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Characterization of additive maps £-Lie derivable at zero
on von Neumann Algebras

By XIAOFEI QI (Taiyuan) JIA JI (Taiyuan) and JINCHUAN HOU (Taiyuan)

Abstract. Let M be any von Neumann algebra with the center Z(M). For any
scalar £, denote by [A, Ble = AB — (BA the &-Lie product of A, B € M. Assume that
L : M — M is an additive map. It is shown that, if M has no central summands of type
I, or type I, then L satisfies L([A, B]) = [L(A), B] + [A, L(B)] whenever [A, B] =0 if
and only if there exists an element Zy € Z(M), an additive map h : M — Z(M) and an
additive derivation ¢ : M — M such that L(A) = ¢(A)+h(A)+ZoAfor all A € M; if M
has no central summands of type I1, then L satisfies L([A, Bl¢) = [L(A), Ble+[A, L(B)]e
whenever [A, B]e = 0 with £ # 1 if and only if L(I) € Z(M) and there exists an additive
derivation ¢ : M — M such that p(§A4) = {p(A) and L(A) = ¢(A) + L(I)A for all
A € M. A result in [22] is improved for prime algebra case.

1. Introduction

Let R be an associative ring. Recall that an additive map ¢ on R is called
an additive derivation if §(AB) = §(A)B + Ad(B) for all A, B € R; is called an
additive Jordan derivation if 6(AB+BA) = §(A)B+Ad(B)+(B)A+Bj(A) for all
A, B € R (equivalently, §(A?) = §(A)A+ AS(A) for all A € R if the characteristic
of R is not 2); is called a Lie derivation if §([A, B]) = [6(A), B] + [A,§(B)] for
all A,B € R, where [A,B] = AB — BA is the Lie product of A and B. The
structure of derivations, Jordan derivations and Lie derivations had been studied
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intensively for many years (for example, see [1], [3], [4], [7], [10], [16] and the
references therein).

Let A be an algebra over a field F. For a scalar £ € F and for A, B € A,
we say that A commutes with B up to a factor £ if AB = £BA. The notion
of commutativity up to a factor for pairs of operators is an important concept
and has been studied in the context of operator algebras and quantum groups.
Motivated by this, a binary operation [A, B]le = AB — {BA, called &-Lie product
of A and B, was introduced in [19]. An additive map L : A — A is called an
additive ¢-Lie derivation if L([A, Bl¢) = [L(A), Bl + [A, L(B)]¢ for all A, B € A.
This conception unifies the above three notions. It is clear that a £-Lie derivation
is a derivation if £ = 0; is a Lie derivation if £ = 1; is a Jordan derivation if
& = —1. The structure of £&-Lie derivations on various operator algebras was also
discussed by several authors (see [9], [14], [19], [23], [25]).

Recently, the question of under what conditions an additive map becomes a
derivation attracted much attention of many researchers (see [5], [8], [12], [13],
[18] and the references therein). For ¢-Lie derivations, an additive (a linear)
map L on A is said to be &-Lie derivable at a point Z € A if L([A,Bl¢) =
[L(A), Ble+[A, L(B)]¢ for any A, B € Awith [A, Bl = Z. Clearly, this definition
is only valid for ¢-Lie commutators, that is, the elements of the form Z = [A, Ble.
For instance, if Z = I and & = 1, as the unit I may not be a commutator in
general, there is no sense to define that L is Lie derivable at I. Also, L is a £-Lie
derivation if and only if it is &-Lie derivable at every &-Lie commutator Z. If
7 € A satisfies that, for any additive map L : A — A, L is £{-Lie derivable at
the point Z will imply that L is a &-Lie derivation, we say that Z is a full &-Lie
derivable point of A. The following problem is natural.

Problem. How to characterize the additive (linear) maps that are £-Lie
derivable at some {-Lie commutator? Are there any £-Lie commutators that are
full ¢&-Lie derivable points?

Since zero is a £-Lie commutator for any £ and any algebra, as a start, the
above problem has been attacked by several researchers for maps &-Lie derivable at
zero. QI and Hou [20] characterized the linear maps between [J-subspace lattice
algebras that Lie derivable at zero. In [22] they consider further the additive maps
&-Lie derivable at zero in pure algebra frame. Let A be a unital prime algebra
over a field F containing a non-trivial idempotent P. Denote by Z(.A) and C the
center of A and the extended centroid of A, respectively. Assume that £ € F and
L: A— Ais an additive map. Q1, Cul and Hou [22] showed that, if L is &Lie
derivable at zero, then there exists an additive derivation 7 : A — C such that (1)
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if € =0, then L(I) € Z(A) and L(A) =7(A)+ L(I)Aforall Ac A; (2)if =1
and A is of characteristic not 2 with deg(A) > 2, then L(A) = 7(A4) + aA +v(A4)
for all A € A, where o € C and v is an additive map from A into C; (3) if £ = —1,
L(I) € Z(A) and A is of characteristic not 2, then L(A) = 7(A4) + L(I)A for all
Ae A; (4)if £ #£0,£1, L(I) € Z(A) and L(€A) = £L(A) for each A € A, then
L(A) = 7(A) + L(I)A for all A € A. Since factor von Neumann algebras are
prime, as a consequence of the result for prime algebras, all additive maps &-Lie
derivable at zero on factor von Neumann algebras are characterized. However the
proof in [22] for factor von Neumann algebras is not valid anymore for non-factor
von Neumann algebras. So, it is natural to ask what happens if the concerned
von Neumann algebra is not a factor.

