Publ. Math. Debrecen 86/3-4 (2015), 313–323 DOI: 10.5486/PMD.2015.6074

On delta Schur-convex mappings

By ANDRZEJ OLBRYŚ (Katowice)

Abstract. The aim of the present paper is to combine the notions of Schur-convex and delta-convex mappings in the sense of Veselý and Zajiček. Our main result gives necessary and sufficient conditions on maps F_j , j = 1, ..., n, under which the sum $\sum_{j=1}^{n} F_j(x_j)$ is delta Schur-convex.

1. Introduction and terminology

Throughout the whole paper (unless explicitly stated) $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ denote real linear Banach spaces and, $D \subset X$ will be a non-empty open and convex set. Let us fix some notation and terminology. Recall that a function $f: D \to \mathbb{R}$ is said to be convex on D if it satisfies the following inequality

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y),$$

for every $x, y \in D$ and every $t \in [0, 1]$.

Definition 1. A map $F: D \to Y$ is said to be affine, if it satisfies Jensen equation, i.e., for every $x, y \in D$

$$F\left(\frac{x+y}{2}\right) = \frac{F(x) + F(y)}{2}.$$

Mathematics Subject Classification: 39B62, 26A51, 26B25.

Key words and phrases: convexity, Wright-convexity, Schur-convexity.

Definition 2. For $x, y \in \mathbb{R}^n$

$$x \prec y \quad \text{if} \quad \begin{cases} \sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, \quad k = 1, \dots, n-1 \\ \sum_{i=1}^{n} x_{[i]} = \sum_{i=1}^{n} y_{[i]}, \end{cases}$$

where, for any $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $x_{[1]} \geq \cdots \geq x_{[n]}$ denote the components of x in decreasing order. When $x \prec y$, x is said to be majorized by y.

This notation and terminology was introduced by HARDY, LITTLEWOOD, and PÓLYA [4]. Let us recall that an $n \times n$ matrix $P = [p_{ij}]$ is doubly stochastic if

$$p_{ij} \ge 0$$
, for $i, j = 1, \dots, n$,

and

$$\sum_{i=1}^{n} p_{ij} = 1, \ j = 1, \dots, n, \quad \sum_{j=1}^{n} p_{ij} = 1, \ i = 1, \dots, n.$$

Particularly interesting examples of doubly stochastic matrices are provided by the permutation matrices. Recall that, matrix Π is said to be a permutation matrix if each row and column has a single unite entry, and all other entries are zero.

The well-known Hardy, Littlewood and Pólya theorem says that $x \prec y$, if and only if, x = yP for some doubly stochastic matrix P. (In general, the matrix P is not unique.)

Motivated by this concept, we introduce the following natural generalization of the definition of majorization \prec on vectors having not necessary real components.

Definition 3. Let $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ be n-tuples of vectors $x_i, y_i \in X, i = 1, \ldots, n$. We say that x is majorized by y, written $x \prec y$, if

$$(x_1,\ldots,x_n)=(y_1,\ldots,y_n)P,$$

for some doubly stochastic $n \times n$ matrix P.

In 1923 [13] SCHUR has introduced the following class of functions, which in Schur's honor are said to be convex in the sense of Schur (or Schur-convex).

Definition 4. A real valued function Φ defined on a set D^n is said to be Schur-convex on D^n if

$$x \prec y$$
 on $D^n \Rightarrow \Phi(x) \le \Phi(y)$.

Similarly Φ is said to be Schur-concave on D^n if

$$x \prec y$$
 on $D^n \Rightarrow \Phi(x) \ge \Phi(y)$

Of course, Φ is Schur-concave if and only if $-\Phi$ is Schur-convex.

A survey of results concerning Schur-convex functions may be found in the positions [1], [4], [11], [12], [13]. In particular C.T. NG in [8] has given a characterization of functions generating Schur-convex sums. In fact in [8] NG proved the equivalence of the following four conditions:

Theorem 1 (NG, [8]). Let $D \subset \mathbb{R}^m$ be a non-empty open and convex set, and let $f: D \to \mathbb{R}$ be a function. The following conditions are pairwise equivalent:

- (i) $\sum_{i=1}^{n} f(x_i)$ is Schur-convex on D^n for some $n \ge 2$,
- (ii) $\sum_{i=1}^{n} f(x_i)$ is Schur-convex on D^n for every $n \ge 2$,
- (iii) f is convex in the sense of Wright, i.e., it satisfies the following inequality

 $f(tx + (1 - t)y) + f((1 - t)x + ty) \le f(x) + f(y), \quad x, y \in D, \ t \in [0, 1],$

(iv) f admits the representation

$$f(x) = w(x) + a(x), \quad x \in D,$$

where a is additive, i.e., a(x+y) = a(x) + a(y), $x, y \in \mathbb{R}^m$, and w is convex on D.

