟨., .⟩. For x ∈ X and f ∈ X∗,

as usual we denote by x ⊗ f the rank one operator on X given by z 7→ ⟨z, f⟩x.
For T ∈ L(X) we will denote by T ∗, ker(T ), range(T ), σsu(T ) := {λ ∈ C :

λ−T is not surjective} and r(T ) the adjoint, the kernel, the range, the surjectivity

spectrum, and the spectral radius of T ; respectively.

The following lemmas are needed for the proof of our main results. The first

one relies the SVEP and the local spectrum.

Lemma 2.1. An operator T ∈ L(X) has the SVEP if and only if for every

λ ∈ C and every nonzero vector x in ker(λ− T ) we have σT (x) = {λ}.

Proof. See for instance [2, Theorem 2.22]. �

The second lemma is a simple consequence of [17, Proposition 1.2.16] and [2,

Theorem 2.22], and its proof is therefore omitted here.
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Lemma 2.2. Let e be a fixed nonzero vector in X and let R = x ⊗ f be a

non-nilpotent rank one operator. Then 0 ∈ σR(e) if and only if ⟨e, f⟩ = 0 or e

and x are linearly independent.

Recall that a map ϕ : L(X) → L(Y ) is said to preserve the surjectivity of

operators (resp. rank one operators) in both directions provided that ϕ(T ) is

surjective (resp. of rank one) if and only if T is.

The third lemma characterizes surjective additive maps from L(X) into L(Y )

that preserve the surjectivity of operators in both directions.

Lemma 2.3. Let X and Y be infinite dimensional complex Banach spaces

and let ϕ : L(X) → L(Y ) be a surjective additive map. If ϕ preserves surjectivity

of operators in both directions, then either

(i) there exist invertible bounded both linear or both conjugate linear operators

A : X → Y and B : Y → X such that ϕ(T ) = ATB for all T ∈ L(X), or

(ii) there exist invertible bounded both linear or both conjugate linear operators

A : X∗ → Y and B : Y → X∗ such that ϕ(T ) = AT ∗B for all T ∈ L(X).

The last case occurs only if X and Y are reflexive.

Proof. See [11, Lemma 2.1] �

The next two lemmas may be of independent interest.

Lemma 2.4. Let ϕ be a map from L(X) into L(Y ) satisfying

∃x ∈ X : 0 ∈ σT+S(x) ⇐⇒ ∃y ∈ Y : 0 ∈ σϕ(T )+ϕ(S)(y)

for all T, S ∈ L(X). Then ϕ is injective.

Proof. Assume that ϕ(A) = ϕ(B) for some A,B ∈ L(X). For every T ∈
L(X), we have

∃x ∈ X : 0 ∈ σT+A(x) ⇐⇒ ∃y ∈ Y : 0 ∈ σϕ(T )+ϕ(A)(y)

⇐⇒ ∃y ∈ Y : 0 ∈ σϕ(T )+ϕ(B)(y)

⇐⇒ ∃y ∈ Y : 0 ∈ σT+B(y).

From this together with the fact that

σsu(T ) =
∪
x∈X

σT (x) (3)
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for every T ∈ L(X) (see [17, Lemma 2.3]), we infer that

T +A is surjective ⇐⇒ T +B is surjective

for every T ∈ L(X). Upon replacing T by T − A − λ, we deduce that σsu(T +

(B − A)) = σsu(T ) for all T ∈ L(X). As the surjectivity spectrum contains

the boundary of the spectrum, we conclude that r(T + (B − A)) = r(T ) for all

T ∈ L(X). Thus, by the Zemánek’s spectral characterization of the radical, [3,

Theorem 5.3.1], A = B and ϕ is injective. �

We will say that a mapping ϕ : L(X) → L(X) preserves the local invertibility

of operators at a fixed nonzero vector e ∈ X in both directions if for every

T ∈ L(X) we have 0 ∈ σϕ(T )(e) if and only if 0 ∈ σT (e).

Lemma 2.5. Let X be a Banach space of dimension at last two, e be a fixed

nonzero vector in X and A : X∗ → X and B : X → X∗ be invertible bounded

both linear or both conjugate linear operators. Then the anti-automorphism

ϕ : T 7→ AT ∗B does not preserves the local invertibility of operators at e in both

directions.