Let X be a Banach space with dimX > 3 and B(X) the algebra of all
bounded linear operators acting on X. We mention here that, Lu and JING
in [15] introduced another kind of Lie derivable at zero product (idempotent
product) for a linear map and showed that, if ¢ : B(X) — B(X) is a linear map
satisfying ([A, B]) = [0(A), B] + [A4,d(B)] for any A, B € B(X) with AB =0
(resp. AB = P, where P is a fixed nontrivial idempotent), then § = 7 + v,
where 7 is a derivation of B(X) and v : B(X) — CI is a linear map vanishing
at commutators [A4, B] with AB = 0 (resp. AB = P), particularly, § is a Lie
derivation if v vanishes on all commutators. Later, this result was generalized to
the additive maps on triangular algebras, prime rings and general von Neumann
algebras in [11], [21] and [24] respectively. Let M be a von Neumann algebra
without central summands of type I; and L : M — M be an additive map. In
[24], Q1 and Hou showed that, L satisfies L([A, Bl¢) = [L(A), Bl¢ + [A, L(B)]¢
for any A, B with AB = 0 if and only if there exists an additive derivation ¢
and an additive map f : M — Z(M) that vanishes each commutator [A, B]
whenever AB = 0, such that (1) £ =1, L = ¢+ f; (2) £ = -1, L = ¢; (3)
=0, L(A) = p(A) + L(I)A for all 4; (4) £ & {0,£1}, p(EA) = EL(A) and
L(A) = p(A) + L(I)A for all A.

The purpose of the present paper is to give a complete characterization of
additive maps &-Lie derivable at zero on von Neumann algebras without central
summands of type I; for any scalar £&. We remark here that the question of
characterizing additive maps J that are &-Lie derivable at zero is relatively more
difficult than the question of characterizing additive maps satistying 6([4, Bl¢) =
[0(A), Ble + [A,0(B)]¢ for any A, B € M with AB = 0 since it is more difficult
to find A, B satisfying [A, B]¢ = 0, of course, the conclusions are also different.

The paper is organized as follows. Let M be a von Neumann algebra with the
center Z(M) and L : M — M an additive map. In Section 2, we show that, if M
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has no central summands of type I; or type I3, then L is Lie derivable at zero if and
only if there exists an element Z; € Z(M), an additive derivation ¢ : M — M
and an additive map h : M — Z(M) such that L(A) = ¢(A) + h(A) + ZoA
for all A € M (Theorem 2.1). There are counterexamples to illustrate that
the condition “M has no central summands of type I; or type Iy” can not be
replaced simply by “M has no central summands of type I;”. Section 3 is devoted
to discussing additive maps &-Lie derivable at zero with £ # 1. Assume that M
is a von Neumann algebra without central summands of type I;. It is shown
that L satisfies L(AB —{BA) = L(A)B — {BL(A) + AL(B) — {L(B) A whenever
AB—¢(BA =0if and only if L(I) € Z(M) and there exists an additive derivation
@ : M — M with p(€A) = p(A) for each A such that L(A) = ¢(A)+ L(I)A for
all A € M (Theorem 3.1). Thus, zero is not a full {-Lie derivable point, though
they have a structure very close to &-Lie derivation. From these results, one can
easily get a characterization of additive £-Lie derivations. As a consequence, our
approach also enables us to improve the result (4) in [22] mentioned in the third
paragraph by omitting the assumptions “L(I) € Z(A) and L(§A) = (L(A) for
each A e A”.

2. Additive maps Lie derivable at zero

In this section, we discuss additive maps Lie derivable at zero on von Neu-
mann algebras. The following is our main result in this section.

Theorem 2.1. Let M be a von Neumann algebra without central summands
of type I or type Is. Suppose that L : M — M is an additive map. Then L
is Lie derivable at zero, that is, L satisfies L([A, B]) = [L(A), B] + [A, L(B)] for
any A, B € M with [A, B] = 0, if and only if there exists an element Zy € Z(M),
the center of M, an additive derivation ¢ : M — M and an additive map
h: M — Z(M) such that L(A) = (A) + h(A) + ZpA for all A € M.

We remark that the conditions “without central summands of type I; or
type I2” in Theorem 2.1 can not be deleted simply because (i) every additive
map on a commutative ring is a Lie derivation; and (ii) it is shown in [20, Propo-
sition 2.5] that a linear map L on 2 by 2 matrix algebra is Lie derivable at zero
if and only if L(I) = A\ for some scalar A.

To prove Theorem 2.1, we need several lemmas.

Lemma 2.2 ([2, Lemma 2]). Let M be a von Neumann algebra with no
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central summands of type I or type Is. Then the ideal T of M generated alge-
braically by {[A%, C|B[A,C] — [A,C]B[A?%,C] : A, B,C € M} is equal to M.

A ring R is said to be semiprime if, for any A € R, ARA = {0} will imply
that A = 0; to be torsion-free if, for any A € R and any positive integer n, nA =0
will imply that A = 0. Every von Neumann algebra is semiprime and torsion-free.

