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On delta Schur-convex mappings

By ANDRZEJ OLBRYŚ (Katowice)

Abstract. The aim of the present paper is to combine the notions of Schur-convex

and delta-convex mappings in the sense of Veselý and Zajic̆ek. Our main result gives

necessary and sufficient conditions on maps Fj , j = 1, . . . , n, under which the sum∑n
j=1 Fj(xj) is delta Schur-convex.

1. Introduction and terminology

Throughout the whole paper (unless explicity stated) (X, ∥ · ∥) and (Y, ∥ · ∥)
denote real linear Banach spaces and, D ⊂ X will be a non-empty open and

convex set. Let us fix some notation and terminology. Recall that a function

f : D → R is said to be convex on D if it satisfies the following inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y),

for every x, y ∈ D and every t ∈ [0, 1].

Definition 1. A map F : D → Y is said to be affine, if it satisfies Jensen

equation, i.e., for every x, y ∈ D

F
(x+ y

2

)
=

F (x) + F (y)

2
.
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Definition 2. For x, y ∈ Rn

x ≺ y if



k∑
i=1

x[i] ≤
k∑

i=1

y[i], k = 1, . . . , n− 1

n∑
i=1

x[i] =

n∑
i=1

y[i],

where, for any x = (x1, . . . , xn) ∈ Rn, x[1] ≥ · · · ≥ x[n] denote the components

of x in decreasing order. When x ≺ y, x is said to be majorized by y.

This notation and terminology was introduced by Hardy, Littlewood,

and Pólya [4]. Let us recall that an n×n matrix P = [pij ] is doubly stochastic if

pij ≥ 0, for i, j = 1, . . . , n,

and
n∑

i=1

pij = 1, j = 1, . . . , n,
n∑

j=1

pij = 1, i = 1, . . . , n.

Particularly interesting examples of doubly stochastic matrices are provided by

the permutation matrices. Recall that, matrix Π is said to be a permutation

matrix if each row and column has a single unite entry, and all other entries are

zero.

The well-known Hardy, Littlewood and Pólya theorem says that x ≺ y, if

and only if, x = yP for some doubly stochastic matrix P . (In general, the matrix

P is not unique.)

Motivated by this concept, we introduce the following natural generalization

of the definition of majorization ≺ on vectors having not necessary real compo-

nents.

Definition 3. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be n-tuples of vectors

xi, yi ∈ X, i = 1, . . . , n. We say that x is majorized by y, written x ≺ y, if

(x1, . . . , xn) = (y1, . . . , yn)P,

for some doubly stochastic n× n matrix P .

In 1923 [13] Schur has introduced the following class of functions, which in

Schur’s honor are said to be convex in the sense of Schur (or Schur-convex).

Definition 4. A real valued function Φ defined on a set Dn is said to be

Schur-convex on Dn if

x ≺ y on Dn ⇒ Φ(x) ≤ Φ(y).
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Similarly Φ is said to be Schur-concave on Dn if

x ≺ y on Dn ⇒ Φ(x) ≥ Φ(y).

Of course, Φ is Schur-concave if and only if −Φ is Schur-convex.

A survey of results concerning Schur-convex functions may be found in the

positions [1], [4], [11], [12], [13]. In particular C.T. Ng in [8] has given a char-

acterization of functions generating Schur-convex sums. In fact in [8] Ng proved

the equivalence of the following four conditions:

Theorem 1 (Ng, [8]). Let D ⊂ Rm be a non-empty open and convex set,

and let f : D → R be a function. The following conditions are pairwise equivalent:

(i)
∑n

i=1 f(xi) is Schur-convex on Dn for some n ≥ 2,

(ii)
∑n

i=1 f(xi) is Schur-convex on Dn for every n ≥ 2,

(iii) f is convex in the sense of Wright, i.e., it satisfies the following inequality

f(tx+ (1− t)y) + f((1− t)x+ ty) ≤ f(x) + f(y), x, y ∈ D, t ∈ [0, 1],

(iv) f admits the representation

f(x) = w(x) + a(x), x ∈ D,

where a is additive, i.e., a(x+ y) = a(x) + a(y), x, y ∈ Rm, and w is convex

on D.

