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Characterization of p-groups by sum of the element orders

By S. M. JAFARIAN AMIRI (Zanjan) and MOHSEN AMIRI (Zanjan)

Abstract. Let G be a finite group. Then we denote ψ(G) =
∑

x∈G o(x) where

o(x) is the order of the element x in G. In this paper we characterize some finite p-groups

(p a prime) by ψ and their orders.

1. Introduction and main results

In what follows all groups are finite and p is a prime.

Given a finite group G, let ψ(H) =
∑

x∈H o(x) for H ⊆ G, where as usual,

o(x) is the order of the element x. In this note, we ask what information about

some classes of p-groups G can be recovered if we know both ψ(G) and |G|. The
starting point for the function ψ is given by the paper [1] which investigates the

maximum of ψ among all groups of the same order. In [2] the authors determined

the structure of the groups which have the minimum sum of the element orders

on all groups of the same order.

Let CP2 be the class of finite groups G such that o(xy) ≤ max{o(x), o(y)}
for all x, y ∈ G. We denote Ωi(G) = ⟨{x ∈ G | xpi

= 1}⟩ for all i ∈ N. Now we

state the first main result as follows.

Theorem 1.1. Suppose that P and Q are contained in CP2 of the same

order pn. Then the following statements are equivalent:

(1) ψ(P ) = ψ(Q).

(2) |Ωi(P )| = |Ωi(Q)| for all i ∈ N.
(3) ψ(Ωi(P )) = ψ(Ωi(Q)) for all i ∈ N.
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Note that the class CP2 of p-groups is more large than the class of abelian

p-groups, regular p-groups (see Theorem 3.14 of [6], II, p. 47) and p-groups whose

subgroup lattices are modular (see Lemma 2.3.5 of [5]). Moreover by the main

theorem in [7], we infer that powerful p-groups for p odd also belong to CP2.

The following is the second main result.

Theorem 1.2. Let P and Q be two finite p-groups of the same order and

Ωm−1(P ) ̸= P , where exp(P ) = pm. If exp(P ) > exp(Q), then ψ(P ) > ψ(Q).

In general, it is not true that if P and Q are p-groups of the same order such

that exp(P ) > exp(Q), then ψ(P ) > ψ(Q). For example consider Q = (C4)
4 and

P = D16 × (C2)
4. The authors would like to thank Prof. E. Khukhru for giving

this example.

But if exp(P ) = exp(Q), then we have the following.

Theorem 1.3. Let P and Q belong to CP2 of the same order and the same

exponent pm. Also suppose that |Ωm−i(P )| = |Ωm−i(Q)| for i = 1, 2, . . . , t. If

|Ωm−t−1(P )| < |Ωm−t−1(Q)|, then ψ(P ) > ψ(Q).

As an application of Theorems 1.1 and 1.2 we have the following.

Theorem 1.4. Let P and Q belong to CP2 of the same order pn. Then

ψ(P ) = ψ(Q) if and only if there is a bijection f : P → Q such that o(f(x)) = o(x)

for all x ∈ P .

2. Proof of the main results

Lemma 2.1. Let P be a finite p-group, exp(P )= pm andM =Ωm−1(P ) ̸=P .

Then ψ(P ) = ψ(M) + |M |pm
( |P |
|M | − 1

)
.

Proof. Suppose that X is a left transversal to M in P containing identity

element. For all y ∈ M and 1 ̸= x ∈ X, we have o(xy) = pm. Therefore

ψ(xM) = |M |pm for all 1 ̸= x ∈ X. This completes the proof. �
Theorem 2.2. Let P and Q be two finite p-groups of order pn and exp(P ) =

pm. If Ωm−1(P ) ̸= P and exp(P ) > exp(Q), then ψ(P ) > ψ(Q).

Proof. Let M = Ωm−1(P ). Then

ψ(P ) = ψ(M) + |M |pm
(

|P |
|M |

− 1

)
> |M |pm

(
|P |
|M |

− 1

)
= pm(|P | − |M |) = pm(pn − |M |) ≥ pm(pn − pn−1) ≥ pnpm−1.

