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Sublattices of verbal subgroups

By BEATA BAJORSKA (Gliwice), OLGA MACEDOŃSKA (Gliwice)
and WITOLD TOMASZEWSKI (Gliwice)

Abstract. The problem of classification of group varieties is still open. We con-

sider four classes of verbal subgroups of a free group F of rank 2: {V N -verbal} ⊆
{P -verbal} ⊆ {R-verbal} ⊆ {M -verbal}. The subgroups in each class define specific pro-

perties in corresponding varieties, namely, V N -varieties have their 2-generator groups

virtually nilpotent; P -varieties satisfy positive laws; R-varieties are restrained; and M -

varieties contain no ApA as a subvariety. It is shown that each of these classes of verbal

subgroups forms a sublattice of the lattice of subgroups in F . Three questions are posed.

1. Introduction

The problem of classification of group varieties attracted attention of many

authors. We make a step in this direction by distinguishing four sublattices of

group varieties according to their properties defined by 2-variable laws they satisfy.

Let F = ⟨x, y⟩ be a free group of rank 2 and F a free semigroup on the set

{x, y}. We denote [x, y] = x−1y−1xy and xy = y−1xy. The normal closure of ⟨x⟩
in F may appear denoted as one of the following

⟨xF ⟩ = ⟨x⟨y⟩⟩ = ⟨xyi

: i ∈ Z⟩.

By V we denote any verbal subgroup in F and by F̂n – the verbal subgroup

defining the variety of locally finite groups of exponent dividing n. The fact that

the class of these groups is actually a variety is a consequence of Zelmanov’s so-

lution of the restricted Burnside problem. Writing γ1(F ) = F , γc = [γc−1(F ), F ]
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for c > 1, we have that F/V is virtually nilpotent if and only if V ⊇ γc(F̂ k) for

some c, k ∈ N. We call such a verbal subgroup V a V N -verbal subgroup. The

set of the V N -verbal subgroups in F , denoted briefly by {V N -verbal}, forms a

sublattice of the lattice of all subgroups because the inclusions V1 ⊇ γc(F̂ k) and

V2 ⊇ γd(F̂ ℓ) imply V1 ∩ V2 ⊇ γm(F̂n) for m = max(c, d), n = lcm(k, ℓ).

We show that each V N -verbal subgroup V has the following properties:

• P -property: V ∩ FF−1 ̸= 1,

• R-property: F ′V/V is finitely generated,

• M -property: V * F ′′(F ′)p.

To each of these properties there is associated the set of verbal subgroups satis-

fying it. We call these respectively

P -verbal, R-verbal, and M -verbal subgroups.

We denote corresponding sets of verbal subgroups respectively:

{P -verbal}, {R-verbal}, {M -verbal}.

They also determine three types of varieties var(F/V ):

• a P -variety: satisfies a positive law,

• an R-variety: G′ is finitely generated for each two-generator group G in it,

• an M -variety: has no subvariety of the form ApA for any prime p.

The above property of the R-varieties is much stronger since every its finitely

generated group G has G′ finitely generated [8, Proposition 9]. This fact follows

also from [1, Lemma 1] as

Proposition 1. Let V be an R-variety. Then every finitely generated group

in V has finitely generated commutator subgroup.

We show that each of these properties is defined by a binary law. The follow-

ing inclusions hold for the respective sets of verbal subgroups and corresponding

types of varieties:

{V N -verbal} ⊆ {P -verbal} ⊆ {R-verbal} ⊆ {M -verbal},
{V N -varieties} ⊆ {P -varieties} ⊆ {R-varieties} ⊆ {M -varieties}.

Moreover every subset shown here is a sublattice of the lattice of all subgroups

in F or the lattice of all varieties, as the case may be. We now discuss various

inclusion problems.
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2. P -verbal subgroups

Definition 1. A verbal subgroup V is called P -verbal if

V ∩ FF−1 ̸= 1.

Thus a verbal subgroup V is P -verbal if and only if the group F/V satisfies

a positive law u(x, y) ≡ v(x, y) for some words u and v in F .

By result of A. I. Mal’tsev [9], nilpotent groups and hence nilpotent-by-

(finite exponent) groups satisfy positive laws, so we have the set inclusion

{V N -verbal} ⊂ {P -verbal}.

The inclusion is proper since the verbal subgroups defining infinite Burnside

groups are P -verbal but not V N -verbal. Other examples of P -verbal but not

V N -verbal subgroups are given by A. Yu. Ol’shanskii and A. Storozhev [12].

Theorem 1. The set of P -verbal subgroups forms a sublattice in the lattice

of all subgroups in F .

