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Rings whose unit graphs are planar

By HUADONG SU (St. John’s), GAOHUA TANG ( Nanning)
and YIQIANG ZHOU (St. John’s)

Abstract. The unit graph of a ring R is the simple graph G(R) with vertex set R,

where two distinct vertices x and y are adjacent if and only if x + y is a unit of R. In

this paper, we completely characterize the rings whose unit graphs are planar.

1. The result

Throughout, rings are associative with 1 ̸= 0. The group of units of a ring

R is denoted by U(R). This paper concerns the unit graph associated with a

ring. Recall that the unit graph of a ring R, denoted G(R), is the simple graph

with vertex set R, where two distinct vertices x and y are adjacent if and only if

x+ y ∈ U(R). The unit graph was first investigated in 1990 by Grimaldi in [5]

for Zn, the ring of integers modulo n. In 2010, Ashrafi, et al. [2] generalized

the unit graph G(Zn) to G(R) for an arbitrary ring R. The unit graph is also the

topic of several other publications (see [1], [3] [6], [7], [8], [9], [10]).

The concentration is on the planarity of the unit graph of a ring. A graph

is said to be planar if it can be drawn on the plane in such a way that its edges

intersect only at their endpoints. The planarity is an important invariant in graph

theory. This work is motivated by the following result of Ashrafi, et al. [2] who

completely determined the finite commutative rings whose unit graphs are planar.

We write Fp for the field of p elements and R[t] for the polynomial ring over a

ring R in the indeterminate t.
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Theorem 1.1 ([2]). Let R be a finite commutative ring. Then G(R) is

planar if and only if R is isomorphic to one of the following rings:

Z3,F4,Z5,Z3 × Z3, B,Z3 ×B,F4 ×B,Z4,
Z2[t]

(t2)
,Z4 ×B,

Z2[t]

(t2)
×B,

where B is a finite Boolean ring.

A natural question is to characterize the rings whose unit graphs are planar.

This question is settled in this paper. We denote by char(R) the characteristic of

a ring R and by |X| the cardinal of a set X. Let c = |R| be the cardinality of the

continuum. Our main result is the following characterization of rings with planar

unit graphs.

Theorem 1.2. Let R be a ring. Then G(R) is planar if and only if one of

the following holds:

(1) |U(R)| ≤ 3 and |R| ≤ c.

(2) |U(R)| = 4, char(R) = 0 and |R| ≤ c.

(3) R ∼= Z5.

(4) R ∼= Z3 × Z3.

2. The proof

We proceed with a series of lemmas. The first one is a quick consequence of

Theorem 1.1.

Lemma 2.1. Let R be a finite commutative ring. If G(R) is planar, then

2 ≤ char(R) ≤ 6. Furthermore,

(1) If char(R) = 2, then |U(R)| ≤ 3.

(2) If char(R) = 3, then |U(R)| ≤ 4.

(3) If char(R) = 4, then |U(R)| ≤ 2.

(4) If char(R) = 5, then |U(R)| ≤ 4.

(5) If char(R) = 6, then |U(R)| ≤ 2.

Let G be a simple graph. For a vertex v in G, the degree of v is the number of

edges of G incident with v. For an integer k > 0, the graph G is called k-regular

if the degree of each vertex of G is equal to k. The next lemma was proved in [2,

Proposition 2.4] for a finite ring R and it can be shown by the same argument

there.
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Lemma 2.2. Let R be a ring with |U(R)| = k < ∞. If 2 /∈ U(R), then

G(R) is k-regular.

Let Km,n and Kn denote the complete bipartite graph with partitions of size

m and n, and the complete graph of n vertices, respectively. A classical result

of Kuratowski says that a graph is planar if and only if it does not contain a

subdivision of K5 or K3,3 (see [11, Theorem 6.2.2]), where a subdivision of a

graph G is a graph obtained from G by subdividing some of the edges, that is,

by replacing the edges by paths having at most their endvertices in common. A

quick consequence of Kuratowski’s Theorem is that if the maximal degree of a

graph is less than 3, then this graph must be planar. If a planar graph is finite,

then the minimal degree of vertex is at most five. For an infinite graph, however,

the situation is quite different. In fact, there exists a k-regular planar infinite

graph for any positive integer k (see [4]). Of course, any subgraph of a planar

graph is clearly planar.