Lemma 2.3 ([2, Lemma 6]). Let R be a semiprime torsion-free ring and G
an additive group. Suppose that mapse: GXxG — R and7: GXxGXG — R are
additive in each argument. If e(A, AYRT(A, A, A) = {0} for every A € G, then
€(B,B)R7(A, A, A) = {0} for all A, B € G.

Recall that a map ¢ from a ring R into itself is commuting if [¢(A), A] =0
for all A € R; is a trace of a biadditive map if there exists a biadditive map

g: R xR — R such that g(A) = g(A4, A) for all A € R.
The following lemma is crucial for proving our main result.

Lemma 2.4 ([2, Theorem 2]). Let M be a von Neumann algebra without
central summands of type I; or type I5. Let q be a trace of a biadditive map. If q
is commuting, then q(A) = NA? + u(A)A+v(A) for all A € M, where A\ € Z(M)
and p, v are maps of M into Z(M) with p additive.

Now we are at a position to give our proof of Theorem 2.1.

PROOF OF THEOREM 2.1. The “if” part is obvious. For the “only if” part,
assume that L : M — M is an additive map Lie derivable at zero, that is,

[L(A),B]+[A,L(B)]=0 forall A,B e M with [4,B] =0. (2.1)

Take B=A? in equation (2.1) and we get L(A)A?—A?L(A)+AL(A?)—L(A?)A=0.
This yields
[L(A%) — L(A)A — AL(A), A] = 0 for all A € M. (2.2)

For any A, B € M, write (A, B) = L(AB) — L(A)B — AL(B). It is obvious
that § : M x M — M is a biadditive map and §(A, A) is a trace of the biadditive
map § by equation (2.2). It follows from Lemma 2.4 that there exist an element
Z € Z(M), an additive map pu: M — Z(M) and a map v : M — Z(M) such
that 0(A, A) = ZA? + u(A)A + v(A), that is,

L(A?) — L(A)A — AL(A) = ZA? + n(A)A+v(A) holds for all A € M. (2.3)
Now define two maps ¢ : M — M and € : M x M — M as follows:

w(A) = L(A) + %M(A) +ZA for all AeM
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and

€(A,B) = p(AB+ BA) —p(A)B — Ap(B) —p(B)A— Bp(A) for all A,B e M.
Clearly, ¢ is additive and € is biadditive. By the definition of ¢ and equation
(2.3), we have

p(A%) = L(A*) + %N(AQ) +ZA
1
=L(A)A+ AL(A) + n(A)A+v(A) + 5#(142) +2ZA?
and
O(A)A + Ap(A) = L(A)A + AL(A) + u(A)A+2Z A%

The above two equations imply ¢(A?) — p(A)A — Ap(A) = v(A) + Fu(A?) €
Z(M). Replacing A by A+ B in the relation, one obtains

¢(AB + BA) — ¢(A)B — Ap(B) — p(B)A — Bp(A) € Z(M),

which implies that € maps M x M into Z(M).
Claim. ¢(A, A) =0 for all A € M.
For any A € M, by the definition of ¢, we have

2p0(AY) = 2p(A? A%) = 2p(A%) A% + 242 (A%) + ¢(A?, A?)
= 2p(A) A% + 24p(A) A% + 2A4%p(A)A + 24%p(A) + 2¢(A, A)A? + (A2, A?)

and
4p(A%) = 2p(A3A + AA?)

= 20(A%)A 4+ 24%p(A) + 2p(A) A3 + 240 (A3) 4 2¢(A3, A)

= p(A2A 4+ AAY A+ 2A30(A) +20(A) A3+ Ap(A%A + AA?) +2¢(A3, A)

= 4p(A) A% + 4Ap(A)A? + 4A%p(A)A + 4A4%p(A)

+ 2e(A3, A) + 2¢(A, A) A% + 2¢(A2, A)A.
Comparing the above two equations gives
€(A,A)A? — €(A% A)A = €(A3, A) — (A%, A%) € Z(M) (2.4)

for all A € M. Take any A,C € M. By equation(2.4), it is easily checked that
€(A, A)[A%, 0] = €(A?, A)[A, O]. Tt follows that

e(A, A)([A?% C|X[A,C] - [A,C]X[A%,C]) =0 forall A,C,X € M.  (2.5)
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Now fix X and C. Define a map ¢ : M x M x M — M as follows:
@(A1, Ay, A3) = [A1 A2, O X [A5,C| — [41,C| X [A243,C] for all Ay, As, Ase M.
It is obvious that ¢ is additive in each argument and

#(A, A, A) = [A% C|X[A, C] — [A, C)X[A?,C).

Thus, by equation (2.5), one gets €(A, A)p(A, A, A) =0, and so

€(A, A)AMp(A, A, A) = {0} for each A € M as e maps into the center. It follows
from Lemma 2.3 that e(B, B)M¢(A, A, A) = {0} for all A, B € M. Now by using
Lemma 2.2, we obtain that (B, B) = 0 for all B € M, as desired.