Proof. We shall only deal with the case when A and B are conjugate linear,

because the linear case follows analogously. First, we claim that

0 ∈ σT (e) ⇐⇒ 0 ∈ σT∗BA(A
−1e) (T ∈ L(X)). (4)

For this, it suffice to show that for any ε > 0 and T ∈ L(X) we have e ∈
XAT∗B(C \D(0, ε)) if and only if A−1e ∈ XT∗BA(C \D(0, ε)). To do so, assume

that A−1e ∈ XT∗BA(C \D(0, ε)) and let f be an X∗-valued analytic function on

D(0, ε) such that

(µ− T ∗BA)f(µ) = A−1e

for all µ ∈ D(0, ε). We have

(µ−AT ∗B)Af(µ) = e

for all µ ∈ D(0, ε); where µ is the complex conjugate of µ. Set

f̃(µ) := Af(µ), (µ ∈ D(0, ε)),

and note that the map f̃ is an analytic function on D(0, ε) since

lim
h→0

f̃(µ+ h)− f̃(µ)

h
= lim

h→0
A(

f(µ+ h)− f(µ)

h
) = Af ′(µ)
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for all µ ∈ D(0, ε), where f ′(µ) is the derivative of f at µ. Hence e ∈ XAT∗B(C \
D(0, ε)). As the reverse implication can be obtained by similarity, the claim is

proved.

Next, assume by the way of contradiction that the map ϕ preserves the local

invertibility of operators at e in both directions. We will prove that the condition

(4) is not satisfied. If ⟨e,Be⟩ = 0, choose a linear functional f ∈ X∗ so that

⟨e, f⟩ = 1, and set T = e⊗ f . Lemma 2.1 implies that σT (e) = {1}. On the other

hand, we have

⟨x, T ∗BA(A−1e)⟩ = ⟨Tx,Be⟩ = ⟨x, f⟩⟨e,Be⟩ = 0

for every x ∈ X. This implies that T ∗BA(A−1e) = 0, and so σT∗BA(A
−1e) =

{0}; which contradicts (4). If we assume that ⟨e,Be⟩ ̸= 0, then we can find a

vector w ∈ X such that e and w are linearly independent and ⟨w,Be⟩ = 1. For

T = w ⊗A−1e, we have, by Lemma 2.2, 0 ∈ σT (e) since e ̸∈ Cw. Observe that

⟨x, T ∗BA(A−1e)⟩ = ⟨Tx,Be⟩ = ⟨x,A−1e⟩⟨w,Be⟩ = ⟨x,A−1e⟩

is true for every x ∈ X, so that T ∗BA(A−1e) = A−1e. This shows that

σT∗BA(A
−1e) = {1}, contradicting (4) in this case too. The proof is therefore

complete. �

Remark 2.6. Just as in the proof of the above lemma one can see that when

X = Cn (n ≥ 2) and A : Cn → Cn and B : Cn → Cn are invertible bounded both

linear or both conjugate linear operators, the anti-automorphism ϕ : T → AT trB

does not preserves the local invertibility of matrices at a fixed nonzero vector in

Cn. Here T tr denotes the transpose of the matrix T .

We now have collected all the necessary ingredients and are therefore in a

position to prove the main results of this section.

Proof of Theorem 1.1. Checking the ‘if’ part is straightforward, so we

will only deal with the ‘only if’ part. So assume that (1) holds. From the equality

(3), we have

T is not surjective ⇐⇒ ∃x ∈ X : 0 ∈ σT (x)

⇐⇒ ∃x ∈ X : 0 ∈ σϕ(T )(x)

⇐⇒ ϕ(T ) is not surjective

for every T ∈ L(X). Consequently, ϕ preserves the surjectivity of operators in

both directions. We consider the following two cases:
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Case 1. X is an infinite dimensional Banach space.

As the map ϕ preserves the surjectivity of operators in both directions, Lemma 2.3

implies that either

(i) there exist invertible bounded both linear or both conjugate linear operators

A : X → X and B : X → X such that ϕ(T ) = ATB for all T ∈ L(X), or

(ii) there exist invertible bounded both linear or both conjugate linear operators

A : X∗ → X and B : X → X∗ such that ϕ(T ) = AT ∗B for all T ∈ L(X).

Lemma 2.5 entails that the form of ϕ in the statement (ii) is excluded, and

consequently there exist invertible bounded both linear or both conjugate linear

operators A : X → X and B : X → X such that ϕ(T ) = ATB for all T ∈ L(X).