Lemma 2.3. Let R be a ring. If G(R) is planar, then |U(R)| <∞.

Proof. Assume on the contrary that |U(R)| = ∞. Take u1 ∈ U(R) and

u2 ∈ U(R)\{u1,−u1}. We show next that there is a contradiction.

Case 1: u1 ̸= −u1−u2 ̸= u2. In this case, we take u3 ∈ U(R)\{u1, u2,−u1,−u2,

−u1 − u2}.
Subcase 1.1: u1 ̸= −u1 − u3 ̸= u3 and u2 ̸= −u2 − u3 ̸= u3. Then the

following graph is a subgraph of G(R):

·
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−u1 − u3

u3 I u1

0

−u2 − u3 −u1 − u2

u2

II III

Now, take v ∈ U(R)\S, where S = {u1, u2, u3,−u1,−u2,−u3,−u1 − u2,−u1 −
u3,−u2−u3, u1+u2−u3, u1+u3−u2, u2+u3−u1}. Since G(R) is planar and v

is adjacent to 0, v must be in one of the regions (I), (II) and (III). Without loss

of generality, put v into region (I). Note that −v − u2 is adjacent to both v and

u2. As G(R) is planar, −v − u2 must be one of the vertices 0, u1, u3, −u1 − u3.

But this contradicts the choice of v.
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Subcase 1.2: u1 ̸= −u1 − u3 ̸= u3 and −u2 − u3 = u2 or u3. Then the

following graph is a subgraph of G(R):
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−u1 − u3
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−u1 − u2

u2
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Now, take v ∈ U(R)\S, where S = {u1, u2, u3,−u1,−u2,−u3,−u1 − u2,−u1 −
u3, u1+u2−u3, u1+u3−u2}. Since G(R) is planar and v is adjacent to 0, v must

be in one of the regions (I), (II) and (III). Without loss of generality, put v into

region (I). Note that −v − u2 is adjacent to both v and u2. As G(R) is planar,

−v− u2 must be one of the vertices 0, u1, u3, −u1− u3. But this contradicts the

choice of v.

Subcase 1.3: −u1 − u3 = u1 or u3, and u2 ̸= −u2 − u3 ̸= u3. Then the

following graph is a subgraph of G(R):
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−u2 − u3 −u1 − u2

u2

II III

Now, take v ∈ U(R)\S, where S = {u1, u2, u3,−u1,−u2,−u3,−u1 − u2,−u2 −
u3, u1 + u2 − u3, u2 + u3 − u1}. Since G(R) is planar and v is adjacent to 0, v

must be in one of the regions (I), (II) and (III). Without loss of generality, put

v into region (I). Note that −v − u2 is adjacent to both v and u2. As G(R) is

planar, −v − u2 must be one of the vertices 0, u1, u3. But this contradicts the

choice of v.

Subcase 1.4: −u1 − u3 = u1 or u3, and −u2 − u3 = u2 or u3 (of course, it

can’t occur that −u1− u3 = u3 and −u2− u3 = u3). Then the following graph is

a subgraph of G(R):
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Now, take v ∈ U(R)\S, where S = {u1, u2, u3,−u1,−u2,−u3,−u1−u2, u1+u2−
u3}. Since G(R) is planar and v is adjacent to 0, v must be in one of the regions

(I), (II) and (III). Without loss of generality, put v into region (I). Note that

−v − u2 is adjacent to both v and u2. As G(R) is planar, −v − u2 must be one

of the vertices 0, u1, u3. But this contradicts the choice of v.

