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Diophantine quadruples in the sequence
of shifted Tribonacci numbers

By CARLOS ALEXIS GÓMEZ RUIZ (Cali) and FLORIAN LUCA (Johannesburg)

Abstract. The Tribonacci sequence {Tn}n≥0 has initial values T0 = 0, T1=T2=1

and each term afterwards is the sum of the preceding three terms. In this paper, we

study sequences a1, . . . , am of positive integers such that the product of any two different

terms is a Tribonacci number. We prove that there is no such example with m = 4, give

an example with m = 3, and leave as an open problem to find all examples for m = 3.

1. Introduction

Let U := {Un}n≥0 be a sequence of integers. We say that a finite sequence

a1, . . . , am of positive integers is a subdiophantine sequence associated to U if

aiaj is a member of {Un}n≥0 for all 1 ≤ i < j ≤ m. We assume that m ≥ 3

to avoid trivialities. The above definition is equivalent to {a1, . . . , am} being a

Diophantine m-tuple with values in the sequence U − 1 := {Un − 1}n≥0 in the

sense of Fuchs, Luca and Szalay [7].

Some interesting problems appear when U is a linearly recurrent sequence.

Consider the Fibonacci sequence F := {Fn}n≥0 given by F0 = 0, F1 = 1 and

Fn+2 = Fn+1+Fn for all n ≥ 0. It is easy to see that there are no subdiophantine

sequences of any size m ≥ 3 associated to F. Indeed, it is enough to show that

there is no such sequence of size m = 3. Assume that there is one and so let

a < b < c be positive integers such that

ab = Fx, bc = Fy, ac = Fz, (1)
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for some positive integers x, y, z. Hence, 3 ≤ x < z < y. By Carmichael’s

Primitive Divisor Theorem (see [3]), we know that if n ≥ 13, then Fn has a

primitive prime factor, that is a prime factor p which does not divide any Fm for

1 ≤ m < n. However, in (1), any prime factor p of Fy divides either b, or c, so, in

particular, it divides either Fx or Fz. This shows that Fy has no primitive prime

factors, therefore y ≤ 12 and now a simple check reveals that (1) has no solutions.

In this paper, we look at the Tribonacci sequence T := {Tn}n≥0 given by

T0 = 0, T1 = T2 = 1, and

Tn+3 = Tn+2 + Tn+1 + Tn, for all n ≥ 0.

We study the existence of subdiophantine sequences associated to T. Although

the Tribonacci sequence does not enjoy the same nice arithmetic properties of the

Fibonacci sequence, we prove nevertheless the following result.

Main Theorem. There do not exist subdiophantine sequences associated

to T with more than three terms, i.e., any set of 4 or more positive integers have

at least two elements for which its product is not a number Tribonacci.

Similar problems have been studied in [1], [4], [7], [8], [9], [11]. We conjecture

that in fact there are only finitely many triples {a, b, c} of distinct positive integers
such that ab, bc, ac are all three in T. We leave this as well as the calculation of

all such examples as a project for the reader.

2. Preliminaries

2.1. The Tribonacci sequence. In the paper [5], Dresden and Du give a

Binet-like formula for Tribonacci numbers:

Tn = cαα
n−1 + cββ

n−1 + cγγ
n−1, (2)

where α is the real root of characteristic polynomial Ψ(x) = x3 − x2 − x − 1,

associated T, β, γ are its complex conjugated roots

β = α−1/2eiθ and γ = α−1/2e−iθ with θ ∈ (0, 2π). (3)

and cz = (z − 1)/(4z − 6) for all z ̸= 3/2.

In [5], it is also shown that the contribution of the roots complex β and γ,

to the right-hand side of (2) is very small. More precisely, it is proved that the

inequality ∣∣Tn − cαα
n−1
∣∣ < 1

2
holds for all n ≥ 1. (4)



Diophantine quadruples in the sequence of shifted Tribonacci numbers 475

Another well-known property of the Tribonacci numbers which is useful to

us is the following (see [2]):

αn−2 ≤ Tn ≤ αn−1 for all n ≥ 1. (5)

2.2. Linear forms in logarithms. Let η be an algebraic number of degree d

over Q with minimal primitive polynomial over the integers

f(X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X],

where the leading coefficient a0 is positive. The logarithmic height of η is given

by

h(η) :=
1

d

(
log a0 +

d∑
i=1

logmax{|η(i)|, 1}

)
.

Our main tool is a lower bound for a linear form in logarithms of algebraic numbers

given by the following result of Matveev [?]:

Theorem 1 (Matveev’s theorem). Let K be a number field of degree D over

Q, η1, . . . , ηt non-zero elements of K, and b1, . . . , bt rational integers. Put

Λ := ηb11 · · · ηbtt − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(ηi), | log ηi|, 0.16} be real numbers, for i = 1, . . . , t. Then,

assuming that Λ ̸= 0, we have

|Λ| > exp(−3× 30t+4 × (t+ 1)5.5 ×D2(1 + logD)(1 + log tB)A1 · · ·At).