Proof. Let V1 and V2 be P -verbal subgroups defining in F/Vi for i = 1, 2

the following positive laws a(x, y) ≡ b(x, y) and u(x, y) ≡ v(x, y) respectively.

Since every positive law implies a balanced positive law, we shall assume that the

laws a(x, y) ≡ b(x, y) and u(x, y) ≡ v(x, y) are balanced, that is the exponent

sum of x (of y) in a(x, y) and in b(x, y) (resp. in u(x, y) and in v(x, y)) is the

same.

The join V1V2 provides each of these laws, so it suffices to show only that the

intersection V1 ∩ V2 yields a positive law. We consider the law

a(u(x, y), v(x, y)) ≡ b(u(x, y), v(x, y)). (1)

This law is positive and by assumption on V1 it is satisfied in F/V1. In the

group F/V2 the law (1) has a form a(u, u) ≡ b(u, u) and hence uk ≡ uk for some

integer k since the law a(x, y) ≡ b(x, y) is assumed to be balanced. Thus the law

(1) is satisfied in F/V2 and hence is satisfied modulo V1 ∩ V2, which finishes the

proof. �

3. R-verbal subgroups

Definition 2. A verbal subgroup V is called R-verbal (R for restrained) if the

commutator subgroup F ′ is finitely generated modulo V .
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It follows from Proposition 1 that if V is R-verbal, then every finitely gener-

ated group in var(F/V ) has finitely generated commutator subgroup.

Corollary 1. Every verbal subgroup V ⊆ F such that V * F ′ is the R-

verbal subgroup.

Proof. It is known that F ′ is generated by commutators [xi, yj ], i, j ∈ Z. If
V * F ′ then F/V has finite exponent, which implies that F ′ is finitely generated

modulo V . �

It is shown in [7, Corollary 6.4] that each positive law define R-verbal sub-

group, so we have the inclusions

{V N -verbal} ⊂ {P -verbal} ⊆ {R-verbal}.

By the example below, n-Engel laws define R-verbal subgroups. These subgroups

are P -verbal for n < 5 [15], so the question whether the second inclusion is strict is

related to the Problem 2.82 in [5], asking whether each variety of groups satisfying

n-Engel law [x, ny] ≡ 1 is defined by positive laws.

To prove that R-verbal subgroups form a lattice, we need to find an appro-

priate criterion for V to be R-verbal.

For n ∈ N, we introduce an important subgroup En in F = ⟨x, y⟩, setting
E0 = ⟨x⟩, and for n > 0,

En := ⟨x, xy, xy2

, . . . , xyn

⟩ = ⟨x, [x, y], [x, y2], . . . , [x, yn] ⟩ (2)

Lemma 1. A verbal subgroup V is R-verbal if and only if the subgroup ⟨xF ⟩
is finitely generated modulo V .

Proof. By definition, V is R-verbal if F ′ is finitely generated modulo V .

We prove that the latter holds if and only if ⟨xF ⟩ is finitely generated modulo V .

Indeed, if F ′ is finitely generated modulo V then, since ⟨x⟩F ′ = ⟨xF ⟩, the ‘only

if’ part follows.

Assume now that ⟨xF ⟩ is finitely generated modulo V . Since ⟨xF ⟩ is normal,

the conjugation by suitable yi implies that there is n ∈ N such that ⟨xF ⟩ coincides
modulo V with En−1, which we write as ⟨xF ⟩ V≡ En−1.

If denoteH := ⟨[x, y], [x, y2], . . . , [x, yn−1]⟩, then in view of (2), ⟨xF ⟩ V≡ ⟨x,H⟩
and then

⟨xF ⟩ V≡ ⟨x⟩H⟨x⟩,

Now, since H⟨x⟩ ⊆ F ′ ⊆ ⟨xF ⟩, we have by Dedekind’s law
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F ′ V≡ F ′ ∩ ⟨x⟩H⟨x⟩ = (F ′ ∩ ⟨x⟩)H⟨x⟩ = H⟨x⟩

= ⟨[x, y]⟨x⟩, [x, y2]⟨x⟩, [x, y3]⟨x⟩, . . . , [x, yn]⟨x⟩ ⟩.

Since ⟨x⟨y⟩⟩ = ⟨xF ⟩, the assumption that the subgroup ⟨xF ⟩ is finitely gene-

rated modulo V implies that ⟨x⟨y⟩⟩ is finitely generated and hence each subgroup

of the form ⟨[x, yi]⟨x⟩⟩ also is finitely generated modulo V . It follows that F ′ is

finitely generated modulo V , which proves the ‘if’ part. �

Lemma 2. The subgroup ⟨xF ⟩ is finitely generated modulo V if and only if

there exists n ∈ N such that

[x, ny] ∈ En−1V. (3)

Proof. Let ⟨xF ⟩ be finitely generated modulo V . Then, as above, the

conjugation by suitable yi implies that for some n ∈ N, ⟨xF ⟩ V≡ En−1. Hence

[x, ny] ∈ F ′ ⊆ ⟨xF ⟩ ⊆ En−1V , which gives (3).