Remark 1. The characterization of Wright-convex functions defined on an

algebraically open and convex subset of arbitrary real linear spaces independently

was given by Z. Kominek in [6] (see also [5], [7], [9]).

Delta-convex mappings between normed linear spaces provide a generaliza-

tion of functions which are representable as a differences of two convex functions.

An interesting study of the class of delta-convex mappings has been given by

Veselý and L. Zajićek in [15]. The definition of delta-convexity reads as fol-

lows:

Definition 5. A map F : D → Y is called delta-convex, if there exists a

continuous and convex functional f : D → R such that f + y∗ ◦ F is continuous

and convex for any member y∗ of the space Y ∗ dual to Y with ∥y∗∥ = 1. If this is

the case, then we say that F is a delta-convex mapping with a control function f .
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In [15] the authors have given many properties of delta-convexity, in partic-

ular they have proved that if a map F is a delta-convex with control function f ,

then the following inequality of Jensen-type holds∥∥∥∥ n∑
i=1

tiF (xi)− F

( n∑
i=1

tixi

)∥∥∥∥ ≤
n∑

i=1

tif(xi)− f

( n∑
i=1

tixi

)
, (1)

for all x1, . . . , xn ∈ D, t1, . . . , tn ∈ [0, 1] such that t1 + · · ·+ tn = 1.

Moreover, it turns out that a continuous function F : D → Y is a delta-

convex mapping controlled by a continuous function f : D → R if and only if the

functional inequality∥∥∥F(x+ y

2

)
− F (x) + F (y)

2

∥∥∥ ≤ f(x) + f(y)

2
− f

(x+ y

2

)
, (2)

is satisfied for all x, y ∈ D. (Corollary 1.18 in [15])

Remark 2. Note that inequality (1) may obviously be investigated without

any regularity assumption upon F and f . In the present paper by delta-convex

map we will mean a map F : D → Y , for which there exists a function f : D → R
such that f + y∗ ◦ F is convex (not necessary continuous), for any member y∗ of

the space Y ∗, dual to Y with ∥y∗∥ = 1. This definition is equivalent to the fact

that a pair (F, f) satisfies the inequality (1).

Below we give a joint generalization of Schur-convexity and delta-convexity.

Definition 6. A map F : Dn → Y is said to be delta Schur-convex with

control function f : Dn → R, if

∥F (y)− F (x)∥ ≤ f(y)− f(x), (3)

whenever x ≺ y on Dn.

2. Results

We begin the study of (3) with the following

Observation 1. Every delta Schur-convex mapping F : Dn → Y is symmetric

i.e.

F (Px) = F (x),

for every n× n permutation matrices P .
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Proof. By assumption

∥F (Sx)− F (x)∥ ≤ f(x)− f(Sx),

holds for all x ∈ D and every doubly stochastic matrix S. Because an arbitrary

permutation matrix P and its inverse are doubly stochastic, then if F is a delta

Schur-convex we have

∥F (Px)− F (x)∥ ≤ f(x)− f(Px),

and,

∥F (Px)− F (x)∥ = ∥F (P−1Px)− F (Px)∥ ≤ f(Px)− f(x),

so F (Px) = F (x). �

The following result establishes necessary and sufficient conditions for a given

map to be delta Schur-convex.

Theorem 2. The following conditions are pairwise equivalent:

(i) F is a delta Schur-convex mapping controlled by f ,

(ii) for every y∗ ∈ Y ∗, ∥y∗∥ = 1, the function y∗ ◦ F + f is Schur-convex,

(iii) for every y∗ ∈ Y ∗, ∥y∗∥ = 1, the function y∗ ◦ F − f is Schur-concave.