Remark 1. The characterization of Wright-convex functions defined on an algebraically open and convex subset of arbitrary real linear spaces independently was given by Z. KOMINEK in [6] (see also [5], [7], [9]).

Delta-convex mappings between normed linear spaces provide a generalization of functions which are representable as a differences of two convex functions. An interesting study of the class of delta-convex mappings has been given by VESELÝ and L. ZAJIĆEK in [15]. The definition of delta-convexity reads as follows:

Definition 5. A map $F : D \to Y$ is called delta-convex, if there exists a continuous and convex functional $f : D \to \mathbb{R}$ such that $f + y^* \circ F$ is continuous and convex for any member y^* of the space Y^* dual to Y with $||y^*|| = 1$. If this is the case, then we say that F is a delta-convex mapping with a control function f.

In [15] the authors have given many properties of delta-convexity, in particular they have proved that if a map F is a delta-convex with control function f, then the following inequality of Jensen-type holds

$$\left\|\sum_{i=1}^{n} t_i F(x_i) - F\left(\sum_{i=1}^{n} t_i x_i\right)\right\| \le \sum_{i=1}^{n} t_i f(x_i) - f\left(\sum_{i=1}^{n} t_i x_i\right),$$
(1)

for all $x_1, ..., x_n \in D, t_1, ..., t_n \in [0, 1]$ such that $t_1 + \dots + t_n = 1$.

Moreover, it turns out that a continuous function $F: D \to Y$ is a deltaconvex mapping controlled by a continuous function $f: D \to \mathbb{R}$ if and only if the functional inequality

$$\left\| F\left(\frac{x+y}{2}\right) - \frac{F(x) + F(y)}{2} \right\| \le \frac{f(x) + f(y)}{2} - f\left(\frac{x+y}{2}\right), \tag{2}$$

is satisfied for all $x, y \in D$. (Corollary 1.18 in [15])

Remark 2. Note that inequality (1) may obviously be investigated without any regularity assumption upon F and f. In the present paper by delta-convex map we will mean a map $F: D \to Y$, for which there exists a function $f: D \to \mathbb{R}$ such that $f + y^* \circ F$ is convex (not necessary continuous), for any member y^* of the space Y^* , dual to Y with $||y^*|| = 1$. This definition is equivalent to the fact that a pair (F, f) satisfies the inequality (1).

Below we give a joint generalization of Schur-convexity and delta-convexity.

Definition 6. A map $F: D^n \to Y$ is said to be delta Schur-convex with control function $f: D^n \to \mathbb{R}$, if

$$||F(y) - F(x)|| \le f(y) - f(x), \tag{3}$$

whenever $x \prec y$ on D^n .

2. Results

We begin the study of (3) with the following

 $Observation \ 1.$ Every delta Schur-convex mapping $F:D^n \to Y$ is symmetric i.e.

$$F(Px) = F(x),$$

for every $n \times n$ permutation matrices P.

PROOF. By assumption

$$||F(Sx) - F(x)|| \le f(x) - f(Sx),$$

holds for all $x \in D$ and every doubly stochastic matrix S. Because an arbitrary permutation matrix P and its inverse are doubly stochastic, then if F is a delta Schur-convex we have

$$||F(Px) - F(x)|| \le f(x) - f(Px),$$

and,

$$||F(Px) - F(x)|| = ||F(P^{-1}Px) - F(Px)|| \le f(Px) - f(x),$$

so F(Px) = F(x).

The following result establishes necessary and sufficient conditions for a given map to be delta Schur-convex.

Theorem 2. The following conditions are pairwise equivalent:

- (i) F is a delta Schur-convex mapping controlled by f,
- (ii) for every $y^* \in Y^*$, $||y^*|| = 1$, the function $y^* \circ F + f$ is Schur-convex,
- (iii) for every $y^* \in Y^*$, $||y^*|| = 1$, the function $y^* \circ F f$ is Schur-concave.

