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Double analogue of Hamburger’s theorem

By SOICHI IKEDA (Nagoya) and KANEAKI MATSUOKA (Nagoya)

Abstract. We give an analogue of Hamburger’s theorem for the Euler double zeta

function.

1. Introduction

Let s = σ + it, s1 = σ1 + it1, s2 = σ2 + it2 with σ, σ1, σ2, t, t1, t2 ∈ R. The

Riemann zeta function ζ(s) satisfies the functional equation

ζ(s) = χ(s)ζ(1− s), (1)

where

χ(s) = 2(2π)s−1Γ(1− s) sin

(
πs

2

)
and Γ(s) is the gamma function. The following theorem is well-known as a char-

acterization of ζ(s).

Hamburger’s theorem (see, for example, p. 31 in [4]). Let G(s) be an

integral function of finite order, P (s) a polynomial, and f(s) = G(s)/P (s), and

let

f(s) =

∞∑
n=1

an
ns

be absolutely convergent for σ > 1. Let α > 0 and

f(s) = χ(s)g(1− s),
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where

g(1− s) =

∞∑
n=1

bn
n1−s

,

the series being absolutely convergent for σ < −α. Then f(s) = Cζ(s), where C

is a constant.

The purpose of this paper is to give an analogue of Hamburger’s theorem for

the Euler double zeta function.

The Euler double zeta function ζ2(s1, s2) is defined by

ζ2(s1, s2) =
∑

1≤m<n

1

ms1ns2
(σ1 + σ2 > 2, σ2 > 1)

and continued meromorphically on C2 (see [1]). The functions ζ(s) and ζ2(s1, s2)

satisfy the functional relation

ζ2(s1, s2) + ζ2(s2, s1) = ζ(s1)ζ(s2)− ζ(s1 + s2) (2)

for s1, s2 ∈ C. On the other hand Matsumoto obtained the following result

in [3].

Let

g(s1, s2) = ζ2(s1, s2)−
Γ(1− s1)

Γ(s2)
Γ(s1 + s2 − 1)ζ(s1 + s2 − 1).

Let

Ψ(a, c;x) =
1

Γ(a)

∫ ∞eiϕ

0

e−xyya−1(1 + y)c−a−1dy

be the confluent hypergeometric function, where ℜa > 0, −π < ϕ < π, |ϕ +

arg x| < π/2. We use the notation σl(k) =
∑

d|k d
l.

Matsumoto’s theorem. We have

g(s1, s2)

(2π)s1+s2−1Γ(1− s1)
=

g(1− s2, 1− s1)

is1+s2−1Γ(s2)
+2i sin

(
π

2
(s1+s2−1)

)
F+(s1, s2), (3)

where i =
√
−1 = exp(πi/2) and F+(u, v) is the series defined by

F+(u, v) =

∞∑
k=1

σu+v−1(k)Ψ(v, u+ v; 2πik). (4)

The series (4) is convergent only in the region ℜu < 0, ℜv > 1, but it can be

continued meromorphically to the whole C2 space.
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The equation (3) is a functional equation for ζ2(s1, s2).

Moreover, Komori, Matsumoto and Tsumura obtained the following re-

sult in [2].

Let ω1, ω2 ∈ C and

ζ2(s1, s2;ω1, ω2) =
∞∑

m=1

1

(mω1)s1

∞∑
n=1

1

(mω1 + nω2)s2
,

where zs = exp(s log z), log z = log |z| + i arg z and −π < arg z ≤ π for z ∈ C.
Note that ζ2(s1, s2; 1, 1) = ζ2(s1, s2). Let

g0(s1, s2;ω1, ω2) =
Γ(1− s1)

Γ(s2)
Γ(s1 + s2 − 1)ζ(s1 + s2 − 1)ω−1

1 ω1−s1−s2
2 .

Theorem (Komori, Matsumoto and Tsumura). For ω1, ω2∈C with ℜω1 > 0,

ℜω2 > 0, the hyperplane

Ω2k+1 = {(s1, s2) ∈ C2 | s1 + s2 = 2k + 1} (k ∈ Z \ {0})

is not a singular locus of ζ2(s1, s2;ω1, ω2). On this hyperplane the following

functional equation holds:(
2πi

ω1ω2

) 1−s1−s2
2

Γ(s2){ζ2(s1, s2;ω1, ω2)− g0(s1, s2;ω1, ω2)}

=

(
2πi

ω1ω2

)s1+s2−1
2

Γ(1−s1){ζ2(1−s2, 1−s1;ω1, ω2)−g0(1−s2, 1−s1;ω1, ω2)} (5)

for (s1, s2) ∈ Ω2k+1 (k ∈ Z \ {0}).