Proof. (i) implies (ii). Assume that

∥F (x)− F (y)∥ ≤ f(y)− f(x),

whenever x ≺ y on D. Let y∗ ∈ Y ∗, ∥y∗∥ = 1 be arbitrary. From the above

inequality it follows that for x ≺ y,

y∗(F (x)− F (y)) ≤ f(y)− f(x),

or, equivalently,

x ≺ y ⇒ y∗(F (x)) + f(x) ≤ y∗(F (y)) + f(y).

(ii) implies (iii). Replace y∗ by −y∗ in (ii).

(iii) implies (i). For every y∗ ∈ Y ∗, ∥y∗∥ = 1 and x ≺ y we have

y∗(F (y))− f(y) ≤ y∗(F (x))− f(x),

and, consequently,

∥F (y)− F (x)∥ = sup{y∗(F (y)− F (x)) : ∥y∗∥ = 1} ≤ f(y)− f(x),

which completes the proof. �
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Let us observe, that delta Schur-convex mappings provide a generalization of

functions which are representable as a differences of two Schur-convex functions.

Proposition 1. In the case where (Y, ∥·∥) = (R, | · |) a map F : Dn → R is a

delta Schur-convex, if and only if, F is a difference of two Schur-convex functions.

Proof. Assume that f : Dn → R is a control function for F . For all x, y ∈
Dn such that x ≺ y we have

|F (y)− F (x)| ≤ f(y)− f(x).

Put

ϕ1 :=
1

2
(F + f) and ϕ2 :=

1

2
(f − F ).

It is easy to see that both ϕ1 and ϕ2 are Schur-convex functions, moreover, F =

ϕ1 − ϕ2. Conversely, let F = ϕ1 − ϕ2, where ϕ1, ϕ2 are Schur-convex. Setting

f := ϕ1 + ϕ2 we infer that both f − F and f + F are Schur-convex, whence, for

every x, y ∈ Dn we obtain

x ≺ y ⇒ |F (y)− F (x)| ≤ f(y)− f(x),

which finishes the proof. �

The following result is a consequence of Jensen inequality for delta-convex

mapping (1).

Theorem 3. If F : D → Y is a delta-convex map with a control function

f : D → R then a map H : Dn → Y given by the formula

H(x1, . . . , xn) :=
n∑

j=1

F (xj),

is a delta Schur-convex with a control function h(x1, . . . , xn) :=
∑n

j=1 f(xj).

Proof. Assume that x ≺ y. There exists a doubly stochastic matrix P such

that x = yP . Since

xj =

n∑
i=1

yipi,j , where

n∑
i=1

pi,j = 1,

it follows from the inequality (1) that∥∥∥∥F (xj)−
n∑

i=1

pi,jF (yi)

∥∥∥∥ ≤
n∑

i=1

pi,jf(yi)− f(xj),
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so because
∑n

j=1 pi,j = 1 and using the triangle inequality several times we obtain∥∥∥∥ n∑
i=1

F (yi)−
n∑

j=1

F (xj)

∥∥∥∥ =

∥∥∥∥ n∑
i=1

n∑
j=1

pi,jF (yi)−
n∑

j=1

F (xj)

∥∥∥∥
=

∥∥∥∥ n∑
j=1

n∑
i=1

pi,jF (yi)−
n∑

j=1

F (xj)

∥∥∥∥ =

∥∥∥∥ n∑
j=1

( n∑
i=1

pi,jF (yi)− F (xj)

)∥∥∥∥
≤

n∑
j=1

∥∥∥∥ n∑
i=1

pi,jF (yi)− F (xj)

∥∥∥∥ ≤
n∑

j=1

( n∑
i=1

pi,jf(yi)− f(xj)

)

=

n∑
i=1

n∑
j=1

pi,jf(yi)−
n∑

j=1

f(xj) =

n∑
i=1

f(yi)−
n∑

j=1

f(xj),

which was to be proved. �

In the proof of our next result we will use the following theorem, which is a

particular case of Theorem 4 proved in [10].

Theorem 4. Let F : D → Y and f : D → R satisfy the inequality (2). Then

for an arbitrary point y ∈ D there exist affine maps Ay : D → Y and ay : D → R
such that

Ay(y) = F (y), ay(y) = f(y),

and, for all x ∈ D

∥F (x)−Ay(x)∥ ≤ f(x)− ay(x).