PROOF. (i) implies (ii). Assume that

$$||F(x) - F(y)|| \le f(y) - f(x),$$

whenever $x \prec y$ on *D*. Let $y^* \in Y^*$, $||y^*|| = 1$ be arbitrary. From the above inequality it follows that for $x \prec y$,

$$y^*(F(x) - F(y)) \le f(y) - f(x),$$

or, equivalently,

$$x \prec y \Rightarrow y^*(F(x)) + f(x) \le y^*(F(y)) + f(y).$$

(ii) implies (iii). Replace y^* by $-y^*$ in (ii).

(iii) implies (i). For every $y^* \in Y^*$, $||y^*|| = 1$ and $x \prec y$ we have

$$y^*(F(y)) - f(y) \le y^*(F(x)) - f(x),$$

and, consequently,

$$||F(y) - F(x)|| = \sup\{y^*(F(y) - F(x)) : ||y^*|| = 1\} \le f(y) - f(x),$$

which completes the proof.

317

Let us observe, that delta Schur-convex mappings provide a generalization of functions which are representable as a differences of two Schur-convex functions.

Proposition 1. In the case where $(Y, \|\cdot\|) = (\mathbb{R}, |\cdot|)$ a map $F : D^n \to \mathbb{R}$ is a delta Schur-convex, if and only if, F is a difference of two Schur-convex functions.

PROOF. Assume that $f: D^n \to \mathbb{R}$ is a control function for F. For all $x, y \in D^n$ such that $x \prec y$ we have

Put

$$\phi_1 := \frac{1}{2}(F+f)$$
 and $\phi_2 := \frac{1}{2}(f-F)$

 $|F(y) - F(x)| \le f(y) - f(x).$

It is easy to see that both ϕ_1 and ϕ_2 are Schur-convex functions, moreover, $F = \phi_1 - \phi_2$. Conversely, let $F = \phi_1 - \phi_2$, where ϕ_1 , ϕ_2 are Schur-convex. Setting $f := \phi_1 + \phi_2$ we infer that both f - F and f + F are Schur-convex, whence, for every $x, y \in D^n$ we obtain

$$x \prec y \Rightarrow |F(y) - F(x)| \le f(y) - f(x),$$

which finishes the proof.

The following result is a consequence of Jensen inequality for delta-convex mapping (1).

Theorem 3. If $F : D \to Y$ is a delta-convex map with a control function $f : D \to \mathbb{R}$ then a map $H : D^n \to Y$ given by the formula

$$H(x_1,\ldots,x_n):=\sum_{j=1}^n F(x_j),$$

is a delta Schur-convex with a control function $h(x_1, \ldots, x_n) := \sum_{j=1}^n f(x_j)$.

PROOF. Assume that $x \prec y$. There exists a doubly stochastic matrix P such that x = yP. Since

$$x_j = \sum_{i=1}^n y_i p_{i,j}, \text{ where } \sum_{i=1}^n p_{i,j} = 1,$$

it follows from the inequality (1) that

$$\left\| F(x_j) - \sum_{i=1}^n p_{i,j} F(y_i) \right\| \le \sum_{i=1}^n p_{i,j} f(y_i) - f(x_j),$$

318

so because $\sum_{j=1}^{n} p_{i,j} = 1$ and using the triangle inequality several times we obtain

$$\begin{split} \left\| \sum_{i=1}^{n} F(y_{i}) - \sum_{j=1}^{n} F(x_{j}) \right\| &= \left\| \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} F(y_{i}) - \sum_{j=1}^{n} F(x_{j}) \right\| \\ &= \left\| \sum_{j=1}^{n} \sum_{i=1}^{n} p_{i,j} F(y_{i}) - \sum_{j=1}^{n} F(x_{j}) \right\| \\ &= \left\| \sum_{j=1}^{n} \left(\sum_{i=1}^{n} p_{i,j} F(y_{i}) - F(x_{j}) \right) \right\| \\ &\leq \sum_{j=1}^{n} \left\| \sum_{i=1}^{n} p_{i,j} F(y_{i}) - F(x_{j}) \right\| \\ &\leq \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} f(x_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} p_{i,j} f(y_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} p_{i,j} f(y_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) - \sum_{j=1}^{n} p_{i,j} f(y_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} p_{i,j} f(y_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$

which was to be proved.