Conversely, let (3) hold. To show that ⟨xF ⟩ is finitely generated modulo V ,

it suffices to prove that

⟨xF ⟩ V≡ En−1 = ⟨x, xy, . . . , xyn−1

⟩.

It is shown in [7, Corollary 5.4] that En = ⟨x, [x, y], . . . , [x, ny]⟩. So if [x, ny] ∈
En−1V then by (2) [x, yn] ∈ En−1V and hence

xyn

∈ En−1V. (4)

All inclusions below are meant modulo V , so we write (4) modulo V as:

xyn

∈ ⟨x, xy, xy2

, . . . , xyn−1

⟩. (5)

Substitution y → y−1 gives xy−n ∈ ⟨x, xy−1

, xy−2

, . . . , xy−(n−1)⟩. Now, conju-

gation by yn−1 gives xy−1 ∈ ⟨x, xy, xy2

, . . . , xyn−1⟩ and by induction xy−i ∈

⟨x, xy, xy2

, . . . , xyn−1⟩
(5)

⊆ En−1 for all i > 0.

Similarly, by conjugating (5) by y we obtain

xyn+1

∈ ⟨xy, xy2

, . . . , xyn

⟩
(5)

⊆ En−1.

Repeated conjugation gives by induction xyi ∈ En−1 for all i ≥ 0 and implies

that ⟨xF ⟩ V≡ En−1 is finitely generated, which finishes the proof. �

By Lemmas 1, 2, the condition (3) allows us to formulate the following
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Criterion. A verbal subgroup V is R-verbal if and only if

∃n ∈ N, [x, ny]
V≡ u(x, y), u(x, y) ∈ En−1. (6)

Example. If F/V satisfies the n-Engel law [x, ny]≡1 then V is R-verbal.

Using the above criterion we prove the following

Theorem 2. The set of R-verbal subgroups forms a sublattice of the lattice

of all subgroups of F .

Proof. Let U and V be the R-verbal subgroups of F . Then by (6) there

exist k,m ∈ N, and words u(x, y) ∈ Ek−1, v(x, y) ∈ Em−1 such that

(i) [x, ky]
U≡ u(x, y), (ii) [x, my]

V≡ v(x, y). (7)

It is clear that the join UV provides both of these laws, hence by (6), UV is

R-verbal. We prove now that the intersection U ∩ V yields a law of the form (6),

namely:

[x, k+my]
U∩V≡ w(x, y), for some w(x, y) ∈ Ek+m−1.

Construction of the law

In (7)(i) we put [x, my] for x, and also in (7)(i) we put v for x to get the following

two laws satisfied in F/U :

[x, k+my]
U≡ u([x, my], y) and [v, ky]

U≡ u(v, y). (8)

The laws (8) imply in F/U a law of the form [x, k+my]
U≡ w(x, y):

[x, k+my]
U≡ u( [x, my], y)

∈U︷ ︸︸ ︷
·(u(v, y))−1[v, ky] . (9)

The law (7)(ii) [x, my]
V≡ v also implies two laws. For the first we take k-repeated

commutator on both sides with y, and for the second we put each side of (7)(ii)

for x into u(x, y). So we get:

[x, m+ky]
V≡ [v, ky], u( [x, my], y)

V≡ u(v, y).

These two laws imply in F/V the law

[x, m+ky]
V≡ u([x, my], y) · (u(v, y))−1︸ ︷︷ ︸

∈V

[v,k y],
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which coincides with (9), hence is satisfied modulo U ∩ V , and has a form

[x, k+my] ≡ w(x, y). So to finish the proof we have to check that

u([x, my], y)(u(v, y))−1[v, ky] ∈ Ek+m−1.

We shall consider the factors in the order: [v, ky], u(v, y), u([x, my], y).

Since v(x, y) ∈ Em−1 = ⟨x, [x, y], [x, 2y], . . . , [x, m−1y] ⟩, by means of the

commutator identity [ab, y] = b−1[a, y]b[b, y], we conclude that

[v, ky] ∈ E(m−1)+k. (10)

Since u(x, y)∈Ek−1, we get u(v, y)∈⟨v,[v, y], [v, 2y], . . . ,[v, k−1y]⟩. So by (10),

u(v, y) ∈ E(m−1)+(k−1) ⊆ Em+k−1.

