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A note on Clifford parallelisms in characteristic two

By HANS HAVLICEK (Vienna)

Abstract. It is well known that a purely inseparable field extension L/F with

some extra property and degree [L : F ] = 4 determines a Clifford parallelism on the set

of lines of the three-dimensional projective space over F . By extending the ground field

of this space from F to L, we establish the following geometric description of such a

parallelism in terms of a distinguished ‘absolute pencil of lines’ of the extended space:

Two lines are Clifford parallel if, and only if, there exists a line of the absolute pencil

that meets both of them.

1. Introduction

A detailed survey of various old results about Clifford parallel lines in the

three-dimensional elliptic space (over the real numbers) can be found in the recent

article [3]. One such result is a description of Clifford parallel lines in terms of

the complexified elliptic space, and it may be summarised as follows: The elliptic

metric yields a hyperbolic quadric of the complex projective space; it is known

as the ‘absolute quadric’. Two lines of the elliptic space are Clifford parallel if,

and only if, there exists a line of the absolute quadric that meets both of them

(after complexification). Since there are two reguli on the absolute quadric, one

actually gets two parallelisms. It is conventional to label them as the ‘left’ and

‘right’ Clifford parallelism of the elliptic space. An alternative approach uses the

skew field H of real quaternions as underlying vector space of the elliptic space.

The norm function of H is a quadratic form, and it yields the elliptic metric. The
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left and right Clifford parallelism arise from the left and right multiplication in H,

respectively; see [5, p. 8].

Any quaternion skew field L with arbitrary characteristic and centre F , say,

can be used (as in the classical case) to define a left and a right Clifford parallelism

in the three-dimensional projective space on the F -vector space L. This finding

from [25] was the starting point for the research in [6] and [7], where the following

was established: If the ground field F is extended in an appropriate way, then

the description from above of Clifford parallel lines in terms of the two reguli on

a hyperbolic quadric basically remains valid. However, the details are much more

involved for an arbitrary quaternion skew field L than for the real quaternions H.

According to [25], there is one more kind of Clifford parallelism in three-

dimensional projective spaces over certain fields F of characteristic two. The

algebraic definition of such a parallelism is similar to what we had in the preceding

paragraphs, but now one has to use a field extension L/F with degree [L : F ] = 4

and such that a2 ∈ F for all a ∈ L. So L/F is purely inseparable. Due to the

commutativity of L, left parallel lines now are the same as right parallel lines.

There arises the question if also in this remaining case there is a geometric

description of Clifford parallel lines similar to the one from [6] and [7]. We shall

have to take several steps before we can provide an affirmative answer. First, we

extend the ground field of the projective space (with underlying vector space L)

from F to L. Next, we find in this extended space a distinguished plane Π which

will be called the absolute plane. Its points are determined by the singular vectors

of a quasilinear quadratic form. So the points of the absolute plane correspond,

loosely speaking, to the points of the hyperbolic quadric from above. However, we

must not use all lines of this plane to accomplish our task, but only those passing

through a particular absolute point A of Π. This gives a single absolute pencil of

lines which now takes the part of the two reguli on a hyperbolic quadric. Finally,

our main result is Theorem 3.8: Two lines of the three-dimensional projective

space over F are Clifford parallel if, and only if, there exists a line of the absolute

pencil that meets both of them (after extension of the ground field).

For more information about parallelisms in general, we refer to [3], [21], the

book [22], and the references therein. At one point we shall come across the double

space axiom, which is part of the well established axiomatic description of Clifford

parallelisms; see, among others, [18], the survey in [24], and [30]. Notions from

geometry and algebra that are used without further reference can be found, for

example, in [9], [10], [12], [19], [20], [29], and [31].
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2. Algebraic preliminaries

Let V be a vector space over a field F . We shall also write VF instead of V

in order to clarify the ground field. If F is a subfield of a field L then V can be

extended to a vector space over L by the following well known construction [9,

p. 277]: The tensor product (L ⊗F V )F can be made into a vector space over L

by letting

a
∑
s

as ⊗ vs :=
∑
s

(aas)⊗ vs for all a, as ∈ L, vs ∈ V. (1)

We use the shorthand V(L) := (L⊗F V )L for this L-vector space. The canonical

embedding of VF in V(L) is given by v 7→ 1 ⊗ v. Suppose now that V is also an

associative F -algebra with unit e. A multiplication in L⊗F V can be defined by

the formula(∑
s

as ⊗ vs

)
·
(∑

t

a′t ⊗ v′t

)
:=
∑
s,t

(asa
′
t)⊗ (vsv

′
t)

for all as, a
′
t ∈ L, vs, v

′
t ∈ V. (2)

In this way V(L) turns into an associative algebra over L with unit 1⊗ e, and the

embedding from above is a monomorphism [9, pp. 433–434].