In the proof of our next result we will use the following theorem, which is a particular case of Theorem 4 proved in [10].

Theorem 4. Let $F : D \to Y$ and $f : D \to \mathbb{R}$ satisfy the inequality (2). Then for an arbitrary point $y \in D$ there exist affine maps $A_y : D \to Y$ and $a_y : D \to \mathbb{R}$ such that

$$A_y(y) = F(y), \quad a_y(y) = f(y),$$

and, for all $x \in D$

$$||F(x) - A_y(x)|| \le f(x) - a_y(x)$$

Now, we are in position to prove the characterization of delta Schur-convex sums. The following theorem corresponds to the theorem of NG [8]

Theorem 5. Let $F : D \to Y$ and $f : D \to \mathbb{R}$ be given mappings. Then the following statements are pairwise equivalent:

- (i) $\sum_{i=1}^{n} F(x_i)$ is delta Schur-convex on D^n with control function $\sum_{i=1}^{n} f(x_i)$, for some $n \ge 2$,
- (ii) $\sum_{i=1}^{n} F(x_i)$ is delta Schur-convex on D^n with control function $\sum_{i=1}^{n} f(x_i)$, for every $n \ge 2$,
- (iii) F is delta-convex in the sense of Wright i.e. it satisfies the following inequality

$$\begin{aligned} \|F(x) + F(y) - F(tx + (1-t)y) - F((1-t)x + ty)\| \\ &\leq f(x) + f(y) - f(tx + (1-t)y) - f((1-t)x + ty), \end{aligned}$$

for all $x, y \in D, t \in [0, 1]$.

(iv) F admits the representation

$$F(x) = W(x) + A(x), \quad x \in D,$$

where $W: D \to Y$ is a delta-convex on D and $A: X \to Y$ is an additive.

PROOF. Assume that, for some fixed $n \geq 2$, the sum $\sum_{j=1}^{n} F(x_j)$ is delta Schur-convex on D^n . Fix $x_3, x_4, \ldots, x_n \in D$ arbitrarily and consider two vectors $x := (x_1, x_2, x_3, \ldots, x_n)$ and $y := (y_1, y_2, x_3, \ldots, x_n)$. Of course $x \prec y$ if and only if $(x_1, x_2) \prec (y_1, y_2)$, so there exists a $t \in [0, 1]$ such that

$$(x_1, x_2) = (y_1, y_2) \begin{bmatrix} t & 1-t \\ 1-t & t \end{bmatrix} = (ty_1 + (1-t)y_2, (1-t)y_1 + ty_2).$$

Then for $(x_1, x_2) \prec (y_1, y_2)$ the inequality

$$\left\|\sum_{j=1}^{2} F(x_j) - \sum_{j=1}^{2} F(y_j)\right\| \le \sum_{j=1}^{2} f(y_j) - \sum_{j=1}^{2} f(x_j)$$

implies (iii).

Suppose that F is a delta Wright-convex with a control function f. In particular if we put $\lambda = \frac{1}{2}$ the inequality (2) holds true. By Theorem 4 there exist affine maps $\overline{A}: D \to Y$ and $\overline{a}: D \to \mathbb{R}$ such that, for all $x \in D$,

$$||F(x) - \overline{A}(x)|| \le f(x) - \overline{a}(x).$$

Without loss of generality we may assume that \overline{A} and \overline{a} are additive maps. (Otherwise we will consider $\overline{A} - \overline{A}(0)$ and $\overline{a} - \overline{a}(0)$ instead of \overline{A} and \overline{a} respectively.) Put

$$G(x) := F(x) - \overline{A}(x)$$
, and $g(x) := f(x) - \overline{a}(x)$, $x \in D$.