Case 2: −u1−u2 = u1 or u2. Take u3 ∈ U(R)\{u1, u2,−u1,−u2}. A similar

argument as in Case 1 yields a contradiction. �

Lemma 2.4 is a self-strengthening of Lemma 2.3.

Lemma 2.4. Let R be a ring. If G(R) is planar, then |U(R)| ≤ 4.

Proof. Assume on the contrary that |U(R)| ≥ 5. To get a contradiction,

we proceed with two cases.

Case 1: char(R) = 0. Then R contains Z as a subring. Since |U(R)| <∞ by

Lemma 2.3, n /∈ U(R) for all ±1 ̸= n ∈ Z. Take ±1 ̸= u ∈ U(R).

Subcase 1.1: 2u ̸= −2 and 2u ̸= 2. That is, −1−u ̸= 1+u and u−1 ̸= 1−u.

In this case, the following graph is a subgraph of G(R):

· · ·

· · ·

· · ·

u− 1 1 −1− u

−u
0

u

1 + u −1 1− u

I II

III IV

Now, take v ∈ U(R)\{1,−1, u,−u}. Since G(R) is planar and v is adjacent to 0,

either v is in one of the regions (I), (II), (III) and (IV), or v is one of the vertices

u− 1, −1− u, 1− u and 1 + u.

If v is in region (I), consider the vertices 1−v and −u−v. As 1−v is adjacent
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to both v and −1, we have 1 − v = −u or 1 − v = u − 1. As −u − v is adjacent

to both v and u, we have −u − v = 1 or −u − v = u − 1. Thus, we must have

a contradiction: If 1 − v = −u and −u − v = 1, then 2v = 0, i.e. 2 = 0; If

1 − v = u − 1 and −u − v = 1, then 3 = 0; If 1 − v = −u and −u − v = u − 1,

then 3u = 0, i.e. 3 = 0; If 1− v = u− 1 and −u− v = u− 1, then u = −1.
If v is in region (II), consider the vertices 1− v and u− v. Arguing as above,

we have 1 − v = −1 − u or 1 − v = u, and u − v = 1 or u − v = −1 − u. This

clearly leads to a contradiction.

If v is in region (III), consider the vertices −1− v and −u− v. Then we have

−1− v = −u or −1− v = 1 + u, and −u− v = 1 + u or −u− v = −1. This also
leads to a contradiction.

If v is region in (IV), consider the vertices −1− v and u− v. Then we have

−1 − v = u or −1 − v = 1 − u, and u − v = −1 or u − v = 1 − u, and this also

leads to a contradiction.

If v is one of the vertices u− 1, −1− u, 1− u and 1+ u, we can assume that

v = u−1 (the other cases are similar). Note that 1 is adjacent to −u. So we have

the following subgraph of G(R):
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u− 1

As −u − v is adjacent to both v and u, we must have −u − v = 1. As 1 − v is

adjacent to both v and −1, we must have 1− v = −u. Thus, 2v = 0, i.e. 2 = 0,

a contradiction.
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Subcase 1.2: 2u = −2, i.e. −1 − u = 1 + u. In this case, u − 1 ̸= 1 − u, so

the following graph is a subgraph of G(R):
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Take v ∈ U(R)\{1,−1, u,−u}. Then either v is in one of the regions (I), (II),

(III) and (IV) or v ∈ {1− u, u− 1, 1 + u}.
If v is in region (I), consider the vertices −1 − v and u − v. As −1 − v is

adjacent to both v and 1, we have −1 − v = u. As u − v is adjacent to both v

and −u, we have u− v = −1. It follows that −2v = 0, i.e. 2 = 0, a contradiction.

If v is in region (II), consider the vertices 1− v and u− v. Arguing as above,

we have 1−v = u and u−v = 1, which gives −2v = 0, i.e. v = 0, a contradiction.

If v is in region (III), consider the vertices 1 − v and −u − v and we have

1− v = −u and −u− v = 1, giving −2v = 0, i.e. v = 0, a contradiction.

