Publ. Math. Debrecen 86/1-2 (2015), 31–37 DOI: 10.5486/PMD.2015.5961

Characterization of p-groups by sum of the element orders

By S. M. JAFARIAN AMIRI (Zanjan) and MOHSEN AMIRI (Zanjan)

Abstract. Let G be a finite group. Then we denote $\psi(G) = \sum_{x \in G} o(x)$ where o(x) is the order of the element x in G. In this paper we characterize some finite p-groups (p a prime) by ψ and their orders.

1. Introduction and main results

In what follows all groups are finite and p is a prime.

Given a finite group G, let $\psi(H) = \sum_{x \in H} o(x)$ for $H \subseteq G$, where as usual, o(x) is the order of the element x. In this note, we ask what information about some classes of p-groups G can be recovered if we know both $\psi(G)$ and |G|. The starting point for the function ψ is given by the paper [1] which investigates the maximum of ψ among all groups of the same order. In [2] the authors determined the structure of the groups which have the minimum sum of the element orders on all groups of the same order.

Let CP_2 be the class of finite groups G such that $o(xy) \leq \max\{o(x), o(y)\}$ for all $x, y \in G$. We denote $\Omega_i(G) = \langle \{x \in G \mid x^{p^i} = 1\} \rangle$ for all $i \in \mathbb{N}$. Now we state the first main result as follows.

Theorem 1.1. Suppose that P and Q are contained in CP_2 of the same order p^n . Then the following statements are equivalent:

- (1) $\psi(P) = \psi(Q)$.
- (2) $|\Omega_i(P)| = |\Omega_i(Q)|$ for all $i \in \mathbb{N}$.
- (3) $\psi(\Omega_i(P)) = \psi(\Omega_i(Q))$ for all $i \in \mathbb{N}$.

Mathematics Subject Classification: 20D15. Key words and phrases: p-groups, element orders.

S. M. Jafarian Amiri and Mohsen Amiri

Note that the class CP_2 of *p*-groups is more large than the class of abelian *p*-groups, regular *p*-groups (see Theorem 3.14 of [6], II, p. 47) and *p*-groups whose subgroup lattices are modular (see Lemma 2.3.5 of [5]). Moreover by the main theorem in [7], we infer that powerful *p*-groups for *p* odd also belong to CP_2 .

The following is the second main result.

Theorem 1.2. Let P and Q be two finite p-groups of the same order and $\Omega_{m-1}(P) \neq P$, where $\exp(P) = p^m$. If $\exp(P) > \exp(Q)$, then $\psi(P) > \psi(Q)$.

In general, it is not true that if P and Q are p-groups of the same order such that $\exp(P) > \exp(Q)$, then $\psi(P) > \psi(Q)$. For example consider $Q = (C_4)^4$ and $P = D_{16} \times (C_2)^4$. The authors would like to thank Prof. E. Khukhru for giving this example.

But if $\exp(P) = \exp(Q)$, then we have the following.

Theorem 1.3. Let P and Q belong to CP_2 of the same order and the same exponent p^m . Also suppose that $|\Omega_{m-i}(P)| = |\Omega_{m-i}(Q)|$ for i = 1, 2, ..., t. If $|\Omega_{m-t-1}(P)| < |\Omega_{m-t-1}(Q)|$, then $\psi(P) > \psi(Q)$.

As an application of Theorems 1.1 and 1.2 we have the following.

Theorem 1.4. Let P and Q belong to CP_2 of the same order p^n . Then $\psi(P) = \psi(Q)$ if and only if there is a bijection $f: P \to Q$ such that o(f(x)) = o(x) for all $x \in P$.

2. Proof of the main results

Lemma 2.1. Let P be a finite p-group, $\exp(P) = p^m$ and $M = \Omega_{m-1}(P) \neq P$. Then $\psi(P) = \psi(M) + |M|p^m \left(\frac{|P|}{|M|} - 1\right)$.

PROOF. Suppose that X is a left transversal to M in P containing identity element. For all $y \in M$ and $1 \neq x \in X$, we have $o(xy) = p^m$. Therefore $\psi(xM) = |M|p^m$ for all $1 \neq x \in X$. This completes the proof.

Theorem 2.2. Let P and Q be two finite p-groups of order p^n and $\exp(P) = p^m$. If $\Omega_{m-1}(P) \neq P$ and $\exp(P) > \exp(Q)$, then $\psi(P) > \psi(Q)$.

