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Abstract. Let

Mk = {p1 + p2 + · · ·+ pk | p1, p2, . . . , pk ∈ P},

where P is the set of primes. We proved that if an integer k ≥ 3 and arithmetical

functions f , g satisfy the functional equation

f (p1 + p2 + · · ·+ pk) = g(p1) + g(p2) + · · ·+ g(pk)

for all p1, p2, . . . , pk ∈ P, then there are two constants A and B such that f(n) = An+kB

for all n ∈ Mk and g(p) = Ap+B for all p ∈ P.

1. In the following, let N,C and P be the set of positive integers, complex

and prime numbers, respectively. For each k ∈ N, we denote by Mk the set of

those n ∈ N, which can be written as n = p1 + p2 + · · ·+ pk, (p1, p2, . . . , pk ∈ P).

The Goldbach conjecture is that every even integer n ≥ 4 can be written as

the sum of two primes, and the ternary Goldbach conjecture is that every odd

integer larger than 5 is the sum of three prime numbers. In 1742, Goldbach

posed the problem in a letter to Euler. Attempts to solve it were not fruitful

until 1923, Hardy and Littlewood used the newly formulated circle method
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discovered by Hardy and Ramanujan to show that the ternary Goldbach problem

has a solution if we assume the generalized Riemann hypothesis for Dirichlet’s

L-functions. In a remarkable development, I. M. Vinogradov introduced a new

method of trigonometric sums to show in 1937 that the ternary Goldbach con-

jecture is true in a weak form, namely that every large odd number is the sum

of three prime numbers. His theorem was ineffective and gave no lower bound

for what “sufficiently large” meant. In 2002, Liu and Wang [9] gave the bound

exp(3100) and finally H. A. Helfgott proved recently [4]–[6] that the ternary

Goldbach conjecture is true, i.e. every odd integer n ≥ 7 belongs to M3. He

proved somewhat more, namely that ([6], p. 71) if n ≥ 9, n is odd, then n is a

sum of three odd primes.

An almost immediate consequence of his result is

Theorem 1. Let f : M3 → C, g : P → C be such functions for which

f (p1 + p2 + p3) = g(p1) + g(p2) + g(p3) (1.1)

holds for every p1, p2, p3 ∈ P. Then there exist suitable constants A,B ∈ C such

that

f(n) = An+ 3B for n ∈ M3 (1.2)

and

g(p) = Ap+B for p ∈ P (1.3)

If the even Goldbach conjecture is true (that is 2n ∈ M2 for every n ∈ N, n ≥ 2),

then (1.2) holds for every n ≥ 6.

Corollary 1. Assume that complex valued functions f , g satisfy (1.1) in

Theorem 1. If f is a multiplicative function and f(n0) ̸= 0 for some odd n0 > 1,

then either f(n) = n and g(p) = p or f(n) = 1 and g(p) = 1
3 for all n ∈ N, p ∈ P.

We note that this result for f = g is proved by Fang [4].

Proof Of Theorem 1. Let g(2), g(3) be arbitrary complex numbers. Let

A, B be defined by A = g(3)− g(2), B = −2g(3) + 3g(2). Then (1.3) is true for

p = 2, 3. Since 5+2+2 = 3+3+3, 7+2+2 = 5+3+3, 11+2+2 = 7+5+3 and

13 + 2 + 2 = 11 + 3 + 3, we deduce from (1.1) that (1.3) holds for p ≤ 13, p ∈ P.

Let P ∈ P, P ≥ 17. Then P + 2 + 2 = P + 4 can be written as the sum of

odd primes p1, p2, p3:

P + 2 + 2 = p1 + p2 + p3. (1.4)

We have pj ≤ P + 4 − 6 < P . We can use induction. If (1.3) holds for all the

primes p < P , then from (1.4):

g(P ) = g(p1) + g(p1) + g(p1)− 2g(2) = A(p1 + p2 + p3) + 3B − 2(2A+B)
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= A(P + 4)− 4A+B = AP +B.

Consequently, (1.3) holds for every p ∈ P, and so (1.2) is true as well. �

Assume that 2n ∈ M2. Then 2n + 2 ∈ M3. The last assertion is true as

well. Theorem 1 is proved.

Let us prove the corollary.

If there exists an odd n0 > 1 for which 0 ̸= f(n0) = An0 + 3B, then A =

B = 0 cannot be occur.

Assume first that A = 0. Then f(n) = 3B for every n ∈ M3, and so

3B = f(15) = f(3)f(5) = (3B)2. This implies that B = 1
3 , consequently

g(p) =
1

3
for p ∈ P

and

f(n) = 1 for n ∈ N, (n, 2) = 1.

Since the density of those even integers which cannot be written as the sum of

two primes is 0 (see [3]), therefore for every k there exists an odd m for which

2km− 2 is the sum of two primes. Thus 2km = 2 + π1 + π2 (π1, π2 ∈ P), and so

f(2k) = f(2k)f(m) = f(2km) = f(2 + π1 + π2) = g(2) + g(π1) + g(π2) = 1.

Thus f(n) = 1 for all n ∈ N.
Assume that A ̸= 0. Let n ∈ N, (n, 7) = 1. Then

7An+3B= f(7n)= f(7)f(n)= (7A+3B)(An+3B)=A(7A+3B)n+3B(7A+3B),

which with A ̸= 0 implies that 7A + 3B = 7 and 3B = 3B(7A + 3B) = 21B.

Therefore, we have A = 1, B = 0 and f(n) = n for every odd n ∈ N, g(p) = p for

every p ∈ P.