Similar argument as the one used in the proof of Lemma 2.5 allow to get that for

every x ∈ X and T ∈ L(X), we have

0 ∈ σB−1A−1ϕ(T )(B
−1x) ⇐⇒ 0 ∈ σT (x)

⇐⇒ 0 ∈ σϕ(T )(x).

From this together with the surjectivity of ϕ, we infer that

0 ∈ σB−1A−1T (x) ⇐⇒ 0 ∈ σT (Bx) (5)

for all x ∈ X and T ∈ L(X). With similarly, we also have

0 ∈ σTB−1A−1(Ax) ⇐⇒ 0 ∈ σT (x) (6)

for all x ∈ X and T ∈ L(X).

Now, let us show that B is a multiple of the identity operator by a nonzero

scalar. Assume on the contrary that there exists a vector x ∈ X such that x

and Bx are linearly independent, and pick a linear functional f on X such that

⟨x, f⟩ = 1 and ⟨Bx, f⟩ = 0. For T = ABx⊗ f , we have σT (Bx) = {0}. However,

that B−1A−1T (x) = x implies that σB−1A−1T (x) = {1}, contradicting (5). Thus,

B is a nonzero scalar multiple of the identity. So, by taking into account (6), we

get

0 ∈ σTA−1(Ax) ⇐⇒ 0 ∈ σT (x) (7)

for all x ∈ X and T ∈ L(X). Let us also show that A is a nonzero scalar multiple

of the identity. Assume for a contradiction that there exists a vector x ∈ X such

that x and A−1x are linearly independent, and let f ∈ X∗ so that ⟨x, f⟩ = 1 and

⟨A−1x, f⟩ = 0. Set T = x⊗f , and note that σT (x) = {1}. However, the fact that

(TA−1)2(Ax) = TA−1x = 0 implies that σB−1A−1T (x) = {0}, and contradicts (7).
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Hence we must have that A and B are nonzero scalar multiple of the identity,

and consequently there exists a non-null constant c such that ϕ(T ) = cT for all

T ∈ L(X).

Case 2. X is a finite dimensional space. The proof of it will be completed

after checking the following two claims.

Claim 1. ϕ preserves rank one operators in both directions.

Proof. Lemma 2.4 implies that ϕ is injective. Since ϕ is assumed surjective,

it is invertible. From this together with the fact that, in this case, an operator T is

injective if and only if it is invertible, we infer that ϕ is a bijective map preserving

invertibility in both directions. So, using the spectral characterization of rank one

operators [20, Lemma 2.1] together with the same approach as in [5, Theorem 4.1]

one can see that ϕ preserves rank one operators in both directions; which proves

the claim.

Claim 2. There exists a nonzero scalar c such that ϕ(R) = cR for all non-nilpotent

rank one operator R.

Proof. Let R = x⊗ f be a non-nilpotent rank one operator. According to

the above lemma we can find a linear functional g ∈ X∗ and a vector y ∈ X such

that ϕ(R) = y ⊗ g. The fact that σR(x) = {⟨x, f⟩} together with (1) imply that

0 ̸∈ σy⊗g(x) = σϕ(R)(x), and consequently, it follows, from Lemma 2.2, that x

and y are linearly dependent. By absorbing a constant in the seconde term in the

tensor product, one can now see that ϕ(R) = x⊗ Lx,f for some Lx,f ∈ X∗.

Now, let us prove that for every non-nilpotent rank one operator R = x⊗ f ,

the mapping L : x ⊗ f 7→ Lx,f is independent of x. To do so, let z be a vector

such that x and z are linearly independent and ⟨z, f⟩ ̸= 0. If ⟨x+ z, f⟩ ≠ 0, then

(x+ z)⊗ f is a non-nilpotent rank one operator and

x⊗ Lx,f + z ⊗ Lz,f = ϕ((x+ z)⊗ f) = (x+ z)⊗ Lx+z,f .

On the other hand, it easy to see that the operator x⊗Lx,f + z⊗Lz,f has rank 2

whenever x and z as well as Lx,f and Lz,f are linearly independent. Consequently,

Lx,f and Lz,f are linearly dependent, and so there exits a nonzero scalar α such

that Lz,f = αLx,f . This gives that (x + αz) ⊗ Lx,f = (x + z) ⊗ Lx+z,f ; which

implies that α = 1 and Lz,f = Lx,f = Lx+z,f . In the case when ⟨x + z, f⟩ = 0,

we have ⟨x − z, f⟩ ̸= 0, and by similarity, we get Lz,f = Lx,f in this case too.