PROOF. Let $M = \Omega_{m-1}(P)$. Then

$$\begin{split} \psi(P) &= \psi(M) + |M| p^m \left(\frac{|P|}{|M|} - 1 \right) > |M| p^m \left(\frac{|P|}{|M|} - 1 \right) \\ &= p^m (|P| - |M|) = p^m (p^n - |M|) \ge p^m (p^n - p^{n-1}) \ge p^n p^{m-1}. \\ \text{Since } \exp(Q) \le p^{m-1}, \text{ we have } \psi(Q) < p^n p^{m-1} < \psi(P). \end{split}$$

Characterization of p-groups by sum of the element orders

We observe that if a finite group G belongs to CP_2 , then for every $x, y \in G$ satisfying $o(x) \neq o(y)$ we have $o(xy) = \max\{o(x), o(y)\}$.

We shall need the following theorem about the groups belonging to CP_2 .

Theorem 2.3 (See Theorem D in [4]). A finite group G is contained in CP_2 if and only if one of the following statements holds:

- (1) G is a p-group and $\Omega_n(G) = \{x \in G \mid x^{p^n} = 1\}.$
- (2) G is a Frobenius group of order $p^{\alpha}q^{\beta}$, p < q, with kernel F(G) of order p^{α} and cyclic complement.

In the sequel assume that P and Q are p-groups belonging to CP_2 .

Lemma 2.4. If
$$|\Omega_1(P)| = p^r$$
, then $\psi(P) = 1 - p + p^{r+1}\psi(\frac{P}{\Omega_1(P)})$

PROOF. Suppose that $\Omega_1(P) = N$. Then we have $\langle x \rangle \cap N \neq 1$ for all $1 \neq x \in P$, Since $\langle x^{\frac{o(x)}{p}} \rangle$ is a subgroup of $\langle x \rangle \cap N$. Let X be a left transversal to N in P such that $1 \in X$. Suppose that $1 \neq x \in X$. Then $o(x) \geq p^2$ since N does not contain x. If $y \in N$, then by Theorem 2.3 part one $\exp(N) = p$ and so we have o(xy) = o(x). This implies that

$$\psi(P) = \sum_{x \in X} \psi(xN) = \psi(N) + |N| \sum_{1 \neq x \in X} o(x)$$

If $1 \neq x \in X$, then $\langle x \rangle \cap N \neq 1$ which follows that o(x) = po(xN). Hence

$$\psi(P) = \psi(N) + |N| \sum_{1 \neq x \in X} o(x) = \psi(N) + |N|p \sum_{1 \neq x \in X} o(xN)$$
$$= \psi(N) + |N|p \left(\psi\left(\frac{P}{N}\right) - 1\right).$$

Since $|N| = p^r$, we have $\psi(N) = p^{r+1} - p + 1$, which completes the proof. \Box

Lemma 2.5. If $\psi(P) = \psi(Q)$, then $|\Omega_1(P)| = |\Omega_1(Q)|$.

PROOF. Suppose that $\Omega_1(P) = N$ and $\Omega_1(Q) = M$. If $|N| = p^r$ and $|M| = p^t$, then it follows from previous lemma that $p^{r+1}\psi\left(\frac{P}{N}\right) = p^{t+1}\psi\left(\frac{Q}{M}\right)$. If r+1 < t+1, then $p^{r+1}\psi\left(\frac{P}{N}\right) \equiv 0 \pmod{p^{t+1}}$. Since $\frac{P}{N}$ is a *p*-group, we have $\psi\left(\frac{P}{N}\right) = 1 + kp$ and so $\psi\left(\frac{P}{N}\right) = 1 + kp \equiv 1 \equiv 0 \pmod{p}$, a contradiction. Thus r = t. \Box

Lemma 2.6. We have $\Omega_i\left(\frac{P}{\Omega_1(P)}\right) = \frac{\Omega_{i+1}(P)}{\Omega_1(P)}$ for all $i \in \mathbb{N}$.

S. M. Jafarian Amiri and Mohsen Amiri

PROOF. Since $\frac{\Omega_{i+1}(P)}{\Omega_1(P)} \leq \Omega_i(\frac{P}{\Omega_1(P)})$, it is enough to show that $\Omega_i(\frac{P}{\Omega_1(P)}) \leq \frac{\Omega_{i+1}(P)}{\Omega_1(P)}$. Suppose that $t\Omega_1(P) \in \Omega_i(\frac{P}{\Omega_1(P)})$. Then $t^{p^i} \in \Omega_1(P)$ and since $\exp(\Omega_1(P)) = p$, we have $t^{p^{i+1}} = 1$. Therefore $t \in \Omega_{i+1}(P)$ and so $t\Omega_1(P) \in \frac{\Omega_{i+1}(P)}{\Omega_1(P)}$.