Note that €(A4, A) = 2(p(A?) — p(A)A — Ap(A)) for every A € M. So by
claim, p(A?) = @(A)A + Ap(A) holds for all A € M, that is, ¢ is an additive
Jordan derivation. Since every additive Jordan derivation on a 2-torsion free
semiprime ring is an additive derivation ([1, Theorem 1]) and every von Neumann
algebra is semiprime, ¢ is in fact an additive derivation. Let h = —%,LL and
Zy = —Z. It follows from the definition of ¢ that

L(A) = ¢(A) + ZoA + h(A) (2.6)

for all A, where Zy € Z(M), ¢ is an additive derivation and h : M — Z(M) is
an additive map. The proof of the theorem is complete. ([l

By Theorem 2.1, we get a characterization of Lie derivations, which is also
given in [24, Corollary 2.5] as a corollary of [24, Theorem 2.1].

Corollary 2.5. Let M be a von Neumann algebra without central sum-
mands of type I or type Is. Suppose that L : M — M is an additive map. Then
L is a Lie derivation if and only if there exists an additive derivation ¢ : M — M
and an additive map h : M — Z(M) vanishing on each commutator such that
L(A) = ¢(A) + h(A) for all A € M.

PROOF. The “if” part is obvious. For the “only if” part, assume that L is
an additive Lie derivation. Then, L is Lie derivable at zero and hence, by Theo-
rem 2.1, has the form equation (2.6). Thus we have

L(AB — BA) = ¢(AB — BA) + h(AB — BA) + Zy(AB — BA)
— o(A)B + Ap(B) — ¢(B)A — Bp(A) + h(AB — BA) + Zo(AB — BA) (2.7
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and on the other hand,

L(AB — BA) = L(A)B — BL(A) + AL(B) — L(B)A
= o(A)B + Ap(B) — p(B)A — Bp(A) + 2Zy(AB — BA)  (2.8)

for all A, B € M. Comparing equations (2.7)—(2.8), we see that Zy(AB — BA) =
h(AB — BA) € Z(M) for any A, B. Note that, for any A € M and any
projection P € M, PA(I — P) = [P,P 4+ PA(I — P)] is a commutator. Thus
hMPA(I - P))=ZyPA(I — P) = PZyA(I — P) € Z(M) holds for any projection
P and any element A in M. It follows that PZyA(I — P) = PPZyA(I — P) =
PZyA(I — P)P = 0 for all projection P and all A in M. This forces that ZyA
commutes with each projection and hence is an element in the center of M. So we
have ZopM C Z(M). Since M has no central summand of type I;, we must have
Zy =0, and consequently, L = ¢ + h with A vanishing on all commutators. [

By Corollary 2.5, the additive maps Lie derivable at zero are very close to
Lie derivations, but, not Lie derivations in general. Thus zero is not a full Lie
derivable point of the von Neumann algebra M.

3. Additive maps &-Lie derivable at zero with £ # 1

In this section, we will give a characterization of additive maps &-Lie derivable
at zero on von Neumann algebras without central summands of type I;. Here

E#1.

The following is the main result of this section.

Theorem 3.1. Let M be a von Neumann algebra without central summands
of type I1. Suppose that L : M — M is an additive map and & is a scalar with {# 1.
Then L is {-Lie derivable at zero (that is, L satisfies L([A, Bl¢) = [L(A), B¢ +
[A, L(B)]¢ for any A,B € M with [A, B¢ = 0) if and only if L(I) Z(M) and
there exists an additive derivation ¢ : M — M such that p(€A) = £p(A) and
L(A) = p(A)+ L(I)A for all A € M.

Before proving Theorem 3.1, we need some notations. Let M be any von
Neumann algebra and A € M. Recall that the central carrier of A, denoted by
A, is the intersection of all central projections P such that PA = A. If A is self-
adjoint, then the core of A, denoted by A, is sup{S € Z(M): S = 5% S < A}
Particularly, if A = P is a projection, it is clear that P is the largest central
projection < P. A projection P is called core-free if P = 0. It is easy to see that
P=0ifandonlyif I — P=1.
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We first give two useful lemmas which are needed to prove Theorem 3.1.

Lemma 3.2 ([17, Lemma 4]). Let M be a von Neumann algebra without
central summands of type I;. Then each nonzero central projection C' € M is
the carrier of a core-free projection in M. Particularly, there exists a nonzero
core-free projection P € M with P = I.

In fact, M is a von Neumann algebra without central summands of type I
if and only if it has a projection P with P =0 and P = I.

Lemma 3.3 ([17]). Let M be a von Neumann algebra. For projections
PQeM,ifP=Q#0and P+Q =1, thenT € M commutes with PXQ and
QXP for all X € M implies T € Z(M).

For more properties of core-free projections, see [17].

ProOOF OF THEOREM 3.1. The “if” part is easily checked. We only need to
give the proof of the “only if” part.

Assume that £ # 1 and L: M — M is an additive map satisfying L([A, Bl¢) =
[L(A), B]e + [A, L(B)]¢ for any A, B € M with [A, Bl = 0. We will prove the
“only if” part by several claims.

By Lemma 3.2, we can find a core-free projection P € M with P = I. In
the sequel fix such a projection P. By the definitions of core and central carrier,
we have P = I — P = 0 and I — P = I. For the convenience, write P, = P,
Py, =I-Pand M;; = bMP;,i,j € {1,2}. Then M = M1+ Mia+ Mo+ Mas.

Claim 1. PlL(I)PQ = PQL(I)Pl =0 and PQL(Pl)PQ = PlL(PQ)Pl =0.

