

Title: Characterization of additive maps $\xi\text{-Lie}$ derivable at zero on von Neumann Algebras

Author(s): Xiaofei Qi, Jia Ji and Jinchuan Hou

Let \mathcal{M} be any von Neumann algebra with the center $\mathcal{Z}(\mathcal{M})$. For any scalar ξ , denote by $[A, B]_{\xi} = AB - \xi BA$ the ξ -Lie product of $A, B \in \mathcal{M}$. Assume that $L : \mathcal{M} \to \mathcal{M}$ is an additive map. It is shown that, if \mathcal{M} has no central summands of type I_1 or type I_2 , then L satisfies L([A, B]) = [L(A), B] + [A, L(B)]whenever [A, B] = 0 if and only if there exists an element $Z_0 \in \mathcal{Z}(\mathcal{M})$, an additive map $h : \mathcal{M} \to \mathcal{Z}(\mathcal{M})$ and an additive derivation $\varphi : \mathcal{M} \to \mathcal{M}$ such that $L(A) = \varphi(A) + h(A) + Z_0A$ for all $A \in \mathcal{M}$; if \mathcal{M} has no central summands of type I_1 , then L satisfies $L([A, B]_{\xi}) = [L(A), B]_{\xi} + [A, L(B)]_{\xi}$ whenever $[A, B]_{\xi} = 0$ with $\xi \neq 1$ if and only if $L(I) \in \mathcal{Z}(\mathcal{M})$ and there exists an additive derivation $\varphi : \mathcal{M} \to \mathcal{M}$ such that $\varphi(\xi A) = \xi \varphi(A)$ and $L(A) = \varphi(A) + L(I)A$ for all $A \in \mathcal{M}$. A result in [22] is improved for prime algebra case.

Address:

Xiaofei Qi Department of Mathematics Shanxi University Taiyuan, 030006 P.R. China

Address:

Jia Ji Department of Mathematics Shanxi University Taiyuan 030006 P.R. China

Address:

Jinchuan Hou Department of Mathematics Taiyuan University of Technology Taiyuan 030024 P. R. China and Department of Mathematics Shanxi University Taiyuan 030006 P.R. China