Since exp(Q) ≤ pm−1, we have ψ(Q) < pnpm−1 < ψ(P ). �
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We observe that if a finite group G belongs to CP2, then for every x, y ∈ G

satisfying o(x) ̸= o(y) we have o(xy) = max{o(x), o(y)}.
We shall need the following theorem about the groups belonging to CP2.

Theorem 2.3 (See Theorem D in [4]). A finite group G is contained in CP2

if and only if one of the following statements holds:

(1) G is a p-group and Ωn(G) = {x ∈ G | xpn

= 1}.

(2) G is a Frobenius group of order pαqβ , p < q, with kernel F (G) of order pα

and cyclic complement.

In the sequel assume that P and Q are p-groups belonging to CP2.

Lemma 2.4. If |Ω1(P )| = pr, then ψ(P ) = 1− p+ pr+1ψ
(

P
Ω1(P )

)
.

Proof. Suppose that Ω1(P ) = N . Then we have ⟨x⟩ ∩ N ̸= 1 for all

1 ̸= x ∈ P , Since
⟨
x

o(x)
p
⟩
is a subgroup of ⟨x⟩ ∩ N . Let X be a left transversal

to N in P such that 1 ∈ X. Suppose that 1 ̸= x ∈ X. Then o(x) ≥ p2 since N

does not contain x. If y ∈ N , then by Theorem 2.3 part one exp(N) = p and so

we have o(xy) = o(x). This implies that

ψ(P ) =
∑
x∈X

ψ(xN) = ψ(N) + |N |
∑

1 ̸=x∈X

o(x)

If 1 ̸= x ∈ X, then ⟨x⟩ ∩N ̸= 1 which follows that o(x) = po(xN). Hence

ψ(P ) = ψ(N) + |N |
∑

1̸=x∈X

o(x) = ψ(N) + |N |p
∑

1̸=x∈X

o(xN)

= ψ(N) + |N |p
(
ψ

(
P

N

)
− 1

)
.

Since |N | = pr, we have ψ(N) = pr+1−p+1, which completes the proof. �

Lemma 2.5. If ψ(P ) = ψ(Q), then |Ω1(P )| = |Ω1(Q)|.

Proof. Suppose that Ω1(P )=N and Ω1(Q)=M . If |N |= pr and |M |= pt,

then it follows from previous lemma that pr+1ψ
(
P
N

)
= pt+1ψ

(
Q
M

)
. If r+1 < t+1,

then pr+1ψ
(
P
N

)
≡ 0 (mod pt+1). Since P

N is a p-group, we have ψ
(
P
N

)
= 1 + kp

and so ψ
(
P
N

)
= 1 + kp ≡ 1 ≡ 0 (mod p), a contradiction. Thus r = t. �

Lemma 2.6. We have Ωi

(
P

Ω1(P )

)
= Ωi+1(P )

Ω1(P ) for all i ∈ N.
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Proof. Since Ωi+1(P )
Ω1(P ) ≤ Ωi

(
P

Ω1(P )

)
, it is enough to show that Ωi

(
P

Ω1(P )

)
≤

Ωi+1(P )
Ω1(P ) . Suppose that tΩ1(P ) ∈ Ωi

(
P

Ω1(P )

)
. Then tp

i ∈ Ω1(P ) and since

exp(Ω1(P ))= p, we have tp
i+1

=1. Therefore t∈Ωi+1(P ) and so tΩ1(P )∈ Ωi+1(P )
Ω1(P ) .

�
Corollary 2.7. P

Ω1(P ) belongs to CP2.

Proof. It follows from previous lemma that Ωi

(
P

Ω1(P )

)
= Ωi+1(P )

Ω1(P ) , for all

i∈N. Since P belongs to CP2, we have Ωi+1(P )= {x ∈ G | xpi+1

=1} for all i∈N.
Since xp

i ∈ Ω1(P ), we see Ωi+1(P )
Ω1(P ) = {xΩ1(P ) ∈ P

Ω1(P ) | xpi

Ω1(P ) = Ω1(P )} for

all i ∈ N by Theorem 2.3 and so P
Ω1(P ) is contained in CP2. �

Theorem 2.8. Let P and Q have the same order pn and the same ex-

ponent pm and suppose that |Ωm−i(P )| = |Ωm−i(Q)| for i = 0, 1, 2, . . . , t. If

|Ωm−t−1(P )| < |Ωm−t−1(Q)|, then ψ(P ) > ψ(Q).