The equation (5) is a functional equation for ζ2(s1, s2;ω1, ω2) on the hyper-

plane Ω2k+1 (k ∈ Z \ {0}). In the case ω1 = ω2 = 1 we have

g(s1, s2)

(2π)s1+s2−1Γ(1− s1)
=

g(1− s2, 1− s1)

is1+s2−1Γ(s2)

on the hyperplane Ω2k+1 (k ∈ Z \ {0}). Therefore we see that

2i sin

(
π

2
(s1 + s2 − 1)

)
F+(s1, s2) = 0 (6)

on the hyperplane Ω2k+1 (k ∈ Z \ {0}).
The following is our main result. The cardinal number of the set A is denoted

by |A|.
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Theorem 1. Let G(s) be an integral function of finite order, P (s) a poly-

nomial, and f(s) = G(s)/P (s), and let

f(s) =
∞∑

n=1

an
ns

be absolutely convergent for σ > 1. Let f2(s1, s2) be a meromorphic function on

C2. Let

f2(s1, s2) + f2(s2, s1) = f(s1)f(s2)− f(s1 + s2) (7)

and

1

(2π)s1+s2−1Γ(1− s1)

(
f2(s1, s2)−

Γ(1− s1)

Γ(s2)
Γ(s1 + s2 − 1)f(s1 + s2 − 1)

)
=

1

is1+s2−1Γ(s2)

(
f2(1− s2, 1− s1)−

Γ(s2)

Γ(1− s1)
Γ(1− s1 − s2)f(1− s1 − s2)

)
+ 2i sin

(
π

2
(s1 + s2 − 1)

)
F+(s1, s2) (8)

in the C2 space. Let f(2) = −2π2f(−1) and

lim
s→−2

Γ(s)f(s) = −f(3)

8π2
= −ζ(3)

8π2
. (9)

Assume that at least one of the following conditions (a) or (b) holds.

(a) In the closed vertical strip D = {s ∈ C | 2 ≤ σ ≤ 4}, ζ(1−s) ≪ |f(1−s)|
and |{s ∈ D | f(1− s) = 0}| ≤ 1.

(b) There exists a constant c ∈ C \ {0} such that

c = lim
s→+∞

χ(s)f(1− s),

where s ∈ R.
Then f(s) = ζ(s) and f2(s1, s2) = ζ2(s1, s2).

Note that both f and f2 are unknown functions in Theorem 1. This implies

that by using (2) and (3) we can obtain a characterization of both ζ and ζ2.

We do not assume f(s) = χ(s)f(1−s) in Theorem 1. However, we can obtain

f(s) = χ(s)f(1− s) from functional equations (7) and (8). This is a key step of

the proof of Theorem 1.

It seems that the choice of special values of f(s) in the assumptions of Theo-

rem 1 can be replaced by other special values. In some sense, it is indeed possible,

but there is a problem. We will explain this point after the proof of Theorem 1

(see Remark 2).
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2. Lemmas for the proof of Theorem 1

In this section, we collect some auxiliary results.

Lemma 1. Let f and g be meromorphic functions on C. Assume that the

functions f and g satisfy the functional equations

f(s)f(1− s) = g(s)g(1− s) = 1 (10)

and

f(s)f(k − s) = g(s)g(k − s) (11)

for some k ∈ R \ {1}. If there exists a σ0 ∈ R such that f(s)/g(s) is bounded in

the closed vertical strip D = {s ∈ C | σ0 ≤ ℜs ≤ σ0+ |k−1|}, then f(s) = ±g(s).

Proof. We define r(s) = f(s)/g(s). By using (10) and (11) we have

r(s) =
g(k − s)

f(k − s)
=

f(1− (k − s))

g(1− (k − s))
= r(s− (k − 1)),

namely, r(s) is a periodic function with period |k−1|. Since r(s) is bounded in D,

r(s) is a constant by Liouville’s theorem. On the other hand, in the case s = 1/2,

we have f(1/2)2 = g(1/2)2 = 1. This implies the lemma. �

Lemma 2. Let T > 0. Let h(s) be a meromorphic function on C and

r(s) := h(s)/h(1 − s). Assume that r(s + T ) = r(s) holds for all s ∈ C. If there

exist

lim
s→+∞,s∈R

h(s)

and

lim
s→+∞,s∈R

h(1− s) ̸= 0,

then r(s) = 1 for all s ∈ C.