Therefore, for every non-nilpotent rank one operator R = x ⊗ f , the mapping

L : x ⊗ f 7→ Lx,f becomes independent of x. Thus, we may denote Lx,f simply

by Lf .
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Next, let us show that Lf and f are linearly dependent for all non zero

f ∈ X∗. Assume on the contrary that there exists a vector x ∈ X such that

⟨x, f⟩ = 0 and ⟨x, Lf ⟩ ̸= 0. Clearly, we have σx⊗f (x) = {0} and σϕ(x⊗f)(x) =

σx⊗Lf
(x) = {⟨x, Lf ⟩}; which leads to a contradiction. Therefore there exists a

nonzero scalar cf such that Lf = cff for all non zero f in X∗. Moreover, we

claim that the mapping cf does not depend on f . Indeed, let f, g ∈ X∗ be linearly

independent, and let x ∈ X such that ⟨x, f⟩ ≠ 0 ̸= ⟨x, g⟩ and ⟨x, f + g⟩ ̸= 0. We

have

x⊗ cf+g(f + g) = x⊗ Lf+g = ϕ(x⊗ (f + g)) = x⊗ (cff + cgg),

and so we get cf = cg = cf+g. It follows that the mapping cf does not depend

on f . Thus, we may write c instead of cf , and consequently ϕ(R) = cR for all

non-nilpotent rank one operator R; which concludes the proof of the claim.

As ϕ is additive, and every nilpotent rank one operator is a sum of two

non-nilpotent rank one operator, we deduce that ϕ(R) = cR for all rank one

operator R. Since X is of finite dimensional, we conclude that ϕ(T ) = cT for all

T ∈ L(X), and the theorem follows. �

Proof of Theorem 1.5. The sufficiency condition is easily verified. To

prove the necessity, assume that (2) holds. The proof of it will be completed after

checking several steps.

Step 1. The mapping ϕ has one of the forms (i) and (ii) in Lemma 2.3.

Proof. Similar argument as the one used in the beginning of the proof of

Theorem 1.1 allows to get that the map ϕ preserves surjectivity of operators in

both directions, and so the desired conclusion follows from Lemma 2.3.

Step 2. The operator B is injective.

Proof. If By = 0, then (2) and the surjectivity of ϕ give 0 ̸∈ σT (y) for each

T ∈ L(Y ), and therefore y = 0.

Step 3. The form (ii) of ϕ in Step 1 is excluded.

Proof. Assume for a contradiction that there exist invertible bounded both

linear or both conjugate linear operators A1 : X∗ → Y and B1 : Y → X∗ such

that ϕ(T ) = A1T
∗B1. The same argument as in the proof of Lemma 2.5 together

with (2) allows to get that the equivalence

0 ∈ σT (By) ⇐⇒ 0 ∈ σT∗B1A1(A
−1
1 y) (8)

holds true for any T ∈ L(X) and y ∈ Y . Pick an arbitrary non zero vector y in Y ,
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and note that, by the above step, By ̸= 0. We will show that the condition (8) is

not satisfied. Firstly assume that ⟨By,B1y⟩ = 0. Choose a linear functional f in

X∗ such that ⟨By, f⟩ = 1, and set T = By ⊗ f . We have

⟨x, T ∗B1A1(A
−1
1 y)⟩ = ⟨Tx,B1y⟩ = ⟨x, f⟩⟨By,B1y⟩ = 0

for all x ∈ X. This implies that σT∗B1A1(A
−1
1 y) = {0}, and contradicts (8) since

σT (By) = {1}.
Next, assume that ⟨By,B1y⟩ ≠ 0. Then we can find w ∈ X such that By

and w are linearly independent and ⟨w,B1y⟩ = 1. Set T = w ⊗ A−1
1 y, and note

that 0 ∈ σT (By) since By ̸∈ Cw. But, the fact that

⟨x, T ∗B1A1(A
−1
1 y)⟩ = ⟨Tx,B1y⟩ = ⟨x,A−1

1 y⟩⟨w,B1y⟩ = ⟨x,A−1
1 y⟩

is true for every x ∈ X, implies that T ∗B1A1(A
−1
1 y) = A−1

1 y. Consequently,

σT∗B1A1(A
−1
1 y) = {1}. This contradicts (8) in this case too, and achieves the

proof of the step.

Step 4. The operator B is invertible.