Proof. If P ∈ CP2 and exp(P ) = pm, then for all i < m, Ωi(P ) ̸= P and

1 < Ω1(P ) < Ω2(P ) < · · · < Ωm(P ) = P.

Note that for all i ≤ j, we have Ωi(Ωj(P )) = Ωi(P ). Using Lemma 2.1 we

can get

ψ(P ) = ψ(Ωm−t(P )) +
t∑

i=1

|Ωm−i(P )|pm−i+1

(
|Ωm−i+1(P )|
|Ωm−i(P )|

− 1

)
and

ψ(Q) = ψ(Ωm−t(Q)) +

t∑
i=1

|Ωm−i(Q)|pm−i+1

(
|Ωm−i+1(Q)|
|Ωm−i(Q)|

− 1

)
.

Since

t∑
i=1

|Ωm−i(P )|pm−i+1

(
|Ωm−i+1(P )|
|Ωm−i(P )|

− 1

)

=
t∑

i=1

|Ωm−i(Q)|pm−i+1

(
|Ωm−i+1(P )|
|Ωm−i(Q)|

− 1

)
,

it is enough to prove that ψ(Ωm−t(P )) > ψ(Ωm−t(Q)). Suppose that

|Ωm−t−1(Q)| = pa|Ωm−t−1(P )|, where a ≥ 1. By Lemma 2.1, we have

ψ(Ωm−t(P ))− ψ(Ωm−t(Q)) = ψ(Ωm−t−1(P ))− ψ(Ωm−t−1(Q))

+ pm−t(|Ωm−t−1(Q)| − |Ωm−t−1(P )|)

> pm−t(|Ωm−t−1(Q)| − |Ωm−t−1(P )|)− ψ(Ωm−t−1(Q))
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= pm−t−a|Ωm−t−1(Q)|(pa − 1)− ψ(Ωm−t−1(Q))

≥ pm−t−1(p− 1)|Ωm−t−1(Q)| − ψ(Ωm−t−1(Q))

≥ ψ(Ωm−t−1(Q))− ψ(Ωm−t−1(Q)) = 0.

This completes the proof. �

Using Lemmas 2.4 and 2.5 we can propose another proof for Corollary 6

in [3].

Corollary 2.9. Let P and Q be abelian p-groups of the same order. Then

ψ(P ) = ψ(Q) if and only if P ∼= Q.

Proof. It is sufficient to show that if ψ(P ) = ψ(Q), then P ∼= Q. We prove

this by induction on |P |. Base step of induction is trivial. Let |Ω1(P )| = pt and

|Ω1(Q)| = pr. It follows from Lemma 2.4 that ψ(P ) = 1 − p + pr+1ψ
(

P
Ω1(P )

)
and ψ(Q) = 1 − p + pt+1ψ

(
Q

Ω1(Q)

)
. We have r = t by Lemma 2.5. Therefore

ψ
(

P
Ω1(P )

)
= ψ

(
Q

Ω1(Q)

)
. So we have P

Ω1(P )
∼= Q

Ω1(Q) by induction hypothesis which

implies that P ∼= Q. �

The above result is not true for regular p-groups or p-groups of nilpotent

class 2. For example there exists a regular 3-group P such that |P | = 27 and

exp(P ) = 3, but P is not abelian, so ψ(P ) = 79 = ψ((C3)
3) but P is not

isomorphic to (C3)
3.

Now we are ready to prove Theorem 1.1.

Theorem 2.10. Suppose that P and Q have the same order. Then the

following statements are equivalent:

(1) ψ(P ) = ψ(Q).

(2) |Ωi(P )| = |Ωi(Q)| for all i ∈ N.

(3) ψ(Ωi(P )) = ψ(Ωi(Q)) for all i ∈ N.

Proof. (1) ⇒ (2). We prove by induction on |P |. Suppose that P and Q

are contained in CP2 and ψ(P ) = ψ(Q). It follows from Lemma 2.4 that ψ(P ) =

1 − p + pr+1ψ
(

P
Ω1(P )

)
and ψ(Q) = 1 − p + pt+1ψ

(
Q

Ω1(Q)

)
where |Ω1(P )| = pr

and |Ω1(Q)| = pt. Since ψ(P ) = ψ(Q), we obtain r = t by Lemma 2.5 and so

ψ
(

P
Ω1(P )

)
= ψ( Q

Ω1(Q) ). By corollary 2.7 we have P
Ω1(P ) and Q

Ω1(Q) are in CP2.