Since [P, Pole = [P, Pi]e = 0, we have [L(Py), Py]¢ + [P1, L(P2)]e = 0 and
[L(P2), Prle + [P2, L(P1)]¢ = 0, that is,

L(P)Py — (P L(P) + PLL(Ps) —EL(Py)Py =0 (3.1)
and

L(Py)Py — (P L(Py) + P,L(Py) — EL(Py) P, = 0. (3.2)
Multiplying by P; and P from the left and the right respectively in equation (3.1),
and multiplying by P, and P; from the left and the right respectively in equation
(3.2), one gets PLL(P1)Py + PL(P2) P> = 0 and PoL(Py) Py, + P,L(Py)P = 0,
which imply

PiL(I)P, =0 and P,L(I)P, =0.

Multiplying by P> and P; from both sides in equation (3.1) and equation (3.2), re-
spectively, one gets PoL(P))Po—&Po L(P1)Py =0 and Py L(Py) Py —&P L(Py) P1=0.
It follows from the assumption & # 1 that

PQL(Pl)PQ =0 and PlL(PQ)Pl =0.
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The claim holds.

Now define a map § : M — M by §(A) = L(A)+ SA — AS for each A € M,
where S = PyL(P,)P, — P,L(Py)P;y. 1t is easily verified that § is also an additive
map &-Lie derivable at zero, that is, ¢ satisfies

5([A, Ble) = [6(A), Ble + [A,6(B)le  for A, B € M with [A4, B¢ = 0.

Moreover, P16(I) Py = Po6(1) Py = Po6(P1) P> = P16(P2) Py = 0 by Claim 1. Thus
we get
§(Py) = L(P)+SP, — P.S =P, L(P)P,
= P16(P1)P1 — Pl(Spl — PIS)Pl = Plé(Pl)Pl € My (33)
and
§(Py) = L(P2) + SPy — P2S = P,L(P2) P»
= Py0(P2)Py — Py(SPy — PyS)Py = Pod(P2) Py € Mas. (3.4)
Claim 2. 5(./\/1“) - Mii, 7 = 1’2
We only give the proof for M1;. The proof for My, is similar.

Take any Aq1 € Mq1. Since [All,PQ]g =0, we have
[0(A11), Po)e + [A11,6(P2)]e = 0. This and equation (3.4) yield

6(A11) Py — EP26( A1) = 0. (3.5)
Multiplying by P; from the left side in equation (3.5), one gets
Plé(All)PQ = 07 (36)

multiplying by P from both sides in equation (3.5), one gets (1—&) Py§( A1) Pa=0,
which implies
P26(A11)P2 =0. (37)
Note that [PQ,All]g = 0. Then [5(P2),A11]5 + [Pg,(S(All)]g = 0, which and
equation (3.4) give P2d(A11) — £5(A11)P> = 0. Then, multiplying P; from the
right side in this equation, one gets

Py5(A11) Py = 0. (3.8)

Combining equations (3.6)—(3.8), we achieve that 6(A11) € My;. So the claim is
true.
Claim 3. For any A;; € M,;, 1 <i# j <2, the following statements hold.
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(1) If £ # —1, then (S(A”) € Mij.
(2) Iff = —].7 then Plé(A”)PZ = Pj(s(A”)Pj =0and (5(A”)A” +A”5(A”) =0.
For any Aij S Mij (’L 75 j), since [Aij, Aij]g = O7 we have [5(14”),14”]5 +
[Alj75(Alj)]E = 0, that iS,
6(Aij)Aij — §Ai6(Aij) + Aijo(Ay) — €6(Aij) Ay
= (1= &)(0(Ai5) A + Aijo(Ai;)) = 0.
It follows from the assumption £ # 1 that

0(A;j)Aij + Aij6(Aij) =0 for all A;; € M. (3.9)

Since [P; + Aij;, Aij — Pjle = 0, by equations (3.3)—(3.4) and equation (3.9),

we have

0

[6(P;) + 0(Aij), Aij — Pjle + [P + Aij, 6(Aiz) — 0(P))le
O(P;)Aij — 0(Aij) Py + EPjO(Aiz) + Pio(Aij) — Aijo(Py) — E6(Aij) P

Multiplying by P; and P; from both sides in the above equation, respectively, and
noting that equations (3.3)-(3.4), one gets (1 — &) P;0(A4;;)P; =0 and
(]. - g)Pj(S(A”)P] = 0, and so

Now, combining equations (3.9) and (3.10), we see that (2) is true.
To prove (1), one needs to check further that P;d(A;;)P; = 0 whenever
& # —1. In fact, since [A;;, P; + {Pjle = 0, by Claim 2, we have

0= [0(Aij), P + EPjle + [Aij, 6(Pi) + 6(EP)) e
= 0(Aij)P; + £6(Aij) Py — EP,0(Aij) — E2Pi6(Aij) + Aij0(EP;) — E0(P;) Ay

Multiplying by P; and P; from the left and the right side respectively in the above
equation, one obtains (1 — £2)P;6(A;;)P; = 0, which implies P;6(A;;)P; = 0 as
& # —1. This and equation (3.10) yield 6(A4;;) = P;0(Ai;)P; € M;; whenever
¢ # —1, and so (1) holds.
Claim 4. For any A;; € M;; (1 <i# j <2), we have §(P;)A;; = A;;0(P;).
Take any Aij S Mij (1 <i#j< 2). Since [Pl + A Aij — Pj]g = 0, by
equations (3.3)—(3.4) and Claim 3, we have

K

0=1[6(F) +6(Aij), Aij — Pile + [P + Aij, 6(Ayy) — 6(Fy)]e
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= 0(Pi)Aij + 0(Aij) Aij — 6(Aij) Py — §Ai0(Aij) + EP;0(Aij)
+ Pid(Aij) + Aij6(Aij) — Aig6(P5) — §6(Aij) Py — £6(Aij) Aij

This 1mphes that PZ(S(PZ)A” _Aij5(Pj)Pj = 0, that iS7 6(PZ)A’L] = A”(s(Pj) holds
for all Aij € M”

Claim 5. §(&1) = €0(1).