Inequality

$$||G(x)|| \le g(x), \quad x \in D \tag{4}$$

implies that for every $y^* \in Y^*, \, \|y^*\| = 1$ we have

$$y^*(G(x)) \le g(x), \quad x \in D$$

To complete the proof of our implication it is enough to show that, for every $y^* \in Y^*$, $||y^*|| = 1$, the function

$$D \ni x \longrightarrow y^*(G(x)) + g(x),$$

is convex. Obviously the defining function is convex in the sense of Jensen. Fix $x, y \in D$ arbitrary. Since D is open there exists a $\delta > 0$ such that $tx + (1-t)y \in D$, for $t \in (-\delta, 1 + \delta)$. Let us define a function $h : (-\delta, 1 + \delta) \to \mathbb{R}$ by the formula

$$h(t) := y^*(G(tx + (1 - t)y)) + g(tx + (1 - t)y).$$

Of course h is convex in the sense of Jensen, moreover, by (4)

$$\begin{split} h(t) &\leq 2g(tx + (1-t)y) = 2[f(tx + (1-t)y) - \overline{a}(tx + (1-t)y)] \\ &= 2[f(tx + (1-t)y) + \overline{a}((1-t)x + ty) - \overline{a}(x) - \overline{a}(y)] \\ &\leq 2[f(tx + (1-t)y) + f((1-t)x + ty) - \overline{a}(x) - \overline{a}(y)] \\ &\leq 2[f(x) + f(y) - \overline{a}(x) - \overline{a}(y)]. \end{split}$$

Hence h is bounded from above then by a famous BERNSTEIN–DOETSCH [2] theorem continuous and convex. In particular

$$y^*(G(tx + (1 - t)y)) + g(tx + (1 - t)y) = h(t)$$

= $h(t1 + (1 - t)0) \le th(1) + (1 - t)h(0)$
= $t[y^*(G(x)) + g(x)] + (1 - t)[y^*(G(y)) + g(y)].$

This completes the proof of implication (iii) \Rightarrow (iv).

Suppose F has the representation F = W + A, where W is a delta-convex map with control function w and A is additive. On account of Theorem 3 and by additivity of A for an arbitrary $n \ge 2$ we obtain (because $\sum_{j=1}^{n} x_j = \sum_{j=1}^{n} y_j$)

$$\left\|\sum_{j=1}^{n} F(y_j) - \sum_{j=1}^{n} F(x_j)\right\| = \left\|\sum_{j=1}^{n} W(y_j) - \sum_{j=1}^{n} W(x_j) + \sum_{j=1}^{n} A(y_j) - \sum_{j=1}^{n} A(x_j)\right\|$$
$$= \left\|\sum_{j=1}^{n} W(y_j) - \sum_{j=1}^{n} W(x_j)\right\| \le \sum_{j=1}^{n} w(y_j) - \sum_{j=1}^{n} w(x_j).$$

This proves implication (iv) \Rightarrow (ii).

The implication (ii) \Rightarrow (i) is trivial.

In the proof of our main result we use the following

Lemma 1. Let a map $H: D^n \to Y$ be of the form

$$H(x_1, \dots, x_n) = \sum_{j=1}^n F_j(x_j),$$
(5)

where $F_j: D \to Y$, for j = 1, ..., n. Then H is symmetric, if and only if, there exist a map $F: D \to Y$ and a constants $C_1, ..., C_n \in Y$ such that

$$F_j(x_j) = F(x_j) + C_j, \quad x_j \in D, \quad j = 1, ..., n.$$

321

PROOF. The proof of sufficiency is obvious. Assume that ${\cal H}$ is symmetric. It means that

$$H(x_{\sigma(1)},\ldots,x_{\sigma(n)})=H(x_1,\ldots,x_n),$$

for all $x_1, \ldots, x_n \in D$ and all $\sigma \in \Pi(n)$, where $\Pi(n)$ denote the set of all permutations of the integers $\{1, \ldots, n\}$. Fix $i, j \in \{1, \ldots, n\}$. Let $x_i = x, x_j = y$ and $x_k = z$ for all $k \in \{1, \ldots, n\} \setminus \{i, j\}$. Consider a permutation $\sigma \in \Pi(n)$ such that $\sigma(i) = j, \sigma(j) = i$, and $\sigma(k) = k$ for $k \in \{1, \ldots, n\} \setminus \{i, j\}$. By symmetry of H we have

$$F_i(x_i) + F_j(x_j) = F_i(x_j) + F_j(x_i),$$

or, equivalently,

$$F_i(x) - F_j(x) = F_i(y) - F_j(y),$$

for all $x, y \in D$. Put

$$C_{ij} := F_i(x) - F_j(x).$$

Let $F := F_1, C_j := C_{j1}$, for j = 1, ..., n. We obtain a representation $F_j(x) = F(x) + C_j, \quad j = 1, ..., n.$