If v is in region (IV), consider the vertices −1 − v and −u − v and we have

−1− v = −u and −u− v = −1, giving −2v = 0, i.e. v = 0, a contradiction.

Now assume v ∈ {1−u, u−1, 1+u}. If v = 1+u, then 0 is adjacent to 1+u

and 1 is adjacent to u. This is impossible.

If v = 1− u, then G(R) has the following subgraph:
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In this case, we consider the vertices −1− v and u− v. As −1− v is adjacent to
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both 1 and v, we have −1 − v = u; as u − v is adjacent to both −u and v, we

have u− v = −1. So −2v = 0, i.e. 2 = 0, a contradiction.

If v = u− 1, G(R) has the following subgraph:
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In this case, we consider the vertices 1 − v and −u − v. As 1 − v is adjacent to

both −1 and v, we have 1 − v = −u; as −u − v is adjacent to both u and v, we

have −u− v = 1. So −2v = 0, i.e. 2 = 0, a contradiction.

Subcase 1.3: 2u = 2, i.e. u− 1 = 1 − u. In this case, −1− u ̸= 1 + u. By a

similar process as Subcase 1.2, we also can get a contradiction.

Case 2: char(R) = n ≥ 2. Then R contains Zn as a subring. Since G(Zn) is

planar, we have n ≤ 6 by Lemma 2.1. We need two notations. For any a ∈ R,

let Zn[a] be the subring of R generated by Zn ∪ {a}. Note that G(Zn[a]) is also

planar. For u ∈ U(R), let o(u) be the order of u in the multiplicative group U(R).

Then o(u) <∞ for all u ∈ U(R) by Lemma 2.3.

Subcase 2.1 : n = 6. Take ±1 ̸= u ∈ U(R). As o(u) < ∞, Z6[u] is a finite

commutative ring. So, by Lemma 2.1(5), |U(Z6[u])| ≤ 2. But Z6[u] has at least

three units, a contradiction.

Subcase 2.2 : n = 5. Take u ∈ U(R)\U(Z5). Then Z5[u] is a finite commu-

tative subring of R. So, by Lemma 2.1(4), |U(Z5[u])| ≤ 4. But Z5[u] has at least

five units, a contradiction.

Subcase 2.3 : n = 4. Take±1 ̸= u ∈ U(R). Then Z4[u] is a finite commutative

subring of R. So, by Lemma 2.1(3), |U(Z4[u])| ≤ 2. But Z4[u] has at least three

units, a contradiction.

Subcase 2.4 : n = 3. Take ±1 ̸= u ∈ U(R). As above, Z3[u] is a finite

commutative subring of R. So, by Lemma 2.1(2), we have |U(Z3[u])| ≤ 4. In

particular, o(u) ≤ 4. If o(u) = 4 and u2 = −1, then Z3[u] contains at least 8

units: 1, −1, u, −u, 1+ u, 1− u, −1+ u and −1− u, a contradiction. If o(u) = 4

and u2 ̸= −1, then 1, 2, u, u2, u3 are five distinct units of Z3[u], a contradiction.

If o(u) = 3, then 1, 2, u, 2u, u2, 2u2 are six distinct units of Z3[u], a contradiction.
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Hence o(u) = 2, and in this case, U(Z3[u]) = {1, 2, u, 2u}. Note that the

argument above already shows that v2 = 1 for all v ∈ U(R). So the group

U(R) is abelian. As |U(R)| ≥ 5, take v ∈ U(R)\U(Z3[u]). Consider the subring

Z3[u, v] of R generated by Z3[u]∪ {v}. Then Z3[u, v] is a finite commutative ring

containing at least 5 units: 1, 2, u, 2u, v. This contradicts Lemma 2.1(2).

Subcase 2.5 : n = 2. Let H = U(R). For u ∈ H, Z2[u] is a finite commutative

ring. So, by Lemma 2.1(1), we have |U(Z2[u])| ≤ 3. In particular, o(u) ≤ 3. Thus,

we have proved that o(u) ≤ 3 for all u ∈ H.