For any A;; € M;; (1 <1 # j < 2),since [(P; + Pj, Aijle = 0, by Claim 2,
we have

0=[6(&F;) +6(Fy), Aijle + [EP; + Py, 6(Asj)le
= 0(EP)Aij — EAij0(P;) 4 EPi6(Aij) + Pi6(Aij) — §26(Aiy) P — £6(Aiy) P;.

Multiplying by P; and P; from the left and the right side respectively in the above
equation, by Claim 2 and Claim 4, one can get

8(EP)Aij = Pid(§P;) Ay = EAij6(Py) Py = EAi6(Py) = €6(F;) Ay

That is, (6(EP;) — &€5(P;))P;AP; = 0 for all A € M. Note that P; = I. Tt follows
from the definition of the central carrier that span{T'P;(z) : T € M, = € H} is
dense in H. So §(£R;) = &6(P;) for i = 1,2. Thus we obtain

O(EI) = 6(EP1 + EP2) = E6(P1) + §6(P2) = §0(1).

Claim 6. §(I) € Z(M).
By Claim 4, we have proved that, for any Ai5 € M1 and Ay € Moy,

5(P1)A12 = A125(P2) and 5(P2)A21 = A215(P1).
So, by using equations (3.3)—(3.4), we obtain

6(])1412 = 5(P1)A12 = A126(P2) = A126(I)
and
6(I)A21 = 6(P2)A21 = A216(P1) = Aglé(l)

It follows from Lemma 3.3 that §(I) € Z(M). The claim is true.
Now, note that §(A) = L(A) + SA — AS for each A € M. By Claim 6, one
has proved that
L(I)=46(I) € ZM). (3.11)
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Claim 7. If £ # —1, then there exists an additive derivation ¢ : M — M
satisfying p(§A) = {p(A) for each A € M such that L(A) = ¢(A) + L(I)A for
all A € M.

We will complete the proof of Claim 7 by several steps.

Step 1. For any A;; € M;; and B;; € M;;, we have §(A;;B;j) = 0(Aii)Bij+
A;i0(Bij) — AuBijo(I), 1 <i#j <2.

Let 1 < i # j < 2. For any A;; € M;; and B;; € M, , since [A; +
A;;B;j, Bij — Pjle =0, by Claim 2 and Claim 3(1), we have

0=1[0(Ai) + 6(AiiBij), Bij — Pjle + [Aii + Aii Bij, 6(Bij) — 0(P))le
= 0(Ai;)Bij — 6(AiiBij) + Aiid(Bij) — AiiBijo(P;).

Note that A;;B;;j6(P;) = A;iB;;0(I) by equations (3.3)—(3.4). So Step 1 holds.

Step 2. For any A;; € M;; and B;; € M,;, we have §(A;;B;;) = 6(Aij)Bj;+
A;j8(Bjj) — AijBj;0(I), 1 <i#j<2.

As [A;jBj;+ Bjj;, Aij — Pi]¢ = 0, the assertion of Step 2 follows from Claim 2
and Claim 3(1) immediately.

Step 3. For any A, By € M,;, we have (5(14”3”) = (S(A”)B” —&-A”(S(B”) —
AuBid(I), i =1,2.

Let i # j. Take any A;;, By € My; and any S;; € M,;. By Step 1, we get

0(Aii BiiSij) = 6(Ai;Bii)Sij + AiiBiid(Sij) — Ay Bii Si0(1)
and

0(AiiBiiSij) = 6(Aii)BiiSij + Aiid(BiiSij) — AiiBiiSi;0(1)
0(Aii)BiiSij + Aiid(Bi;)Sij + Aii Biid(Sij) — 24;:B;;S:50(I).
Comparing the above two equations, and by Claims 2 and 6, one obtains that
(0(AyiBii) — 0(Ais)Bii — Aiid(Bis) + Ay Biio(1))SP; =0
holds for all S € M. It follows from the fact ﬁj = I that
0(AyBii) = 0(Aii)Bii + Auid(Bi;) — Ay Byid(I).

Step 4. For any A;; € M;; and Bj; € Mj;, we have 6(A;;Bj;) = 0(Aij)Bji+
Aijd(Bji) = AijBjio (1), 1 <i# j < 2.