Global assumption. From now on let F be a field of characteristic 2 and let

L be an extension field of F with degree [L : F ] = 4 and such that a2 ∈ F for all

a ∈ L.

The field extension L/F is purely inseparable. Clearly, each a ∈ L is a zero

of the quadratic polynomial X2 + a2 ∈ F [X], whence L is a quadratic or, in a

different terminology, a kinematic algebra over F [23, p. 423]. The quadratic form

( · )2 : LF → F : y 7→ y2 (3)

has no singular vectors. It is the norm form of the algebra LF . Following [1,

p. 150], (3) is a quasilinear quadratic form. This means that (3) is a semilinear

mapping of the vector space LF in the vector space F over its subfield F (2) formed

by all squares, with F → F (2) : f 7→ f2 as accompanying field isomorphism; see

also [12, p. 33].

We now specialise the algebra VF from above to be LF and obtain the four-

dimensional commutative and associative L-algebra (L⊗F L)L = L(L) with unit

1⊗1. According to (1), scalars from L act on the first factors of pure tensors. So,
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the scalar multiples of 1 ⊗ 1 comprise the one-dimensional subspace L(1 ⊗ 1) =

{x ⊗ 1 | x ∈ L} of L(L). This subspace is a first isomorphic copy of the field L

within the algebra L(L). A second copy is given by the subset {1 ⊗ y | y ∈ L}.
Here the elements of L appear in their role as vectors of LF . None of these

isomorphic copies of L will be identified with L.

The multiplication in the field L is an L-bilinear mapping L × L → L :

(x, y) 7→ xy. Clearly, this mapping is also F -bilinear. By the universal property

of the tensor product (for vector spaces over F ) there is a unique F -linear mapping

π : L⊗F L→ L such that (x⊗ y)π = xy for all x, y ∈ L. (4)

Using (1) and (2), a straightforward calculation shows that π : L(L) → LL actually

is a surjective homomorphism of unital L-algebras. Since L is a field, this implies

already that

Π := kerπ (5)

is a three-dimensional maximal ideal of the four-dimensional algebra L(L), but we

easily can say more.

Lemma 2.1. The L-algebra L(L) is local and quadratic. The ideal of non-

invertible elements of L(L) is the kernel Π of the homomorphism π from (4).

Proof. Any g ∈ L(L) can be written as g =
∑
s as ⊗ bs with as, bs ∈ L. We

read off from

g2 =
(∑

s

as ⊗ bs

)2
=
∑
s

a2s ⊗ b2s =
(∑

s

a2sb
2
s

)
(1⊗ 1) =

(
gπ
)2
(1⊗ 1)

that g is a zero of the polynomial X2 +
(
gπ
)
2 ∈ F [X] ⊂ L[X], whence L(L) is

quadratic. For g /∈ Π we obtain g−1 = (gπ)−2g, whereas any g ∈ Π clearly has

no multiplicative inverse due to g2 = 0. Thus the ideal Π comprises precisely the

non-invertible elements of L(L). So, by definition, L(L) is a local algebra, and Π

has the required property. �

The canonically defined L-linear form π maps 1⊗ y 7→ y for all y ∈ L. Due

to F & L, the form π does not arise as an extension of an F -linear form on LF .