For the third factor we have u(x, y) ∈ Ek−1 and hence u([x, my], y) ∈

⟨[x, my], [[x, my], y], [[x, my], 2y], . . . [[x, my], k−1y]⟩ ⊆ Em+k−1.

Thus the law (9) of the form [x, k+my]
U∩V≡ w, has w ∈ Ek+m−1, and by (6)

defines the R-verbal subgroup U ∩ V , which finishes the proof. �

4. M-verbal subgroups

Definition 3. A verbal subgroup V ⊆ F , for F = ⟨x, y⟩ is called M -verbal if

for all primes p

V * F ′′(F ′)p, i.e. var(F/V ) + ApA.

The name M -verbal is chosen because F/V satisfies so called Milnor identity

defined by F. Point [13], that is, a law not holding in any of the varieties ApA

[14, Proposition 1.1].

Theorem 3. A verbal subgroup V is M -verbal if and only if it satisfies

V F ′′ ∩ FF−1 ̸= 1, (11)

that is, if and only if it yields a positive law in metabelian groups.
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Proof. By result of Belyaev and Sesekin [2] the wreath product CpwrC

contains a free semigroup. Since CpwrC generates the product variety ApA of the

variety of all abelian groups of exponent p by the variety of all abelian groups (see

e.g. [10, 17.6 and Corollary 22.44]), it follows that the equality F ′′(F ′)p∩FF−1=1

holds for every prime p. Hence (11) implies V * F ′′(F ′)p.

Conversely, by result of J. Groves [4, Theorem C (ii)], the group G := F/V F ′′

is either nilpotent-by-finite or varG contains a subvariety ApA for some prime p.

So if V * F ′′(F ′)p for all prime p, then F/V F ′′ must be virtually nilpotent, hence

it satisfies a positive law and then (11) follows. �

Now, each R-verbal subgroup V is M -verbal. Indeed, if V is R-verbal

then (F/V )′ is finitely generated. Since F ′/F ′′(F ′)p is infinitely generated V *
F ′′(F ′)p and hence var(F/V ) + ApA.

{V N -verbal} ⊂ {P -verbal} ⊆ {R-verbal} ⊆ {M -verbal}.

If V defines a pseudo-abelian variety V, i.e. nonabelian variety in which

every metabelian group is abelian, then V does not contain any of ApA hence,

by definition, V is M -verbal but need not be P -verbal. For example, it is shown

in [6], that the pseudo-abelian relatively free groups F/V by A. Yu. Ol’shanskii

[11] contain free non-abelian semigroups which do not satisfy any positive law, so

that V is M -verbal but not P -verbal. Thus we have the following strict inclusions:

{V N -verbal} ⊂ {P -verbal} ⊂ {M -verbal}.

Theorem 4. The set of M -verbal subgroups forms a sublattice of the sub-

group lattice of F .

Proof. The property V F ′′∩FF−1 ̸= 1 means that F/V F ′′ satisfies a pos-

itive law. Let V1 and V2 yield respectively the following positive laws modulo F ′′

a(x, y) ≡ b(x, y)f ′′
1 and c(x, y) ≡ d(x, y)f ′′

2 , a, b, c, d ∈ F , f ′′ ∈ F ′′.

The join V1V2 provides each of these laws. To speak of V1 ∩ V2 we can assume

that laws a(x, y) ≡ b(x, y) and c(x, y) ≡ d(x, y) are balanced. Now we consider

the following law

a(c, df ′′
2 ) ≡ b(c, df ′′

2 ) · f ′′
1 (c, df

′′
2 ). (12)

This law is positive modulo F ′′, and by assumption, is satisfied modulo V1. By

assumption on V2, there is v2 ∈ V2 such that df ′′
2 = cv2. Then modulo V2, (12) has

a form a(c, c) ≡ b(c, c) · f ′′
1 (c, c), and since a ≡ b is balanced, it is trivial modulo

V2. So (12) is satisfied modulo V1∩V2. Hence by Theorem 3, the subgroup V1∩V2

is M -verbal, which finishes the proof. �
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Question 1. Which R-verbal subgroups are not P -verbal?

Question 2. Which M -verbal subgroups are not R-verbal?

A group is locally graded if every non-trivial finitely generated subgroup has

a proper subgroup of finite index. Considering the class of verbal subgroups V

for which F/V is locally graded, we infer from [3, Theorem B] that the properties

of being V N -, P -, and R-verbal coincide, since every R-verbal subgroup with a

locally graded F/V , is V N -verbal.

By [3, Theorem A] this also holds for M -verbal subgroups if F/V belongs to

the smaller class S defined in [3].

Question 3. Is an M -verbal subgroup V N -verbal if F/V is locally graded?
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