Corollary 2.7. $\frac{P}{\Omega_1(P)}$ belongs to CP_2 .

PROOF. It follows from previous lemma that $\Omega_i\left(\frac{P}{\Omega_1(P)}\right) = \frac{\Omega_{i+1}(P)}{\Omega_1(P)}$, for all $i \in \mathbb{N}$. Since P belongs to CP_2 , we have $\Omega_{i+1}(P) = \{x \in G \mid x^{p^{i+1}} = 1\}$ for all $i \in \mathbb{N}$. Since $x^{p^i} \in \Omega_1(P)$, we see $\frac{\Omega_{i+1}(P)}{\Omega_1(P)} = \{x\Omega_1(P) \in \frac{P}{\Omega_1(P)} \mid x^{p^i}\Omega_1(P) = \Omega_1(P)\}$ for all $i \in \mathbb{N}$ by Theorem 2.3 and so $\frac{P}{\Omega_1(P)}$ is contained in CP_2 .

Theorem 2.8. Let P and Q have the same order p^n and the same exponent p^m and suppose that $|\Omega_{m-i}(P)| = |\Omega_{m-i}(Q)|$ for i = 0, 1, 2, ..., t. If $|\Omega_{m-t-1}(P)| < |\Omega_{m-t-1}(Q)|$, then $\psi(P) > \psi(Q)$.

PROOF. If $P \in CP_2$ and $\exp(P) = p^m$, then for all i < m, $\Omega_i(P) \neq P$ and $1 < \Omega_1(P) < \Omega_2(P) < \cdots < \Omega_m(P) = P$.

Note that for all $i \leq j$, we have $\Omega_i(\Omega_j(P)) = \Omega_i(P)$. Using Lemma 2.1 we can get

$$\psi(P) = \psi(\Omega_{m-t}(P)) + \sum_{i=1}^{t} |\Omega_{m-i}(P)| p^{m-i+1} \left(\frac{|\Omega_{m-i+1}(P)|}{|\Omega_{m-i}(P)|} - 1 \right)$$

and

$$\psi(Q) = \psi(\Omega_{m-t}(Q)) + \sum_{i=1}^{t} |\Omega_{m-i}(Q)| p^{m-i+1} \left(\frac{|\Omega_{m-i+1}(Q)|}{|\Omega_{m-i}(Q)|} - 1 \right).$$

Since

$$\sum_{i=1}^{t} |\Omega_{m-i}(P)| p^{m-i+1} \left(\frac{|\Omega_{m-i+1}(P)|}{|\Omega_{m-i}(P)|} - 1 \right)$$
$$= \sum_{i=1}^{t} |\Omega_{m-i}(Q)| p^{m-i+1} \left(\frac{|\Omega_{m-i+1}(P)|}{|\Omega_{m-i}(Q)|} - 1 \right),$$

it is enough to prove that $\psi(\Omega_{m-t}(P)) > \psi(\Omega_{m-t}(Q))$. Suppose that $|\Omega_{m-t-1}(Q)| = p^a |\Omega_{m-t-1}(P)|$, where $a \ge 1$. By Lemma 2.1, we have

$$\psi(\Omega_{m-t}(P)) - \psi(\Omega_{m-t}(Q)) = \psi(\Omega_{m-t-1}(P)) - \psi(\Omega_{m-t-1}(Q)) + p^{m-t}(|\Omega_{m-t-1}(Q)| - |\Omega_{m-t-1}(P)|) > p^{m-t}(|\Omega_{m-t-1}(Q)| - |\Omega_{m-t-1}(P)|) - \psi(\Omega_{m-t-1}(Q))$$

Characterization of *p*-groups by sum of the element orders

$$= p^{m-t-a} |\Omega_{m-t-1}(Q)| (p^{a}-1) - \psi(\Omega_{m-t-1}(Q))$$

$$\geq p^{m-t-1}(p-1) |\Omega_{m-t-1}(Q)| - \psi(\Omega_{m-t-1}(Q))$$

$$\geq \psi(\Omega_{m-t-1}(Q)) - \psi(\Omega_{m-t-1}(Q)) = 0.$$

This completes the proof.