Take any A;; € M;; and Bj; € M;;. Note that

[—A12Bo1 + A12 + Ba1 — Py, Py + Aip + Boy + By App]e = 0.
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By the definition of ¢, Claim 2, Claim 3(1), Claim 4, Claim 6 and Steps 1-2, one
gets

0=[-0(A12B21) + §(A12) + 6(Ba1) — 6(Ps), Py + A12 + Ba1 + Ba1 A1z)e

+ [—A12B21 + A12 + Boy — P, 6(P1) 4+ §(A12) + 0(Ba1) + 0(B21412))e

= —0(A12B21) — 6(A12B31)A12 + 5(A12)Bar + 6(A12)Ba1 A2 + 6(Ba1)
+ 0(B21)A12— d(P2)B21— 6(P2) Ba1 A12+ £0(A12B21) — £6(A12)— EA120(Ba1)
+ EA120(Py)+ EB210(A12Ba1) — §B216(A12)— EBa1 A210(B21)+ § Ba1 A120(P)
— A12B210(P1) — A12B216(A12) + A120(Ba1) + A126(Ba1 A12) + B216(Py)
+ B216(A12) — 0(Ba1) — 6(B21A12)+ &5 (P1) A12Ba1— £5(P1) A12— €6 (A12) B
+£6(A12) +£6(Ba1) A2 B — £0(Ba1) A1z — £0(Ba1 A12) Bar + £6(B21A12)

= (= 1)6(A12B21) + (1 = §)(A12) Bar+ (1 — ) A126(Ba1) + (€ — 1) A12B21(1)
+ (§-1)0(Ba1Ar2) + (1 —&)0(Ba1) Ara+ (1-€) Ba16(A12)+ (§ — 1) B21 A126(1).

As £ # 1, the above equation implies that

0(A12B21) = 6(A12)Ba21 + A126(Bay1) — A12B216(1)
and
0(B21A12) = 6(B21)A12 — B210(A12) + Ba1A120(1).

Step 5. For any A, B € M, we have §(AB) = 6(A)B + A§(B) — 6(I)AB.

For any A= A11 + A12 + A21 + AQQ, B = Bi1 + Bis + By1 + By € M, by
the additivity of 4, Claim 6 and Steps 1-4, one can easily check that §(AB) =
d0(A)B + A§(B) — 6(I)AB.

Step 6. There exists an additive derivation ¢ : M — M satistying ¢(£A) =
&p(A) for each A such that L(A) = p(A) + L(I)A for all A € M.

Define a map ¢ : M — M by p(A) = L(A) — L(I)A = §(A) — SA+ AS —
L(I)A for all A € M. Obviously, ¢ is additive. Moreover, for any A, B € M, by
Step 5 and equation (3.11), one achieves

©(AB) = 6(AB) — SAB + ABS — L(I)AB

= 6(A)B + AS(B) — 2L(I)AB — SAB + ABS

(6(A) — L(I)A — SA+ AS)B + A(6(B) — L(I)B + BS — SB)
= ¢(A)B + Ap(B),

that is, ¢ is an additive derivation.
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Now we show that p(£A4) = £p(A) for each A € M. In fact, since 6(¢1) =
&0(I) (Claim 5), we get @(&I) = £p(I) = 0. Hence, for any A € M, we have

P(EA) = (ETA) = p(E1) A+ Ep(A) = Ep(A).

Step 6, combining equation (3.11), ensures that Claim 7 holds.

Claim 8. If £ = —1, then there exists an additive derivation ¢ : M — M
such that L(A) = p(A) + L(I)A for all A € M.

In this case, we will first show that §(A?) = §(A)A + A§(A) — §(1)A? for all
A € M. This will be done by several steps.

Step 1. For any A;; € M,;; and A;; € M;; (1 <i# j <2), we have

0(AijAjj) = 6(Aij)Ajj + Aijo(Ajs) + Aj;6(Aiz) — 6(1)Aij Ay
Let 1 <i# j <2. Taking any A;; € M;;, Aj; € M;, and noting that
[AijAjj+Ajj5, Aij—Pil -1 = (A Ajj+As5) (Aij—Pi)+(Aij— Pi) (A Ajj+Ajz5) = 0,
by Claim 2, we have

0= [6(AijAz5) +0(Aj5), Aij — Pi]—1 + [Aij Aj; + Ajj, 0(Aij) — 0(F;)] -1
= 0(AijAjj)Aij — 6(AijAjj) Pi + Aijo(Aij Ajy) + Aijd(Ajj) — Pid(AijAjjz)

+ AijAjj0(Aij)+A56(Aig)+0(Aij) Aig Ajj+0(Aij) Ajj—0(Fi) Aij Ajj. - (3.12)
Multiplying by P; and P; from the left and the right side in equation (3.12)
respectively, by Claim 2 and Claim 3(2), we get

Pi0(AijAj5) P = Pid(Aij) Ajj + Aijo(Ajs) — 0(Pi) Aij Ay
= 0(Aij)Aj; + Aij6(Aj5) — 6(1) Aij Ajy.

Similarly, multiplying by P; and P; from the left and the right side in equation
(3.12) respectively, one can get

Pjo(AijAji) P = Ajjo(Aij) P = Aj6(Aij).
So
6(AijAjj) = Pid(AijAjj) Py + Pio(Aij Az Py
= 0(Aij)Aj; + Aijo(Ajj) + Ajjo(Aig) — 0(1)Aij Ajj.

Step 2. For any A;; € M;; and A;; € M;; (1 <i# j<2), we have

0(AiiAij) = 0(Ais)Aij + Aiid(Aij) + 0(As5) Ay — 0(1) Aii Aij.
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As [A;;Aij + Aii, Aij — Pj]—1 = 0, by the same argument as that of Step 1,
one can check that this step is true.