Proof. We assume s ∈ R and k ∈ N. We define

c := lim
s→+∞,s∈R

h(s).

Since we have r(1/2) = 1, we obtain

c = lim
k→+∞

h(1/2 + kT ) = lim
k→+∞

r(1/2 + kT )h(1/2− kT ) = lim
k→+∞

h(1/2− kT ).

Therefore we obtain lims→+∞ h(1 − s) = c ̸= 0. If r(s) is not a constant, then

there exists an x such that r(x) ̸= 1. Hence, we have

c = lim
k→+∞

h(x+ kT ) = lim
k→+∞

r(x+ kT )h(1− x− kT ) = r(x)c,

but this is impossible. �



94 Soichi Ikeda and Kaneaki Matsuoka

Note that Lemma 1 and Lemma 2 correspond to assumptions (a) and (b) in

Theorem 1, respectively.

Lemma 3. Let g(s1, s2) be a meromorphic function on C2. The solution of

the functional equation

g(s1, s2) + g(s2, s1) = ζ(s1)ζ(s2)− ζ(s1 + s2) (12)

is

g(s1, s2) = ζ2(s1, s2) + φ(s1, s2),

where φ(s1, s2) is a meromorphic function which satisfies φ(s2, s1) = −φ(s1, s2).

Proof. Let g be an arbitrary solution of (12). We define

F (s1, s2) = g(s1, s2)− ζ2(s1, s2).

By (2) and (12) we have

F (s1, s2) = g(s1, s2)− ζ2(s1, s2) = ζ2(s2, s1)− g(s2, s1).

This implies F (s2, s1) = −F (s1, s2). Therefore we can write

g(s1, s2) = ζ2(s1, s2) + φ(s1, s2), (13)

where φ(s1, s2) is a meromorphic function which satisfies φ(s2, s1) = −φ(s1, s2).

On the other hand, (13) actually satisfies (12). �

Remark 1. Let f(s) be a meromorphic function on C. Assume that f(s) does

not have a pole at s = 0. If f(s) satisfies the functional equation

ζ2(s1, s2) + ζ2(s2, s1) = f(s1)f(s2)− f(s1 + s2), (14)

then f(s) = ζ(s).

This claim implies that ζ(s) can be characterized by the functional equation

(14). We can prove this claim as follows.

By (2) we have

f(s1)f(s2)− f(s1 + s2) = ζ(s1)ζ(s2)− ζ(s1 + s2), (15)

and by setting s1 = 0 and s2 = s, we obtain

f(s)(f(0)− 1) = ζ(s)(ζ(0)− 1).
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Since ζ(0) = −1/2, we obtain

f(s) = Cζ(s), (16)

where C is a constant. By substituting (16) into (15), we have

(C2 − 1)ζ(s1)ζ(s2) = (C − 1)ζ(s1 + s2),

and with s1 = s2 = s,

(C2 − 1)ζ(s)2 = (C − 1)ζ(2s),

which is possible if and only if C = 1. Hence, we obtain f(s) = ζ(s).

3. Proof of Theorem 1

Now, we prove our main result.

Proof. We define C(s1, s2) = Γ(s2)/Γ(1 − s1). In the case s1 + s2 = 3 we

have

C(s1, s2) =
Γ(3− s1)

Γ(1− s1)
= (s1 − 1)(s1 − 2).

By this relation, we see C(s2, s1) = C(s1, s2) in the case s1 + s2 = 3. On the

other hand, we can easily see χ(s)χ(3 − s) = −4π2((s − 1)(s − 2))−1 by the

definition of χ(s). Therefore, in the case s1 + s2 = 3, we obtain χ(s1)χ(s2) =

−4π2(C(s1, s2))
−1. Now, we assume s1 + s2 = 3. By (6) we obtain

− 1

4π2
C(s1, s2)(f2(s1, s2)−C(s1, s2)

−1f(2)) = f2(1− s2, 1− s1) +C(s1, s2)
f(3)

8π2
.