If H ∼= S3, the symmetric group of degree 3, then the subring Z2[H] of R

generated by Z2 ∪ H is a finite ring containing exactly six units such that 2 is

not a unit of Z2[H]. Hence, by [2, Proposition 2.4], G(Z2[H]) is 6-regular. In

particular, G(Z2[H]) is not planar, and so G(R) is not planar. This contradiction

shows that H is not isomorphic to S3. To finish the proof, we need the following

claim. �
Claim. There exist u, v ∈ H\{1} such that uv = vu and ⟨u⟩ ∩ ⟨v⟩ = {1}.

Proof of Claim. As above, we have |H| = 2k3l, where k, l ≥ 0. Note that

|H| ≥ 5 by hypothesis. If k = 0 or l = 0, there is nothing to prove because

any finite p-group has nontrivial center. If k > 1, consider a Sylow 2-subgroup

P of H. Being a finite p-group, P contains a non-trivial central element, say u.

As |⟨u⟩| ≤ 3 and |P | ≥ 2k ≥ 4, we can take v ∈ P\⟨u⟩. Then uv = vu and

⟨u⟩ ∩ ⟨v⟩ = {1}. If l > 1, we can consider a Sylow 3-subgroup and a similar

argument also shows the existence of such elements u and v. If k = l = 1, then

|H| = 6. As H � S3, H is a cyclic group of order 6. But this is impossible, as

every element of H has order less than or equal to 3. The completes the proof

of Claim.

Now by the Claim, take u, v ∈ H\{1} such that uv = vu and ⟨u⟩∩⟨v⟩ = {1}.
Then the subring Z2[u, v] ofR generated by Z2∪{u, v} is a finite commutative ring,

containing at least four distinct units 1, u, v, uv. This contradicts Lemma 2.1(1).

The proof is now complete. �

Our last lemma is about the genus of a simple graph. A surface is said to

be of genus g if it is topologically homeomorphic to a sphere with g handles. A

graph G that can be drawn without crossing on a compact surface of genus g, but

not on one of genus g − 1, is called a graph of genus g. The genus of a graph G

is denoted by γ(G). Not that a graph is planar if and only if it has genus zero.

Lemma 2.5 ([12, Corollaries 6.14, 6.15]). Suppose that a simple graph G is

connected with p ≥ 3 vertices and q edges. Then γ(G) ≥ q
6 −

p
2 +1. Furthermore,

if G has no triangles, then γ(G) ≥ q
4 −

p
2 + 1. �
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Now we are ready to prove our main result.

Proof of Theorem 1.2. (=⇒). Suppose that G(R) is planar. Then R

embeds in R× R as sets, so |R| ≤ c. By Lemma 2.4, |U(R)| ≤ 4. If |U(R)| = 3,

we are done. So we can assume that |U(R)| = 4, and we can further assume

n := char(R) > 0. Then R contains Zn as a subring. Being a subgraph of G(R),

G(Zn) is planar, so 2 ≤ n ≤ 6 by Lemma 2.1. Take ±1 ̸= u ∈ U(R). Then

Zn[u] is a finite commutative subring of R, and hence G(Zn[u]) is planar. If

n = 4 or n = 6, then Zn[u] contains at least three units; this is impossible by

Lemma 2.1(3,4). So n ̸= 4 and n ̸= 6. Next we prove that n ̸= 2. Assume that

n = 2. Then, for any 1 ̸= u ∈ U(R), Z2[u] is a finite commutative subring of R,

and hence o(u) ≤ 3 by Lemma 2.1(1). If o(u) = 3, take v ∈ U(R)\{1, u, u2} and
we see 1, u, u2, v, uv are five distinct units of R, contradicting that |U(R)| = 4.

Hence o(u) ≤ 2 for all u ∈ U(R). So U(R) is a commutative multiplicative group.