However, the square of π, i.e., the norm form

L(L) → L : z 7→ (zπ)2 (6)

is a quasilinear quadratic form extending the quasilinear quadratic form (3) from

LF to L(L). Indeed, the norm of 1 ⊗ y equals y2 for all y ∈ L. The non-zero

vectors of Π are precisely the singular vectors of the norm form (6).
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Let us return to multiplication. Any b ∈ L determines the mapping

µb : L→ L : x 7→ xb, (7)

i.e., the multiplication of elements of L by the fixed element b. Any such µb
clearly is an L-linear mapping LL → LL, but below we shall only make use of its

F -linearity. Likewise, for any h ∈ L(L) there is an L-linear mapping µh : L(L) →
L(L) : z 7→ zh. The canonical extension of µb : LF → LF from LF to L(L) is

the Kronecker product (or: tensor product [9, p. 245]) µ1⊗µb which acts on pure

tensors by sending

x⊗ y 7→ (x1)⊗ (yb) = (x⊗ y)(1⊗ b). (8)

So µ1 ⊗µb = µ1⊗b. Note that, contrary to what we had in (1), the element b ∈ L

acts on the second factors of pure tensors in (8).

At times it will be convenient to use coordinates (which are written as rows).

To this end we first choose i, j ∈ L such that 1, i, j are linearly independent

over F . Then

(1, i, j, k) with k := ij (9)

is a basis of LF and

(1⊗ 1, 1⊗ i, 1⊗ j, 1⊗ k) (10)

is a basis of L(L). These bases allow us to replace LF and L(L) with F
4 and L4,

respectively. For example, the coordinate representation of the homomorphism π

from (4) is the mapping

L4 → L : (z0, z1, z2, z3) 7→ z0 + iz1 + jz2 + kz3,

whence the quadratic norm form (6) has the representation

L4 → L : (z0, z1, z2, z3) 7→ z20 + i2z21 + j2z22 + k2z23 .

If we restrict the domain of the last mapping to F 4 and replace its codomain by

F then the description of the quadratic norm form (3) in terms of coordinates is

obtained. When working in L(L) it will often be more appropriate to change from

the basis (10) to another basis of L(L), namely

(1⊗ 1, p, q, r) with p := 1⊗ i+ i⊗ 1,

q := 1⊗ j + j ⊗ 1,

r := pq = 1⊗ k + i⊗ j + j ⊗ i+ k ⊗ 1. (11)

For example, if g ∈ L(L) has coordinates (g0, g1, g2, g3) ∈ L4 with respect to the

basis (11) then gπ = g0 and g20 is the norm of g.

While the elements p, q, r depend on the choice of i, j in the basis (9), the

span of r has a basis-free meaning:
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Lemma 2.2. Let A be the annihilator in L(L) of the maximal ideal Π.

Upon choosing an arbitrary basis (1, i, j, k) of LF as in (9) and by changing to

the associated basis (11) of L(L), there holds

A = Lr = L(1⊗ k + i⊗ j + j ⊗ i+ k ⊗ 1). (12)

Proof. We recall from the proof of Lemma 2.1 that z2 = 0 for all z ∈ Π.

Thus the elements from (11) satisfy pr = p2q = 0, qr = q2p = 0, and r2 = 0. From

Π = Lp ⊕ Lq ⊕ Lr, all elements of Π are annihilated by r, and so Lr ⊂ A. The

annihilator of p clearly is a subspace of Π containing p and r. Due to pq = r ̸= 0

and dimΠ = 3, the two-dimensional subspace Lp ⊕ Lr is the annihilator of p.

Likewise the annihilator of q equals Lq⊕Lr, whence A ⊂ (Lp⊕Lr)∩ (Lq⊕Lr) =
Lr, as required. �

Since A is an ideal of the commutative ring L(L), it may also be written as the

principal ideal L(L)r, which is generated by the element r. Another description

of this ideal is A = Π ·Π = {zw | z, w ∈ Π}. We noted already subsequent to (6)

that Π is the set of vectors of L(L) with norm zero, so that A is also related to

the norm form of L(L).

3. The absolute pencil

We shall view LF as the underlying vector space of a projective space P(LF ) ∼=
P3(F ). We adopt the usual geometric terms: Points, lines and planes are the

subspaces of LF with dimension one, two, and three, respectively. Incidence is

symmetrised inclusion. Likewise, L(L) = (L ⊗F L)L gives rise to a projective

space P(L(L)) ∼= P3(L). The canonical embedding of P(LF ) in P(L(L)) is given by

Fx 7→ L(1 ⊗ x). Those points of P(L(L)) that are images under this embedding

are called F -rational. A subspace of L(L) is called F -rational if it is spanned

by its F -rational points. If T is a subspace of LF then its extension T(L) is an