Our main result reads as follows

Theorem 6. Assume that we are given maps $F_j : D \to Y$ and $f_j : D \to \mathbb{R}$, for j = 1, ..., n. Then $\sum_{j=1}^n F_j(x_j)$ is a delta Schur-convex with a control function $\sum_{j=1}^n f_j(x_j)$, if and only if, there exist constants $C_1, ..., C_n \in Y$, additive mapping $A : X \to Y$ and a delta-convex map $W : D \to Y$ such that

$$F_j(x) = A(x) + W(x) + C_j, \quad j = 1, \dots, n.$$
 (6)

PROOF. Suppose that a map $\sum_{j=1}^{n} F_j(x_j)$ is a delta Schur-convex. On account of Observation 1 it is symmetric, consequently, by Lemma 1 there exist a map $F: D \to Y$ and constants $C_1, \ldots, C_n \in Y$ such that

$$F_j(x) = F(x) + C_j, \quad j = 1, \dots, n$$

It is not hard to check that a sum $\sum_{j=1}^{n} F(x_j)$ is a delta Schur-convex, then by Theorem 5 a map F has the form

$$F(x) = A(x) + W(x), \quad x \in D,$$

where $A: X \to Y$ is an additive and $W: D \to Y$ a delta-convex.

Conversely, each map of the form (5) admitting a representation (6) is a delta Schur-convex. $\hfill \Box$

Remark 3. Observe, that substituting F := 0 in our theorems we obtain the results concerning classical Schur-convexity.

References

- B. C. ARNOLD, A. W. MARSHALL and I. OLKIN, Inequalities: Theory of Majorization and Its Applications, (Second edition), Springer Series in Statistics, New York – Dordrecht – Heidelberg – London, 2011.
- [2] F. BERNSTEIN and G. DOETSCH, Zur Theorie der konvexen Functionen, Math. Ann. 76 (1915), 514–526.
- [3] R. GER, Stability aspects of delta-convexity, In: "Stability of Hyers-Ulam type", (Th. M. Rassias and J. Tabor, ed.), *Hardonic Press, Palm Harbor*, 1994, 99–109.
- [4] G. HARDY, J. E. LITTLEWOOD and G. PÓLYA, Inequalities, 1st ed.,2nd ed., Cambridge Univ. Press, Cambridge, London and New York, 1934, 1952.
- [5] Z. KOMINEK, Convex functions in linear spaces, Prace Naukowe Uniwersytetu Śląskiego w Katowicach 1087 (1–68).
- [6] Z. KOMINEK, On additive and convex functionals, Radovi Math. 3 (1987), 267–279.
- [7] GY. MAKSA and ZS. PÁLES, Decomposition of higher-order Wright-convex functions, J. Math. Anal. Appl. 359 (2009), 439–443.
- [8] C. T. NG, General Inequalities, Vol. 80, Oberwolfach Internat. Ser. Numer. Math., (W. Walter, ed.), Birkhäuser, Boston, 1986, 433–438.
- [9] K. NIKODEM, On some class of midconvex functions, Ann. Polon. Math. 50 (1989), 145–151.
- [10] A. OLBRYŚ, A support theorem for delta $(s,t)\mbox{-}convex$ mappings, Aequat. Math. (2014), DOI 10.1007/s00010-014-0290-6.
- [11] A. OSTROWSKI, Sur quelques application des functions convexes et concave au sens de I. Schur, J. Math. Pures Appl. 31 (1952), 253–292.
- [12] A. W. ROBERTS and D. E. VARBERG, Convex Functions, Academic Press, New York and London, 1973.
- [13] I. SCHUR, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinanten theorie, Sitzungsber. Berlin. Math. Ges. 22 (1923), 9–20.
- [14] E. M. WRIGHT, An inequality for convex functions, Amer. Math. Monthly 61 (1954), 620–622.
- [15] L. VESELÝ and L. ZAJIČEK, Delta-convex mappings between Banach spaces and applications, Dissertationes Math. Polish Scientific Publishers Warszawa 289 (1989).

ANDRZEJ OLBRYŚ INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY BANKOWA 14 40-007 KATOWICE POLAND

E-mail: andrzej.olbrys@wp.pl

(Received January 26, 2014; revised October 1, 2014)