Take 1 ̸= u ∈ U(R) and v ∈ U(R)\{1, u}. Then Z2[u, v] is a finite commutative

subring of R containing four units 1, u, v, uv. But this is impossible by Lem-

ma 2.1(1). Hence n ̸= 2. Thus, we have proved that n = 3 or n = 5.

Suppose n = 3. We prove that R ∼= Z3 × Z3. Take ±1 ̸= u ∈ U(R).

Then Z3[u] is a finite commutative subring of R, and U(Z3[u]) = {1, 2, u, 2u} (as
|U(R)| = 4). If R ̸= Z3[u], take a ∈ R\Z3[u] and consider the subring Z3[u, a] of

R generated by Z3 ∪ {u, a}. Note that

a←→ 1 + 2a←→ 1 + a←→ 2a←→ u+ a←→ u+ 2a←→ a

and

a←→ 2 + 2a←→ 2 + a←→ 2a←→ 2u+ a←→ 2u+ 2a←→ a

are two 6-cycles in G(Z3[u, a]). By symmetry, essentially there are two ways to

draw the subgraph below:
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For the subgraph on the left, as u + 2 + 2a is adjacent to both 1 + a and

2u+ a, the planarity of G(R) ensures that u+2+2a = a. On the other hand, as

u + 2 + a is adjacent to both 1 + 2a and 2u + 2a, the planarity of G(R) ensures

that u + 2 + a = 2a. So, it follows that a = −a, i.e., 2a = 0 or a = 0, a

contradiction. For the subgraph on the right, as u + 1 + 2a is adjacent to both

2+a and 2u+a, the planarity of G(R) ensures that u+1+2a = a. On the other

hand, as u+ 1+ a is adjacent to both 2 + 2a and 2u+ 2a, the planarity of G(R)

ensures that u + 1 + a = 2a. So, it follows that a = −a, i.e., 2a = 0 or a = 0, a

contradiction. Therefore, R = Z3[u] with Z3[u] ∼= Z3 × Z3.

Suppose n = 5. We prove that R ∼= Z5. We see that R contains Z5 as a

subring. Assume on the contrary that R ̸= Z5. Take a ∈ R\Z5. The following

graph H is a subgraph of G(Z5[a]), and hence of G(R):
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Note that H has 10 vertices and 20 edges with no triangles. So γ(H) ≥ 1 by

Lemma 2.5. This shows that H is not planar, giving the contradiction that G(R)

is not planar.

(⇐=). We have |R| ≤ c. If R ∼= Z5 or R ∼= Z3 × Z3, then G(R) is planar by

Theorem 1.1. If |U(R)| ≤ 2, then the maximal degree of G(R) is at most two, so

G(R) must be planar.

Suppose that |U(R)| = 3. Then we easily see that 2 = 0 in R. So G(R)

is 3-regular by Lemma 2.2. Let U(R) = {u1, u2, u3}. For a given r ∈ R, r is

adjacent to ui − r (i = 1, 2, 3). If u1 − r is adjacent to one of ui − r (i = 2, 3),

say u2 − r, then (u1 − r) + (u2 − r) = u1 + u2 is a unit of R, so it must be that

u1 + u2 = u3. Thus u1 − r is also adjacent to u3 − r and u2 − r is adjacent to

u3 − r. Hence, the vertices r, u1 − r, u2 − r, u3 − r form a complete graph K4.