F -rational subspace of the same dimension, and all F -rational subspaces of L(L)

arise in this way. The projective space P(L(L)) has two distinguished subspaces

that stem from the algebra L(L):

Definition 3.1. We call the ideal A from (12) the absolute point and the ideal

Π from (5) the absolute plane of the projective space P(L(L)). The set of lines

through A that lie in the plane Π is denoted by [A,Π], and it is called the absolute

pencil.
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Take notice that here we adopt the phrase ‘absolute’ in analogy to the con-

ventional terminology for Cayley–Klein geometries (see, for example, [14]) and

not in its meaning for polarities, where a point is called ‘absolute’ if it is incident

with its polar hyperplane. However, we shall encounter polarities at the very

end of this section, and encourage the reader to compare our results with recent

findings in [26, 3.5], [27, Thorem 6.4], and [28, 2.7, 2.8] about polarities with a

surprisingly small set of ‘absolute’ points.

Proposition 3.2. The absolute plane Π of the extended projective space

P(L(L)) ∼= P3(L) has the following properties:

(i) The absolute plane contains no F -rational points.

(ii) Each point of the absolute plane is incident with at most one F -rational line.

(iii) Let Fa and Fb be distinct points of P(LF ) ∼= P3(F ) and let M = Fa ⊕ Fb

be the line joining them. Then the F -rational line M(L) meets the absolute

plane at the point L(a⊗ b+ b⊗ a).

Proof. Ad (i). Assume to the contrary that there exists an F -rational point

in Π. Such a point has the form L(1⊗c) with c ∈ L\{0}, whence (1⊗c)π = c ̸= 0

yields a contradiction.

Ad (ii). Suppose that a point of Π were on two distinct F -rational lines, say

M(L) and N(L). Thus M(L) ∩ N(L) would be an F -rational point of Π, which is

impossible by (i).

Ad (iii). Since a and b are linearly independent in LF , the tensors a⊗ b and

b⊗ a can be extended to a basis of (L⊗F L)F . Hence their sum is non-zero, and

L(a⊗ b+ b⊗ a) is a point of P(L(L)). From (a⊗ b+ b⊗ a)π = 2ab = 0, this point

belongs to Π, and a ⊗ b + b ⊗ a = a(1 ⊗ b) + b(1 ⊗ a) implies that it is on the

F -rational line M(L). �

Remark 3.3. From Proposition 3.2, an injective mapping of the set of lines of

P(LF ) into the set of points of the absolute plane Π is given byM 7→ Π∩M(L). Its

algebraic description is based on the alternating F -bilinear mapping of LF × LF
to (L ⊗F L)F sending (x, y) to x ⊗ y + y ⊗ x. By the universal property of the

tensor product, this bilinear mapping gives rise to the alternation operator

(L⊗F L)F → (L⊗F L)F : x⊗ y 7→ x⊗ y + y ⊗ x.

The image of this F -linear operator can be identified with the exterior square∧2
LF , whence the points of the form L(x⊗y+y⊗x) = L(x∧y) provide a model

of the Klein quadric (over F ) within the projective plane Π (over L). A detailed

description of this model is not within the scope of this article.
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The following is taken from [25, Satz 1]:

Definition 3.4. Let (M,N) be a pair of lines of the projective space P(LF ) ∼=
P3(F ). We say that M is Clifford parallel (or shortly: parallel) to N if there is

an element b ∈ L \ {0} such that N =Mb. In this case we write M ∥ N .

Due to the commutativity of L, the ‘left’ and ’right’ parallel relations from

[25] coincide here. The relation ∥ defines indeed a parallelism on P(LF ), i.e., for
each line M and each point Fa there is a unique line N with Fa ⊂ N ∥M . The

parallel class of M is written as S(M).

The Clifford parallelism on the line set of P(LF ) satisfies the double space

axiom [25, p. 154]. In our setting this result reads as follows: Given lines M and

N with a common point, say Fa, and arbitrary points on M and N , say Fb and

Fc, the unique line M ′ ∥M through Fc has a point in common with the unique

line N ′ ∥ N through Fb. Let us repeat the easy proof. From M ′ = Ma−1c and

N ′ = Na−1b follows that Fd with d := a−1bc is a common point of M ′ and N ′.