By interchanging s1 and s2, we obtain

− 1

4π2
C(s1, s2)(f2(s2, s1)−C(s1, s2)

−1f(2)) = f2(1− s1, 1− s2) +C(s1, s2)
f(3)

8π2
.

By adding the last two equations and using (7), we obtain

− 1

4π2
C(s1, s2)(f(s1)f(s2)− f(3)− 2f(2)C(s1, s2)

−1)

= f(1− s1)f(1− s2)− f(−1) + 2C(s1, s2)
f(3)

8π2
,
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namely,

f(s1)f(3− s1) = −4π2(C(s1, s2))
−1f(1− s1)f(s1 − 2)

= χ(s1)χ(3− s1)f(1− s1)f(s1 − 2) (17)

by f(2) = −2π2f(−1) and (9). If we define K(s) = f(s)/f(1− s), then we have

K(s)K(1− s) = 1 and, by (17),

χ(s)χ(3− s) =
f(s)f(3− s)

f(1− s)f(s− 2)
= K(s)K(3− s). (18)

On the other hand, if we define r(s) = K(s)/χ(s) and h(s) = f(s)/ζ(s), then we

have

r(s) =
f(s)

ζ(s)
· ζ(1− s)

f(1− s)
(19)

by the definition of r(s),

r(s) =
χ(3− s)

K(3− s)
= r(s− 2) (20)

by (18) and the definition of r(s) and

h(s) = r(s)h(1− s) (21)

by (1) and the definition of K(s).

First we assume that (a) holds. Since ζ(s) ≫ 1 and f(s) ≪ 1 in the case

σ ≥ 2, f(s)/ζ(s) is bounded in D. By (a) and (9), f ′(−2) ̸= 0 and f(1−s) = 0 in

D if and only if s = 3. Therefore ζ(1− s)/f(1− s) is bounded in D, namely, by

(19), r(s) is also bounded in D. Hence, we obtain K(s) = ±χ(s) by setting f = K

and g = χ in Lemma 1, and we obtain K(s) = χ(s) by K(1/2) = χ(1/2) = 1.

This implies f = ζ by Hamburger’s theorem and (9).

Next we assume that (b) holds. Note that

h(s) =
∞∑

n=1

∑
d|n adµ(n/d)

ns

holds, where µ is the Möbius function. By (b) we have

lim
s→+∞

h(1− s) = lim
s→+∞

χ(s)f(1− s)

ζ(s)
= c ̸= 0
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for s ∈ R. Since (20) and (21) hold, we obtain K(s) = χ(s) by Lemma 2. This

implies f = ζ by Hamburger’s theorem and (9).

Hereafter, we assume s1, s2 ∈ C, namely, we do not assume s1 + s2 = 3. If

f = ζ, then, by Lemma 3, we can write

f2(s1, s2) = ζ2(s1, s2) + φ(s1, s2),

where φ is a meromorphic function which satisfies φ(s2, s1) = −φ(s1, s2). The

remaining task is to prove φ = 0. Note that the pair f2 = ζ2 and f = ζ is a

solution of (8) by Matsumoto’s theorem. By subtracting (3) from (8) we obtain

φ(s1, s2)

(2π)s1+s2−1Γ(1− s1)
=

φ(1− s2, 1− s1)

is1+s2−1Γ(s2)
.

If we assume φ ̸= 0, then we can define

G(s1, s2) =
φ(s1, s2)

φ(1− s2, 1− s1)
=

(2π)s1+s2−1Γ(1− s1)

is1+s2−1Γ(s2)
,

and we have

G(s2, s1) =
−φ(s1, s2)

−φ(1− s2, 1− s1)
= G(s1, s2).

However, this implies that

Γ(1− s1)

Γ(s2)
=

Γ(1− s2)

Γ(s1)

holds, namely, sinπs1 = sinπs2 holds for all s1, s2 ∈ C. This is impossible. This

completes the proof. �

Remark 2. We guess that if assumption (b) holds, then the choice of special

values of f(s) in Theorem 1 can be replaced by other special values, namely,

we choose hyperplane s1 + s2 = 2k + 1 (0 ̸= k ∈ Z)instead of the hyperplane

s1 + s2 = 3 in the proof of Theorem 1. However, if assumption (b) does not hold,

then assumption (a) must be replaced by a more complicate assumption, because

we use (9) when we determine the zeros of f(1− s) in D.
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