We can prove that f(2k) = 2k for all k ∈ N. Indeed, there is an odd m for

which 2km− 2 is the sum of π1, π2 ∈ P, that is 2km = 2+π1 +π2. Consequently

f(2k)m = f(2k)f(m) = f(2km) = f(2 + π1 + π2)

= g(2) + g(π1) + g(π2) = 2 + π1 + π2 = 2km,

and so f(2k) = 2k.

The corollary is proved.

2. Let k ∈ N and k ≥ 4. Then by the theorem of Helfgott [6], we can

observe that

Mk = {2k, 2k + 1, . . . }.

We can prove
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Theorem 2. Let k ≥ 4, k fix, f : Mk → C, g : P → C. Assume that

f (p1 + p2 + · · ·+ pk) = g(p1) + g(p2) + · · ·+ g(pk) (2.1)

holds for every p1, p2, . . . , pk ∈ P. Then there exist suitable constants A,B ∈ C
such that

f(n) = An+ kB for n ∈ N, n ≥ 2k (2.2)

and

g(p) = Ap+B for p ∈ P. (2.3)

Corollary 2. Assume that complex valued functions f , g satisfy (2.1) in

Theorem 2. If f is multiplicative and defined on N, then either

A = B = 0, (f(n), g(p)) = (0, 0) for n ∈ N, p ∈ P,

or

A = 0, B =
1

k
, (f(n), g(p)) = (1,

1

k
) for n ∈ N, p ∈ P,

or

A = 1, B = 0, (f(n), g(p)) = (n, p) for n ∈ N, p ∈ P.

Proof Of Theorem 2. This is a direct consequence of Theorem 1. Let

p4, . . . , pk be arbitrary fix primes, p1, p2, p3 run over all primes. Let

φ(p1 + p2 + p3) = f(p1 + p2 + p3 + p4 + · · ·+ pk)− (g(p4) + · · ·+ g(pk)).

Then we have

φ(p1 + p2 + p3) = g(p1) + g(p2) + g(p3) for p1, p2, p3 ∈ P.

From Theorem 1 we obtain that g(p) = Ap + B (p ∈ P), consequently f(n) =

An + kB holds for all n ∈ Mk. Since n ∈ Mk if k ≥ 4, n ≥ 2k, the proof of

Theorem 2 is completed. �

Corollary 2 can be proved similarly as Corollary 1. We omit it.

3. Conjectures

C. Spiro [13] proved in 1992 that if f is a multiplicative function satisfying

f (p1 + p2) = f(p1) + f(p2) for p1, p2 ∈ P

and there exists a prime p′ such that f(p′) ̸= 0, then f(n) = n for all n ∈ N. For
some generalization and further results of this theorem see the papers of [1], [2],

[4], [8], [10]–[12].

We hope that the following conjectures are true:
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Conjecture 1. Let f : M2 → C, g : P → C and

f (p1 + p2) = g(p1) + g(p2) for p1, p2 ∈ P.

Let g(3), g(5) be arbitrary complex numbers. Let A,B be defined so that

g(3) = 3A+B, g(5) = 5A+B.

Then

g(p) = Ap+B and f(n) = An+ 2B for p ∈ P, n ∈ M2.

If f is multiplicative, then either (f(n), g(p)) = (0, 0), or (f(n), g(p)) = (1, 1
2 ), or

(f(n), g(p)) = (n, p) for all p ∈ P and n ∈ N.

Conjecture 2. If P ≥ 7, P ∈ P, then there exist p1, p2, p3 ∈ P, p1, p2,

p3 < P for which

P = p1 + p2 − p3.

Theorem 3. There exists an effective constant C such that Conjecture 2

holds for every prime P ≥ C.

Theorem 3 can be proved by the method of I. M. Vinogradov, which was used

for the proof on the ternary Goldbach problem. The method of Helfgott seems

to be applicable to prove it for C ≈ 1027. Thus a massive computer computation

perhaps would help to prove Conjecture 2.

Theorem 4. Conjecture 2 implies Conjecture 1.

Theorem 4 can be proved by the method used in the proof of Theorem 1.

We omit the details.

Let P1 = P \ {2}, B = set of odd integers which are either primes or the

product of two distinct primes. According to a nice theorem of J. Chen every

large even number can be written as p + Q, where p ∈ P1, Q ∈ B. Tomás

Oliveira e Silva, Siegfried Herzog, and Silvio Pardi [14] proved that if

an even number 4 ≤ n ≤ 4 · 1018, then n = p1 + p2, p1, p2 ∈ P1.

Conjecture 3. Let Q2 ∈ B, Q2 ≥ 11. Then there exist p1, p2 ∈ P1, Q1 ∈ B
such that p1, p2, Q1 < Q2, and Q2 = p1 +Q1 − p2.

To prove it seems to be easier than to prove Conjecture 2. An obvious

consequence of it is
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Theorem 5. Let f defined on the set P1+B mapping into C. Let g : B → C.
Assume that

f(p+Q) = g(p) + g(Q).

Assume that Conjecture 3 is true. Let g(3), g(5) be arbitrary complex numbers.

Let A, B be defined so that g(3) = 3A+B, g(5) = 5A+B. Then

g(Q) = AQ+B and f(m) = Am+ 2B

for every Q ∈ B and for every m ∈ P1 + B.

Acknowledgment. The authors would like thank the referees for their

important suggestions.

References

[1] K. K. Chen and Y. G. Chen, On f(p) + f(q) = f(p+ q) for all odd primes p and q, Publ.

Math. Debrecen 76 (2010), 425–430.
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