Now, we are in position to prove the characterization of delta Schur-convex

sums. The following theorem corresponds to the theorem of Ng [8]

Theorem 5. Let F : D → Y and f : D → R be given mappings. Then the

following statements are pairwise equivalent:

(i)
∑n

i=1 F (xi) is delta Schur-convex on Dn with control function
∑n

i=1 f(xi),

for some n ≥ 2,

(ii)
∑n

i=1 F (xi) is delta Schur-convex on Dn with control function
∑n

i=1 f(xi),

for every n ≥ 2,

(iii) F is delta-convex in the sense of Wright i.e. it satisfies the following inequality

∥F (x) + F (y)− F (tx+ (1− t)y)− F ((1− t)x+ ty)∥
≤ f(x) + f(y)− f(tx+ (1− t)y)− f((1− t)x+ ty),

for all x, y ∈ D, t ∈ [0, 1].
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(iv) F admits the representation

F (x) = W (x) +A(x), x ∈ D,

where W : D → Y is a delta-convex on D and A : X → Y is an additive.

Proof. Assume that, for some fixed n ≥ 2, the sum
∑n

j=1 F (xj) is delta

Schur-convex on Dn. Fix x3, x4, . . . , xn ∈ D arbitrarily and consider two vectors

x := (x1, x2, x3, . . . , xn) and y := (y1, y2, x3, . . . , xn). Of course x ≺ y if and only

if (x1, x2) ≺ (y1, y2), so there exists a t ∈ [0, 1] such that

(x1, x2) = (y1, y2)

[
t 1− t

1− t t

]
= (ty1 + (1− t)y2, (1− t)y1 + ty2).

Then for (x1, x2) ≺ (y1, y2) the inequality∥∥∥∥ 2∑
j=1

F (xj)−
2∑

j=1

F (yj)

∥∥∥∥ ≤
2∑

j=1

f(yj)−
2∑

j=1

f(xj)

implies (iii).

Suppose that F is a delta Wright-convex with a control function f . In par-

ticular if we put λ = 1
2 the inequality (2) holds true. By Theorem 4 there exist

affine maps A : D → Y and a : D → R such that, for all x ∈ D,

∥F (x)−A(x)∥ ≤ f(x)− a(x).

Without loss of generality we may assume that A and a are additive maps. (Oth-

erwise we will consider A − A(0) and a − a(0) instead of A and a respectively.)

Put

G(x) := F (x)−A(x), and g(x) := f(x)− a(x), x ∈ D.

Inequality

∥G(x)∥ ≤ g(x), x ∈ D (4)

implies that for every y∗ ∈ Y ∗, ∥y∗∥ = 1 we have

y∗(G(x)) ≤ g(x), x ∈ D.

To complete the proof of our implication it is enough to show that, for every

y∗ ∈ Y ∗, ∥y∗∥ = 1, the function

D ∋ x −→ y∗(G(x)) + g(x),
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is convex. Obviously the defining function is convex in the sense of Jensen. Fix

x, y ∈ D arbitrary. SinceD is open there exists a δ > 0 such that tx+(1−t)y ∈ D,

for t ∈ (−δ, 1 + δ). Let us define a function h : (−δ, 1 + δ) → R by the formula

h(t) := y∗(G(tx+ (1− t)y)) + g(tx+ (1− t)y).

Of course h is convex in the sense of Jensen, moreover, by (4)

h(t) ≤ 2g(tx+ (1− t)y) = 2[f(tx+ (1− t)y)− a(tx+ (1− t)y)]

= 2[f(tx+ (1− t)y) + a((1− t)x+ ty)− a(x)− a(y)]

≤ 2[f(tx+ (1− t)y) + f((1− t)x+ ty)− a(x)− a(y)]

≤ 2[f(x) + f(y)− a(x)− a(y)].