If the lines M , M ′, N , N ′ are mutually distinct then Fa, Fb, Fc, Fd constitute

a tetrahedron, which one might call a skew parallelogram. It seems worth noting

that—in analogy to a parallelogram in an affine plane over a field of characteristic

two-also here the remaining two lines Fa⊕ Fd and Fb⊕ Fc are parallel to each

other. The validity of the double space axiom implies the following result:

Proposition 3.5. All parallel classes of the Clifford parallelism on P(LF ) ∼=
P3(F ) are regular spreads.

Proof. Let M , M1, M2 be mutually distinct parallel lines. So there is a

unique regulus, say R, containing them. Furthermore, there exists a line N in the

opposite regulus of R. Through each point of M there is a unique line N ′ ∥ N
and a unique line N ′′ of the opposite regulus of R. By the double space axiom,

N ′ meets M1 and M2 so that N ′ = N ′′. Consequently, the opposite regulus of R
consists of mutually parallel lines. Applying the double space axiom once more

yields that all lines of the regulus R are in the parallel class S(M). �

Each line of the projective space P(LF ) has a unique parallel line, say K,

through the point F · 1 = F . Upon choosing any i ∈ K \ F , the line K takes

the form K = F ⊕ Fi. By our global assumption on the fields L and F from

Section 2, we have i2 ∈ F . So K is the intermediate field of F and L that arises

from F by adjoining the element i. We denote the field K by F [i] rather than

F (i) in order to avoid confusion with the subspace Fi of LF . Conversely, any

intermediate field K satisfying F & K & L is a line through the point F , since

[L : K] = 4 forces [K : F ] = 2.
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If K is an intermediate field as above then we may view L(K) := (K ⊗F L)K
as a vector space over K which extends LF . This vector space will usually not be

treated as a structure in its own right, but as a substructure of L(L). Thereby we

utilise that L(L) arises from L(K) (up to a canonical identification) by extending

the ground field from K to L [9, pp. 278–279]. Those points of the projective

space P(L(L)) that have at least one generating vector in K ⊗F L are named K-

rational. A subspace of L(L) is called K-rational if it is spanned by its K-rational

points. We are now in a position to describe the parallel class of the line K = F [i]

in terms of the absolute plane.

Theorem 3.6. Let i ∈ L \ F . Then the following assertions hold:

(i) The absolute plane Π of P(L(L)) ∼= P3(L) contains a unique F [i]-rational

line, namely the line joining the F [i]-rational point L(1⊗ i+ i⊗ 1) with the

absolute point A.

(ii) The absolute point A is not F [i]-rational.

(iii) A line M of P(LF ) ∼= P3(F ) is Clifford parallel to the line F [i] = F ⊕ Fi

if, and only if, the extended line M(L) meets the absolute plane Π at an

F [i]-rational point.

Proof. We extend 1, i to a basis (1, i, j, k) of LF as in (9) and introduce the

associated basis (1⊗ 1, p, q, r) of L(L) from (11).

Ad (i). A point of Π is F [i]-rational precisely when it can be generated by a

vector that belongs to the set
(
F [i]⊗F L

)
∩Π. We claim that(

F [i]⊗F L
)
∩Π = {(1⊗ y)p | y ∈ L}. (13)

Since p is in the ideal Π, so are all elements from the set on the right hand side

of (13). According to (2), we have

(1⊗ y)p = (1⊗ y)(1⊗ i+ i⊗ 1) = 1⊗ iy + i⊗ y for all y ∈ L, (14)

whence the right hand side of (13) is a subset of F [i]⊗F L. Conversely, for any g
from the set on the left hand side of (13) there are a, b in L with g = 1⊗a+ i⊗ b.
Now g ∈ Π = kerπ yields a = ib, and g = (1⊗ b)p follows as in (14). This verifies

equation (13).

We infer from (13) that the four vectors

(1⊗ 1)p = 1⊗ i+ i⊗ 1 = p,

(1⊗ i)p = i2 ⊗ 1 + i⊗ i = ip
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(1⊗ j)p = 1⊗ k + i⊗ j = jp+ r,

(1⊗ k)p = i2 ⊗ j + i⊗ k = i(jp+ r) (15)

are all in
(
F [i] ⊗F L

)
∩ Π. The first and the third vector from (15) are linearly

independent over L, since p and r belong to the basis (11) of L(L). Writing

(y0, y1, y2, y3) ∈ F 4 for the coordinates with respect to the basis (9) of an arbitrary

y ∈ L yields therefore

(1⊗ y)p = (y0 + iy1)p+ (y2 + iy3)(jp+ r). (16)

This shows that the F [i]-rational points of Π comprise an F [i]-subline of the line

Lp⊕ L(jp+ r) = A⊕ Lp. So A⊕ Lp is the only F [i]-rational line in Π. Cf. also

Figure 1 below.