Step 3. For any A;; € M;;, we have §(AZ2) = §(Au;) Asi+ Aud(Ay) — A26(1),
i=1,2.

Let j # 4. For any A;; € M,;; and any S;; € M;;, by using Step 2 and
calculating 0(A;;A;:5;;) by two different ways, one can easily check that the step
is true.

Step 4. For any A;; € M;; and Aj; € M;; (1 <i# j <2), we have

6(AsjAji) = 0(Aij)Aji + Aijo(Aji) — Aij Ajid(T).
In fact, for any A;; € M;; and A;; € My; (1 <i# j <2), since

the assertion of this step follows from Claim 2, Claim 3(2) and Steps 1-3 in
Claim 8.

Step 5. For any A € M, we have §(A?) = §(A)A + A6(A) — (1) A%,

For any A = Ay + Ayo+ Aoy + Ags € M, by the additivity of d, Claim 5 and
Steps 1-4 in Case 2, it is easily checked that §(A4%) = §(A)A + AS(A) — §(1)A?.

Step 6. There exists an additive derivation ¢ : M — M such that L(A4) =
w(A) + L(I)A holds for all A € M.

Define a map ¢ : M — M by p(A) = L(A) — L(I)A = §(A) — SA+ AS —
L(I)A for all A € M. Tt is clear that ¢ is additive and L(A) = p(A) + L(I)A
for each A. Moreover, by using Step 5 of Claim 8, one can check that ¢ is a
Jordan derivation, that is, p(A?) = p(A)A + Ap(A) for all A € M. By [1], ¢ is
an additive derivation. This and equation (3.11) imply that Claim 8 holds.

Since p(—1A) = —p(A) for each A as ¢ is additive, Claims 7-8 and equation
(3.11) together ensure that Theorem 3.1 is true, finishing the proof. O

By Theorem 3.1 we get a characterization of additive £-Lie derivations im-
mediately.

Corollary 3.4. Let M be a von Neumann algebra without central sum-
mands of type I. Suppose that L : M — M is an additive map and & is a scalar
with & # 1. Then the following statements are equivalent.

(1) L is a &-Lie derivation.
(2) L is a derivation with L(§A) = £L(A) for all A € M.
(3) L is &-Lie derivable at zero and L(I) = 0.



Characterization of additive maps &-Lie derivable at zero. . . 115

Finally, we remark that, by a similar approach to the proof of Theorem 3.1, we
can improve further the main result [22, Theorem 2.1] omitting the assumptions
L(I) € Z(A) and L(§A) = £L(A) for each A in the prime algebra case.

Theorem 3.5. Let A be a unital prime algebra over a field F containing
a non-trivial idempotent P. Denote by Z(A) and C the center of A and the
extended centroid of A, respectively. Assume that £ € F and L : A — A is
an additive map. If L is £-Lie derivable at zero, then there exists an additive
derivation 7 : A — C such that

(1) if € =0, then L(I) € Z(A) and L(A) = 7(A) + L(I)A for all A € A;
(2) if € = 1 and A is of characteristic not 2 with deg(A) > 2, then L(A) =

T(A)+aA+v(A) for all A € A, where a € C and v is an additive map from
A into C;

(3) if ¢ = —1 and A is of characteristic not 2, then L(I) € Z(A) and L(A) =
T(A) + L(I)A for all A € A;

(4) if € #0,£1, then L(I) € Z(A), L(€A) = (L(A) and L(A) = 7(A) + L(I)A
for all A € A.

PRrROOF. Assume that L : A — A is ¢-Lie derivable at zero. We need only to
show that, for £ # 1, L(I) € Z(A), L(€A) = £L(A).

Using the same notations as that in the proof of Theorem 3.1, but replac-
ing M by the prime algebra A, Claims 1-4 are still true. Thus, similar to the
argument in Claim 5, we have

6(EP)Aij = Pid(§P;) Ay = EAij6(Py) Py = EAi6(Py) = €6(F;) Ay

So (8(¢P;) — &0(P;))P,AP; = 0 for all A € A. Since A is prime, we must have
S(ER;) — E6(P;) = (6(€P;) — &6(P;))P; = 0, that is, §(¢P;) = &6(F;) for i = 1, 2.
Thus we obtain

6(&81) = 6(EPL + EP) = £0(P1) + £6(P,) = &6(1).
Then, a similar argument as in Claim 6 gives
0(I)A12 = §(P1)A12 = A120(Pa) = A126(1).
This implies that
0(P1)APy, = PLA§(P,) forall A€ A.

Again, as A is prime, it follows from [6, Theorem A.7] that there exists some
central element A € C such that §(P;) = AP;. Hence 6(I) = 6(P1) + 0(P) =



116 Xiaofei Qi, Jia Ji and Jinchuan Hou

AP+ Py) =A€CNA=Z(A). Thus L(I) = 6(I) € Z(A) and L(€I) = £L(I).
Now, similar to the proof of Claim 8, and using the primeness of A where
needs, one can show that, for any A € A, we have p(§A4) = p(§IA) = o(E1)A +
Ep(A) = Ep(A). This, together with the facts proved before, entails that L(£A) =
EL(A) for all A € A. O
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