Since
∣∣ P
Ω1(P )

∣∣ =
∣∣ Q
Ω1(Q)

∣∣, the induction assumption yields that
∣∣Ωi

(
P

Ω1(P )

)∣∣ =∣∣Ωi

(
Q

Ω1(Q)

)∣∣ for all i ∈ N. Therefore |Ωi(P )| = |Ωi(Q)| by Lemmas 2.3 and 2.4.
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(2) ⇒ (1). Let exp(P ) = pm. By Theorem 2.2, we have exp(Q) = pm. Since

P and Q are contained in CP2, we have exp(Ωj(P )) = exp(Ωj(Q)) = pj for all

j ∈ N. But

ψ(P ) = 1+
m∑
j=1

(|Ωj(P )|−|Ωj−1(P ))|pj = 1+
m∑
j=1

(|Ωj(Q)|−|Ωj−1(Q)|)pj = ψ(Q),

where the second equality holds by the hypothesis (2).

(2) ⇒ (3). Since |Ωi(P )| = |Ωi(Q)| for all i ∈ N, we have exp(P ) = exp(Q).

Let exp(P ) = pm. Since P and Q are contained in CP2, we have exp(Ωj(P )) =

exp(Ωj(Q)) = pj for all j ∈ N. So

ψ(Ωi(P )) = 1 +

i∑
j=1

(|Ωj(P )| − |Ωj−1(P ))|pj

= 1 +
i∑

j=1

(|Ωj(Q)| − |Ωj−1(Q)|)pj = ψ(Ωi(Q)).

(3) ⇒ (2). Since ψ(Ωi(P )) = ψ(Ωi(Q)) for all i ∈ N, we have exp(P ) =

exp(Q) = pm. Let M = Ωm−1(P ) and N = Ωm−1(Q). By Lemma 2.1 we have

ψ(P ) = ψ(M) + |M |pm
(

|P |
|M |

− 1

)
= ψ(N) + |N |pm

(
|Q|
|N |

− 1

)
= ψ(Q).

Since ψ(M) = ψ(N), we obtain that |N | = |M |. By repeated use of this

technique we shall reach the claimed. This completes the proof. �

Finally we prove the last main result.

Theorem 2.11. Let P and Q have the same order pn. Then ψ(P ) = ψ(Q) if

and only if there is a bijection f : P → Q such that o(f(x)) = o(x) for all x ∈ P .

Proof. It is clear that if there is a bijection f : P → Q such that o(f(x)) =

o(x) for all x ∈ P , then ψ(P ) = ψ(Q). Conversely suppose that ψ(P ) = ψ(Q).

We proceed by induction on n. Base step is trivial. By Theorem 2.2 we have

exp(P ) = exp(Q) = pm. It follows from Theorem 2.10 that ψ(Ωm−1(P )) =

ψ(Ωm−1(Q)) and so by inductive hypothesis there is a bijection f : Ωm−1(P ) →
Ωm−1(Q) such that o(f(x)) = o(x) for all x ∈ Ωm−1(P ). Theorem 2.10 follows

that |Ωm(P )| − |Ωm−1(P )| = |Ωm(Q)| − |Ωm−1(Q)| and hence there is a bijection

g from Ωm(P )− Ωm−1(P ) to Ωm(Q)− Ωm−1(Q). Define h from P to Q by

h(x) =

{
f(x) x ∈ Ωm−1(P ),

g(x) otherwise.
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It is easily seen that h is a bijection from P to Q such that o(h(x)) = o(x) for all

x ∈ P , as wanted. �

Acknowledgment. The authors is indebted to the referee for his/her care-

ful reading and valuable comments. This research was in part supported by a

grant from university of Zanjan.

References

[1] H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, Sums of element orders in finite groups,

Comm. Algebra 37 (2009), 2978–2980.

[2] H. Amiri and S. M. Jafarian Amiri, Sum of element orers on finite groups of the same
order, J. Algebra Apply. 2 (2011), 187–190.
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