Ad (ii). Clearly r = jp+ 1(jp+ r). This is the only possibility to write r as

a linear combination with coefficients in L of the (linearly independent) vectors p

and jp+r . Thus j /∈ F [i] and (16) imply that there is no y ∈ L such that (1⊗y)p
is a non-zero vector of Lr. So the absolute point A = Lr is not F [i]-rational.

Ad (iii). LetM be a line of P(LF ). IfM ∥ F [i] then there is a b ∈ L\{0} with

M = F [i]·b. From F [i] = F⊕Fi followsM = Fb⊕F (ib). By Proposition 3.2 (iii),

the extended line M(L) meets Π at the point L(b⊗ ib+ ib⊗ b). This point is F [i]-
rational, because it can be rewritten as L(1⊗ ib+ i⊗ b).

Conversely, suppose that M(L) ∩ Π is an F [i]-rational point, say Lm. By

(14), we may assume m = 1⊗ ib+ i⊗ b for some b ∈ L \ {0}. Proposition 3.2 (iii)

shows that the F -rational line
(
F [i] · b

)
(L)

passes through the point Lm. From

Proposition 3.2 (ii), there is precisely one F -rational line through Lm. So we

obtain M = F [i] · b or, said differently, M ∥ F [i]. �

Remark 3.7. The description of the parallel class S(F [i]) from Theorem 3.6

can be found in the literature in various guises. It is a special case of the de-

scription of the spread that arises from the field extension F [i]/F according to

[16, Theorem 2]. (This spread in turn yields a pappian projective plane whose

underlying field is isomorphic to the intermediate field F [i].) Taking into account

that S(F [i]) is a regular spread, our result is covered by [4, Theorem 1.2]. See

also [8] and [11] for related work. In order to fully establish the link with either

of the cited articles, it is sufficient to consider the intermediate projective space

P(L(F [i])) ∼= P3(F [i]). This space contains the initial space P(LF ) ∼= P3(F ) as a

Baer subspace. The F [i]-subline of A ⊕ Lp mentioned in the proof above is an

indicator set of the spread S(F [i]). It constitutes the ‘visible’ part of the abso-

lute plane within the intermediate projective space, whereas the absolute point

remains entirely ‘invisible’.
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The images of parallel classes under the Klein mapping are described in [15,

Lemma 1]: These are elliptic quadrics (intersections of the Klein quadric by solids)

with the following particular property: The tangent planes of any such quadric

have a common line.

The essential role of the absolute pencil will come into effect in the next

result, where we describe our Clifford parallelism in terms of the extended space

P(L(L)) ∼= P3(L).

Theorem 3.8. LetM andN be lines of the projective space P(LF ) ∼= P3(F ).

Then M and N are Clifford parallel if, and only if, there exists a line of the

absolute pencil [A,Π] that meets the extended lines M(L) and N(L).

Proof. First, let us assume M ∥ N . So there exists an i ∈ L \ F such that

M ∥ F [i] ∥ N . By Theorem 3.6 (iii), the extended lines M(L) and N(L) meet the

absolute plane Π at F [i]-rational points. Recall the notation p = 1⊗ i+ i⊗1 from

(11). Since A⊕Lp is the only F [i]-rational line in Π according to Theorem 3.6 (i),

each of the F [i]-rational points M(L) ∩Π and N(L) ∩Π must be incident with the

line A⊕ Lp ∈ [A,Π].

A = Lr = L(1⊗ k + i⊗ j + j ⊗ i+ k ⊗ 1)

L(iq + r) = L(k ⊗ 1 + j ⊗ i)L(1⊗ k + i⊗ j) = L(jp+ r)

L(jp+ iq + r)
= L(1⊗ k + k ⊗ 1)

F [i]-subline F [j]-subline

L(jp+ iq)

= L(i⊗ j + j ⊗ i)

L(1⊗ i+ i⊗ 1) = Lp Lq = L(1⊗ j + j ⊗ 1)

Figure 1. Sublines in the absolute plane Π.