As G(R) is 3-regular, G(R) must be a disjoint union of copies of K4, so G(R)

is planar. Therefore, we can let the neighborhoods of u1 − r be r, a, b, where

a, b /∈ {u2− r, u3− r}. We may assume u1− r+a = u2 and u1− r+ b = u3. Then

u2 − r + a = u1 and u3 − r + b = u1. This means that a is adjacent to u2 − r
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and b is adjacent to u3 − r. Let c be the third neighborhood of u2 − r. Then

u2 − r + c = u3, so u3 − r + c = u2. This means that c is also a neighborhood of

u3 − r. Now consider the vertex a. Let the neighborhoods of a be u1 − r, u2 − r,

x. Then a + x = u3. As b + x = b + u3 − a = r + u1 − a = u1 − r + a = u2, x

is adjacent to b. Similarly, x is adjacent to c. So, the vertices r, u1 − r, u2 − r,

u3 − r, a, b, c and x form a cube, which is 3-regular. As G(R) is 3-regular, G(R)

must be a disjoint union of copies of a cube. As a cube is a planar graph, G(R)

is planar.

Finally, suppose that |U(R)| = 4 and char(R) = 0. Then R contains Z as a

subring. Take ±1 ̸= u ∈ U(R). As |U(R)| = 4, we have U(R) = {1,−1, u,−u}.
By Lemma 2.2, both G(Z[u]) and G(R) are 4-regular. It follows that G(R) is a

disjoint union of G(Z[u]). As shown below, G(Z[u]) is planar, so G(R) is planar.

−2 + 2u 2− u −2 2 + u −2− 2u

1− 2u −1 + u 1 −1− u 1 + 2u

2u −u 0 u −2u

−1− 2u 1 + u −1 1− u −1 + 2u

2 + 2u −2− u 2 −2 + u 2− 2u

Graph G(Z[u])
�

We end the paper by giving some examples of rings with planar unit graphs.

Example 2.6. Let T2(Z2) be the 2 × 2 upper triangular matrix ring over

Z2 and let B be the zero ring or a finite Boolean ring. Then R = T2(Z2)×B has

a planar unit graph.

A ring R is semilocal if R/J(R) is semisimple Artinian, where J(R) is the Ja-

cobson radical of R. The next example gives a countable non-semilocal ring whose

unit graph is planar. Let D be a ring and C be a subring of D. With addition and

multiplication defined componentwise, R[D,C] := {(d1, · · · , dn, c, c, · · · ) : di ∈ D,

c ∈ C, n ≥ 1} becomes a ring. For a bimodule M over a ring R, the trivial exten-

sion of R by M is the ring R ∝ M := {(a, x) : a ∈ R, x ∈ M} with addition de-

fined componentwise and with multiplication defined by (a, x)(b, y) = (ab, ay+xb).
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Example 2.7. Let S = R ∝ R/I where R = R[Z2,Z2] and I = R[Z2, 0].

Then S is not semilocal, but G(S) is planar.

Proof. We easily see that J(S) = {(0, x) : x ∈ R/I}, so |J(S)| = |R/I| = 2,

and S/J(S) ∼= R is Boolean. Since S/J(S) is an infinite Boolean ring, S is not

semilocal. As |U(S)| = 2, G(S) is planar by Theorem 1.2. �

Some other examples of rings with planar unit graphs can be constructed

through polynomial rings. In [1], the authors determined the finite rings R with

G(R[t]) planar. By Theorem 1.2, we now can characterize the rings R with

G(R[t]) planar. Remark that, for a reduced ring R, U(R[t]) = U(R) (we can’t

find a reference for this, but it can be easily proved).

Corollary 2.8. Let R be a ring, and let t1, t2, . . . , tn be commuting inde-

terminates over R. Then G(R[t1, t2, . . . , tn]) is planar if and only if R is reduced

with |R| ≤ c such that either |U(R)| ≤ 3, or |U(R)| = 4 with char(R) = 0.

Proof. Without loss of generality, we can assume that n = 1.

(⇐=). This is by Theorem 1.2 and the Remark above.

(=⇒). As G(R[t]) is planar, R is reduced by [1, Proposition 6.1(ii)], and

|R[t]| ≤ c. So |R| ≤ c. Moreover, by Theorem 1.2, either |U(R[t])| ≤ 3, or

|U(R[t])| = 4 with char(R) = 0. Since R is reduced, U(R[t]) = U(R). So the

claim follows. �
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