Using Lemmas 2.4 and 2.5 we can propose another proof for Corollary 6 in [3].

Corollary 2.9. Let P and Q be abelian p-groups of the same order. Then $\psi(P) = \psi(Q)$ if and only if $P \cong Q$.

PROOF. It is sufficient to show that if $\psi(P) = \psi(Q)$, then $P \cong Q$. We prove this by induction on |P|. Base step of induction is trivial. Let $|\Omega_1(P)| = p^t$ and $|\Omega_1(Q)| = p^r$. It follows from Lemma 2.4 that $\psi(P) = 1 - p + p^{r+1}\psi(\frac{P}{\Omega_1(P)})$ and $\psi(Q) = 1 - p + p^{t+1}\psi(\frac{Q}{\Omega_1(Q)})$. We have r = t by Lemma 2.5. Therefore $\psi(\frac{P}{\Omega_1(P)}) = \psi(\frac{Q}{\Omega_1(Q)})$. So we have $\frac{P}{\Omega_1(P)} \cong \frac{Q}{\Omega_1(Q)}$ by induction hypothesis which implies that $P \cong Q$.

The above result is not true for regular *p*-groups or *p*-groups of nilpotent class 2. For example there exists a regular 3-group *P* such that |P| = 27 and $\exp(P) = 3$, but *P* is not abelian, so $\psi(P) = 79 = \psi((C_3)^3)$ but *P* is not isomorphic to $(C_3)^3$.

Now we are ready to prove Theorem 1.1.

Theorem 2.10. Suppose that P and Q have the same order. Then the following statements are equivalent:

- (1) $\psi(P) = \psi(Q).$
- (2) $|\Omega_i(P)| = |\Omega_i(Q)|$ for all $i \in \mathbb{N}$.
- (3) $\psi(\Omega_i(P)) = \psi(\Omega_i(Q))$ for all $i \in \mathbb{N}$.

PROOF. (1) \Rightarrow (2). We prove by induction on |P|. Suppose that P and Q are contained in CP_2 and $\psi(P) = \psi(Q)$. It follows from Lemma 2.4 that $\psi(P) = 1 - p + p^{r+1}\psi\left(\frac{P}{\Omega_1(P)}\right)$ and $\psi(Q) = 1 - p + p^{t+1}\psi\left(\frac{Q}{\Omega_1(Q)}\right)$ where $|\Omega_1(P)| = p^r$ and $|\Omega_1(Q)| = p^t$. Since $\psi(P) = \psi(Q)$, we obtain r = t by Lemma 2.5 and so $\psi\left(\frac{P}{\Omega_1(P)}\right) = \psi\left(\frac{Q}{\Omega_1(Q)}\right)$. By corollary 2.7 we have $\frac{P}{\Omega_1(P)}$ and $\frac{Q}{\Omega_1(Q)}$ are in CP_2 . Since $\left|\frac{P}{\Omega_1(P)}\right| = \left|\frac{Q}{\Omega_1(Q)}\right|$, the induction assumption yields that $|\Omega_i\left(\frac{P}{\Omega_1(P)}\right)| = |\Omega_i\left(\frac{Q}{\Omega_1(Q)}\right)|$ for all $i \in \mathbb{N}$. Therefore $|\Omega_i(P)| = |\Omega_i(Q)|$ by Lemmas 2.3 and 2.4.

35

S. M. Jafarian Amiri and Mohsen Amiri

 $(2) \Rightarrow (1)$. Let $\exp(P) = p^m$. By Theorem 2.2, we have $\exp(Q) = p^m$. Since P and Q are contained in CP_2 , we have $\exp(\Omega_j(P)) = \exp(\Omega_j(Q)) = p^j$ for all $j \in \mathbb{N}$. But

$$\psi(P) = 1 + \sum_{j=1}^{m} (|\Omega_j(P)| - |\Omega_{j-1}(P))| p^j = 1 + \sum_{j=1}^{m} (|\Omega_j(Q)| - |\Omega_{j-1}(Q)|) p^j = \psi(Q),$$

where the second equality holds by the hypothesis (2).