Next, we assume M ̸ ∥ N . So there are i, j ∈ L \ F such that M ∥ F [i] and
N ∥ F [j]. From F [i] ̸ ∥ F [j] follows that 1, i, j are linearly independent over F .

We extend these elements to a basis (1, i, j, k) of LF as in (9) and introduce then

the basis (1⊗1, p, q, r) of L(L) from (11). By Theorem 3.6 (i), the point M(L)∩Π

belongs to the subline of F [i]-rational points of the line A⊕ Lp. Moreover, from

Theorem 3.6 (ii), the absolute point A is not F [i]-rational, whenceM(L)∩Π ̸= A.

Hence A ⊕ Lp is the only line of the absolute pencil [A,Π] that meets M(L).
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Exchanging M with N we obtain mutatis mutandis: N(L) ∩Π is an F [j]-rational

point on the line A⊕Lq, the absolute point A is not F [j]-rational, and therefore

A ⊕ Lq is the only line of the absolute pencil [A,Π] that meets N(L). Since

Lp,Lq,A = Lr are the vertices of a triangle, there is no line of the absolute pencil

that meets simultaneously the extended linesM(L) and N(L). See Figure 1, where

also two additional points are depicted in order to obtain a Fano subplane of the

absolute plane Π. �

The approach to the Clifford parallelism in Definition 3.4 makes use of the

group of Clifford translations. These are projective collineations that arise from

the multiplication maps µb as in (7), subject to the condition b ̸= 0. Due to our

global assumption from Section 2, the square of any Clifford translation is the

identical collineation. If b has coordinates (b0, b1, b2, b3) ∈ F 4 with respect to an

arbitrary basis (1, i, j, k) as in (9) then the corresponding matrix of µb equals
b0 b1 b2 b3
i2b1 b0 i2b3 b2
j2b2 j2b3 b0 b1
k2b3 j2b2 i2b1 b0

 ∈ GL4(F ).

The structure of µb becomes more apparent from its extension µ1⊗b and by chang-

ing to the basis (11) which is associated to (9). The coordinates of 1 ⊗ b with

respect to (11) are

(b0 + b1i+ b2j + b3k︸ ︷︷ ︸
= b

, b1 + b3j, b2 + b3i, 1) =: (b′0, b
′
1, b

′
2, b

′
3) ∈ L4,

and the matrix of µ1⊗b reads
b′0 b′1 b′2 b′3
0 b′0 0 b′2
0 0 b′0 b′1
0 0 0 b′0

 ∈ GL4(L). (17)

The case when b ̸= 0 is in F does not deserve our interest, since it gives the

identical collineation. Otherwise, we may simplify matters by choosing w.l.o.g.

the basis element i equal to the given b ∈ L \ F . As a consequence b1 = 1 and

b0 = b2 = b3 = 0, which implies that the matrix from (17) turns into block

diagonal form

diag

((
i 1

0 i

)
,

(
i 1

0 i

))
∈ GL4(L). (18)
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From (18) the following observations about the collineation arising from µ1⊗i are

immediate: The fixed points comprise the line A⊕ Lp. A plane is invariant pre-

cisely when it contains the line A⊕Lp. The restriction of the collineation to every

invariant plane is an involutory (planar) elation. In particular, the restriction to

the absolute plane Π has the absolute point A = Lr as its centre.

Remark 3.9. It is straightforward to show (e.g. in terms of Plücker coordi-

nates or in terms of the geometric characterisation from [10, vol. II, p. 182]) that

the invariant lines of the collineation given by (18) constitute a parabolic linear

congruence. Furthermore, the F -rational lines of this congruence are exactly the

extended lines of the parallel class S(F [i]).

Our final aim is to link certain polarities with our Clifford parallelism. Let

φ : L→ F be an F -linear form. Then

⟨ · , · ⟩φ : L× L→ F : (x, y) 7→ (xy)φ (19)

is a symmetric F -bilinear form satisfying

⟨xb, yb⟩φ = (b2xy)φ = b2(xy)φ = b2⟨x, y⟩φ for all x, y, b ∈ L, (20)

since b2 ∈ F holds due to our global assumption from Section 2. Letting x = y = 1

in (20) shows that the bilinear form ⟨ · , · ⟩φ is alternating for 1φ = 0. Likewise,

the form turns out to be anisotropic for 1φ ̸= 0.