Hence h is bounded from above then by a famous Bernstein–Doetsch [2] the-

orem continuous and convex. In particular

y∗(G(tx+ (1− t)y)) + g(tx+ (1− t)y) = h(t)

= h(t1 + (1− t)0) ≤ th(1) + (1− t)h(0)

= t[y∗(G(x)) + g(x)] + (1− t)[y∗(G(y)) + g(y)].

This completes the proof of implication (iii) ⇒ (iv).

Suppose F has the representation F = W + A, where W is a delta-convex

map with control function w and A is additive. On account of Theorem 3 and by

additivity of A for an arbitrary n ≥ 2 we obtain (because
∑n

j=1 xj =
∑n

j=1 yj)∥∥∥∥ n∑
j=1

F (yj)−
n∑

j=1

F (xj)

∥∥∥∥ =

∥∥∥∥ n∑
j=1

W (yj)−
n∑

j=1

W (xj) +
n∑

j=1

A(yj)−
n∑

j=1

A(xj)

∥∥∥∥
=

∥∥∥∥ n∑
j=1

W (yj)−
n∑

j=1

W (xj)

∥∥∥∥ ≤
n∑

j=1

w(yj)−
n∑

j=1

w(xj).

This proves implication (iv) ⇒ (ii).

The implication (ii) ⇒ (i) is trivial. �

In the proof of our main result we use the following

Lemma 1. Let a map H : Dn → Y be of the form

H(x1, . . . , xn) =

n∑
j=1

Fj(xj), (5)

where Fj : D → Y , for j = 1, . . . , n. Then H is symmetric, if and only if, there

exist a map F : D → Y and a constants C1, . . . , Cn ∈ Y such that

Fj(xj) = F (xj) + Cj , xj ∈ D, j = 1, . . . , n.
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Proof. The proof of sufficiency is obvious. Assume that H is symmetric.

It means that

H(xσ(1), . . . , xσ(n)) = H(x1, . . . , xn),

for all x1, . . . , xn ∈ D and all σ ∈ Π(n), where Π(n) denote the set of all permu-

tations of the integers {1, . . . , n}. Fix i, j ∈ {1, . . . , n}. Let xi = x, xj = y and

xk = z for all k ∈ {1, . . . , n} \ {i, j}. Consider a permutation σ ∈ Π(n) such that

σ(i) = j, σ(j) = i, and σ(k) = k for k ∈ {1, . . . , n} \ {i, j}. By symmetry of H

we have

Fi(xi) + Fj(xj) = Fi(xj) + Fj(xi),

or, equivalently,

Fi(x)− Fj(x) = Fi(y)− Fj(y),

for all x, y ∈ D. Put

Cij := Fi(x)− Fj(x).

Let F := F1, Cj := Cj1, for j = 1, . . . , n. We obtain a representation

Fj(x) = F (x) + Cj , j = 1, . . . , n.

�

Our main result reads as follows

Theorem 6. Assume that we are given maps Fj : D→Y and fj : D→R,
for j = 1, . . . , n. Then

∑n
j=1 Fj(xj) is a delta Schur-convex with a control func-

tion
∑n

j=1 fj(xj), if and only if, there exist constants C1, . . . , Cn ∈ Y , additive

mapping A : X → Y and a delta-convex map W : D → Y such that

Fj(x) = A(x) +W (x) + Cj , j = 1, . . . , n. (6)

Proof. Suppose that a map
∑n

j=1 Fj(xj) is a delta Schur-convex. On ac-

count of Observation 1 it is symmetric, consequently, by Lemma 1 there exist a

map F : D → Y and constants C1, . . . , Cn ∈ Y such that

Fj(x) = F (x) + Cj , j = 1, . . . , n.

It is not hard to check that a sum
∑n

j=1 F (xj) is a delta Schur-convex, then by

Theorem 5 a map F has the form

F (x) = A(x) +W (x), x ∈ D,

where A : X → Y is an additive and W : D → Y a delta-convex.

Conversely, each map of the form (5) admitting a representation (6) is a delta

Schur-convex. �
Remark 3. Observe, that substituting F := 0 in our theorems we obtain the

results concerning classical Schur-convexity.
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