 $(2) \Rightarrow (3)$. Since $|\Omega_i(P)| = |\Omega_i(Q)|$ for all $i \in \mathbb{N}$, we have $\exp(P) = \exp(Q)$. Let $\exp(P) = p^m$. Since P and Q are contained in CP_2 , we have $\exp(\Omega_j(P)) = \exp(\Omega_j(Q)) = p^j$ for all $j \in \mathbb{N}$. So

$$\psi(\Omega_i(P)) = 1 + \sum_{j=1}^{i} (|\Omega_j(P)| - |\Omega_{j-1}(P)|) p^j$$
$$= 1 + \sum_{j=1}^{i} (|\Omega_j(Q)| - |\Omega_{j-1}(Q)|) p^j = \psi(\Omega_i(Q))$$

 $(3) \Rightarrow (2)$. Since $\psi(\Omega_i(P)) = \psi(\Omega_i(Q))$ for all $i \in \mathbb{N}$, we have $\exp(P) = \exp(Q) = p^m$. Let $M = \Omega_{m-1}(P)$ and $N = \Omega_{m-1}(Q)$. By Lemma 2.1 we have

$$\psi(P) = \psi(M) + |M|p^m \left(\frac{|P|}{|M|} - 1\right) = \psi(N) + |N|p^m \left(\frac{|Q|}{|N|} - 1\right) = \psi(Q).$$

Since $\psi(M) = \psi(N)$, we obtain that |N| = |M|. By repeated use of this technique we shall reach the claimed. This completes the proof.

Finally we prove the last main result.

Theorem 2.11. Let P and Q have the same order p^n . Then $\psi(P) = \psi(Q)$ if and only if there is a bijection $f: P \to Q$ such that o(f(x)) = o(x) for all $x \in P$.

PROOF. It is clear that if there is a bijection $f: P \to Q$ such that o(f(x)) = o(x) for all $x \in P$, then $\psi(P) = \psi(Q)$. Conversely suppose that $\psi(P) = \psi(Q)$. We proceed by induction on n. Base step is trivial. By Theorem 2.2 we have $\exp(P) = \exp(Q) = p^m$. It follows from Theorem 2.10 that $\psi(\Omega_{m-1}(P)) = \psi(\Omega_{m-1}(Q))$ and so by inductive hypothesis there is a bijection $f: \Omega_{m-1}(P) \to \Omega_{m-1}(Q)$ such that o(f(x)) = o(x) for all $x \in \Omega_{m-1}(P)$. Theorem 2.10 follows that $|\Omega_m(P)| - |\Omega_{m-1}(P)| = |\Omega_m(Q)| - |\Omega_{m-1}(Q)|$ and hence there is a bijection g from $\Omega_m(P) - \Omega_{m-1}(P)$ to $\Omega_m(Q) - \Omega_{m-1}(Q)$. Define h from P to Q by

$$h(x) = \begin{cases} f(x) & x \in \Omega_{m-1}(P), \\ g(x) & \text{otherwise.} \end{cases}$$

Characterization of p-groups by sum of the element orders

It is easily seen that h is a bijection from P to Q such that o(h(x)) = o(x) for all $x \in P$, as wanted.

ACKNOWLEDGMENT. The authors is indebted to the referee for his/her careful reading and valuable comments. This research was in part supported by a grant from university of Zanjan.

References

- H. AMIRI, S. M. JAFARIAN AMIRI and I. M. ISAACS, Sums of element orders in finite groups, Comm. Algebra 37 (2009), 2978–2980.
- [2] H. AMIRI and S. M. JAFARIAN AMIRI, Sum of element orers on finite groups of the same order, J. Algebra Apply. 2 (2011), 187–190.
- [3] M. TĂRNĂUCEANU and D. G. FODOR, On the sum of element orders of finite abelian groups, Sci. An. Univ. "Al. I. Cuza" Iasi, ser. Math. LX (2014), 1–7.
- M. TĂRNĂUCEANU, Finite groups determined by an inequality of the order of their elements, *Publ. Math. Debrecen* 80 (2012), 457–463.
- [5] R. SCHMIDT, Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics 14, de Gruyter, Berlin, 1994.
- [6] M. SUZUKI, Group Theory, I, II, Springer Verlag, Berlin, 1982, 1986.
- [7] L. WILSON, On the power structure of powerfull p-groups, J. Group Theory 5 (2002), 129–144.

S. M. JAFARIAN AMIRI DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES UNIVERSITY OF ZANJAN ZANJAN IRAN *E-mail:* sm_jafarian@znu.ac.ir

MOHSEN AMIRI DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES UNIVERSITY OF ZANJAN ZANJAN IRAN

E-mail: m.amiri77@gmail.com

(Received September 6, 2013; August 11, 2014)