Title: A consequence of the ternary Goldbach theorem
Author(s): Imre Kátai and Bui Minh Phong
Let

$$
\mathcal{M}_{k}=\left\{p_{1}+p_{2}+\cdots+p_{k} \mid p_{1}, p_{2}, \ldots, p_{k} \in \mathbf{\top}\right\}
$$

where $\mathcal{P}$ is the set of primes. We proved that if an integer $k \geq 3$ and arithmetical functions $f, g$ satisfy the functional equation

$$
f\left(p_{1}+p_{2}+\cdots+p_{k}\right)=g\left(p_{1}\right)+g\left(p_{2}\right)+\cdots+g\left(p_{k}\right)
$$

for all $p_{1}, p_{2}, \ldots, p_{k} \in \mathbb{\Pi}$, then there are two constants $A$ and $B$ such that $f(n)=$ $A n+k B$ for all $n \in \mathcal{M}_{k}$ and $g(p)=A p+B$ for all $p \in \mathcal{P}$.

## Address:

Imre Kátai
Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest
Pázmány Péter Sétány $1 / C$
Hungary
Address:
Bui Minh Phong
Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest
Pázmány Péter Sétány $1 / \mathrm{C}$
Hungary