Proof. By combining Claim 1 and Claim 3, we infer that there exist in-

vertible bounded both linear or both conjugate linear operators A1 : X → Y and

B1 : Y → X such that ϕ(T ) = A1TB1 for all T ∈ L(X). If B were not surjective,

then we could find x ∈ X \ range(B) and f ∈ X∗ such that ⟨B1A1x, f⟩ = 1. Set

T = x ⊗ f . Since x and BA1x are linearly independent, Lemma 2.2 tell us that

0 ∈ σT (BA1x). But, σϕ(T )(A1x) = {1} since

ϕ(T )(A1x) = A1x⊗ f ◦B1(A1x) = A1x,

arriving to a contradiction. Thus, B is invertible as desired.

In order to complete the proof of the theorem, define χ : L(X) → L(X) by

putting χ(T ) = Bϕ(T )B−1, and note that the map χ is a surjective additive map

satisfying

0 ∈ σχ(T )(By) ⇐⇒ 0 ∈ σBϕ(T )B−1(By)

⇐⇒ 0 ∈ σϕ(T )(y)

for any y ∈ Y and T ∈ L(X). Upon replacing y by B−1x and by taking into

account (2), we get

0 ∈ σχ(T )(x) ⇐⇒ 0 ∈ σT (x)

for any x ∈ X and T ∈ L(X). Theorem 1.1 implies that there exists a nonzero

scalar c such that χ(T ) = cT for every T ∈ L(X), and consequently ϕ(T ) =

cB−1ϕ(T )B for all T ∈ L(X); which achieves the proof. �
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Proof of Theorem 1.4. We shall only deal with the case when X or Y

is finite dimensional since otherwise the result of the theorem is a consequence

of Theorem 1.5. So, assume that either X or Y is finite dimensional, and note

that, by Lemma 2.4, the map ϕ is injective. The fact that, in this case, ϕ is linear

and bijective implies that X and Y are both finite dimensional, having the same

dimension over C. Claim. 1 shows now that B is in fact bijective. So, as in the end

of the proof of Theorem 1.5, the map χ : T 7→ Bϕ(T )B−1 is linear and surjective,

and satisfies (1). Consequently, the result follows by applying Theorem 1.1 to the

map χ in the case when X is of dimension at least two. The case when dimX = 1

is a consequence of [21, Theorem 1.1], and the proof is therefore complete. �

Proof of Theorem 1.3. Lemma 2.4 shows that the map ϕ is injective.

Since ϕ is assumed surjective, it is invertible. Thus, the desired conclusion follows

by applying Theorem 1.4 to the map ϕ−1; which achieves the proof. �

Proof of Theorems 1.6 and 1.7. As the notion of local invertibility en-

compasses inner spectral radius zero: for any x ∈ X and T ∈ L(X) we have

0 ∈ σT ⇐⇒ ιT (x) = 0

(see [18]), Theorems 1.1 and 1.5 remain valid when the assumption “0 ∈ σ.(.)”

is replaced by “ι.(.) = 0”; which yield the desired conclusions in Theorems 1.6

and 1.7. �

Remark 2.7. If X is of finite dimensional space and ϕ is a linear map on L(X)

satisfying (1), then Lemma 2.4 shows that the map ϕ is automatically surjective.

It is conceivable that the surjectivity assumption in Theorem 1.1 can be removed.

3. Open problem

It is interesting to relax the additivity assumption and to know what kind of

transformations ϕ on L(X) will leave invariant the local invertibility property at

a fixed nonzero vector e ∈ X. Clearly, if one just assume that

0 ∈ σϕ(T )(e) ⇐⇒ 0 ∈ σT (e)

for every T ∈ L(X) on ϕ, the structure of ϕ can be quite arbitrary. So, it is rea-

sonable to impose a more restrictive condition on such transformations relating

the local spectra of a pair of operators. In [8], classifications were established
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for mappings ϕ on Mn(C), the algebra of all n × n complex matrices, satisfy-

ing σϕ(T )−ϕ(S)(e) = σT−S(e) for any matrices T and S. Characterizations for

mappings on Mn(C) that compress or expand the local spectrum of the sum or

the product of matrices at a fixed nonzero vector, and investigation of several

extensions of these results were obtained in [4] and [9].

We close this paper by the following similar natural problem which suggests

itself.

Problem 3.1. Let e be a fixed nonzero vector X. Characterize surjective

mappings ϕ on L(X) satisfying

0 ∈ σϕ(T )−ϕ(S)(e) ⇐⇒ 0 ∈ σT−S(e)

for all T, S ∈ L(X).
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