From now on let us rule out the zero form φ = 0. Then there is a c ∈ L\kerφ,
whence for any a ∈ L \ {0} we obtain ⟨a, ca−1⟩φ = cφ ̸= 0. So ⟨ · , · ⟩φ is non-

degenerate and determines a projective polarity ⊥φ of P(LF ) ∼= P3(F ). By (20),

all Clifford translations commute with this polarity, which is null for 1φ = 0 and

elliptic (i.e., without self-conjugate points) otherwise. Our null polarities appear

(in terms of a slightly different approach) in [13, p. 97]. It should also be noted

that our elliptic polarities are pseudo-polarities according to the terminology used

in [20] and [31].

Proposition 3.10. For any non-zero F -linear form φ : L→ F the associated

polarity ⊥φ of P(LF ) ∼= P3(F ) maps every line to a parallel one. If a line is fixed

under ⊥φ then so are all its parallel lines.

Proof. Given a line M there is an i ∈ L \ F and an a ∈ L \ {0} with M =

F [i]·a. For all y ∈M⊥φ \{0} we have ⟨M,y⟩φ = 0 so thatM ∥My ⊂ kerφ. Since

S(M) is a spread, there cannot be two distinct lines parallel to M in the plane

kerφ. Hence, as y varies in the non-empty set M⊥φ \ {0}, the line My remains
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unchanged. So there is a constant c ∈ L \ {0} such that My = F [i] · ay = F [i] · c
holds for all y ∈M⊥φ . This implies M⊥φ = F [i] · a−1c ∥M .

If M = M⊥φ is satisfied for one line M then we obtain Mb = M⊥φ · b =

(Mb)⊥φ for all b ∈ L\{0} by (20). So all lines from S(M) are fixed under ⊥φ. �

Note that a self-polar line M , i.e., a line with the property M =M⊥φ , exists

precisely when ⊥φ is a null polarity. If this is the case then all such lines constitute

a general linear complex of lines. On the other hand, any of the elliptic polarities

⊥φ can be used to given an alternative definition of the Clifford parallelism [17,

Remark 3].

Remark 3.11. Our Clifford parallelism is readily seen to be cosymplectic [2,

Definition 3], i.e., any two distinct parallel classes S(M) and S(N) belong to a

common general linear complex of lines. In order to establish this result, we may

assume that both M and N are lines through the point F · 1 = F , whence there

is a non-zero F -linear form φ : L → F that vanishes on the plane M + N . The

associated polarity ⊥φ is null, and its self-polar lines comprise a linear complex

which contains S(M) ∪ S(N). From this observation and from Proposition 3.5,

our parallelism is also Clifford in the sense of [3, Definition 1.9].

All bilinear forms from (19) can be extended to symmetric L-bilinear forms

L(L) → L. More generally, any L-linear form ψ : L(L) → L defines a symmetric

L-bilinear form in analogy to (19). Since g2 ∈ F (1 ⊗ 1) ⊂ L(1 ⊗ 1) holds for all

elements g ∈ L(L), the analogue of (20) is satisfied too. However, such a bilinear

form ⟨ · , · ⟩ψ can be degenerate for ψ ̸= 0, and we leave a detailed exposition to

the reader. From Lemma 2.2, the orthogonal subspace of the absolute point A
contains the absolute plane Π for any choice of ψ. Therefore, when ⟨ · , · ⟩ψ is

non-degenerate, the projective polarity ⊥ψ will send the absolute point A to the

absolute plane Π, and the polar planes of the points from Π will all contain the

absolute point A.

4. Future research

We are of the opinion that further investigation should prove worthwhile

of those Clifford parallelisms that arise according to [25, Satz 1] from purely

inseparable field extensions of degree greater than four. This task should not be

confined to the finite-dimensional case. This was one motivation for avoiding,

wherever possible, the use of coordinates in the present paper. It is striking that,
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according to the classification from [25], none of those Clifford parallelisms has

an analogue when the characteristic of the ground field is different from two.
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