2.3. The Reduction Lemma. In the course of our calculations, we get some

upper bounds on our variables which are very large, so we need to reduce them.

With this aim, we use the following result which is a slight variation of a result

due to Dujella and Pethő, which itself is a generalization of a result of Baker

and Davenport (see [6] and [2]). For a real number x, we put ∥x∥ = min{|x−n| :
n ∈ Z} for the distance from x to the nearest integer.

Lemma 1. Let M be a positive integer, let p/q be a convergent of the

continued fraction of the irrational τ such that q > 6M , and let A,B, µ be some

real numbers with A > 0 and B > 1. Let ϵ := ∥µq∥−M∥τq∥. If ϵ > 0, then there

is no solution to the inequality

0 < mτ − n+ µ < AB−s,

in positive integers m,n and s with

m ≤ M and s ≥ log(Aq/ϵ)

logB
.
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3. A first observation

Let a < b < c < d a subdiophantine quadruple associated to T. Then

ab = Tx, bc = Ty, cd = Tz, ad = Tw, (6)

for some positive integers x, y, z and w. We see easily that

3 ≤ x < min{y, w} ≤ max{y, w} < z. (7)

The equalities in (6) lead us to

TxTz = TyTw, (8)

a formula which we will use repeatedly. From inequalities (5), we have

αx+z−4 ≤ TxTz ≤ αx+z−2 and αy+w−4 ≤ TyTw ≤ αy+w−2.

Hence, using (8), we deduce that

|(x+ z)− (y + w)| ≤ 2. (9)

For the rest of this paper, we work with the Diophantine equation (8) by

distinguishing two cases

x+ z ̸= y + w and x+ z = y + w,

respectively.

4. The case x + z ̸= y + w

By using formula (2) and inequality (4), we have that

Tn = cαα
n−1 + e(n), with |e(n)| < 1/2. (10)

Thus, by expanding both sides of equation (8) and performing some arithmetic,

we get

c2αα
x+z−2 − c2αα

y+w−2 = cαe(w)α
y−1 + cαe(y)α

w−1 + e(y)e(w)

− cαe(z)α
x−1 − cαe(x)α

z−1 − e(x)e(z).
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Dividing both sides of above equation by c2αα
x+z−2 and taking absolute values,

we get∣∣∣1− α−(x+z−y−w)
∣∣∣ < 1

αx−1

(
1

2cα
+

1

cαα
+

1

2cαα2
+

1

2c2αα
4

)
<

2.6

αx−1
, (11)

where we have used (7). On the other hand, using inequality (9), we get

min
0<|x+z−y−w|≤2

|1− α−(x+z−y−w)| > 0.4563. (12)

From (7), (11) and (12), we get x = 3.

From equation (8), get 2Tz = TλTδ, where

λ = min{y, w} ≤ δ = max{y, w}.

Replacing Tz, Tλ, Tδ according to (10) in the last equation above, we get

2cαα
z−1 − c2αα

λ+δ−2 = cαe(δ)α
λ−1 + cαe(λ)α

δ−1 + e(λ)e(δ)− 2e(z).

Dividing both sides of above equation by 2cαα
z−1 and taking absolute values, we

get ∣∣1− 2−1cαα
λ+δ−z−1

∣∣ < 1/4

αz−λ
+

1/4

αz−δ
+

5/(8cαα
3)

αz−4
<

0.7

αz−δ
, (13)

where we used the fact that z − 4 ≥ z − λ ≥ z − δ. However, by inequality (9)

and the fact that x = 3, we obtain that |λ+ δ − z − 1| ≤ 4. We check that

min
|λ+δ−z−1|≤4

|1− 2−1cαα
λ+δ−z−1| > 0.046. (14)

Thus, combining (7), (13), and (14), we conclude that 1 ≤ z − δ ≤ 4. Returning

to inequality (9), we get that 4 ≤ λ ≤ 9.

We go back again to the equality 2Tz = TλTδ. Replacing Tz, Tδ according to

(10), dividing both sides by cαTλα
δ−1 performing some algebra and taking value

absolutes, we get ∣∣2T−1
λ αz−δ − 1

∣∣ < 1.3

α-.1
. (15)

By analyzing the minimum value of the left-hand side in (15), we get

min
4≤λ≤9

1≤z−δ≤4

|2T−1
λ αz−δ − 1| > 0.0334. (16)

Hence, from inequalities (7), (15), and (16), we conclude that 5 ≤ δ ≤ 7. In

particular, 5 ≤ z ≤ 11.

Let us record what we have proved so far.

Lemma 2. Let 3 ≤ x < min{y, w} ≤ max{y, w} < z be positive integers

such that TxTz = TyTw and x+ z ̸= y + w. Then

x = 3, 4 ≤ y, w ≤ 7, and 5 ≤ z ≤ 11.
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5. The case x + z = y + w

By (2) and (3), we have that

Tn = dαα
n + dββ

n + dγγ
n,

where

β = α−1/2eiθ, γ = α−1/2e−iθ, and dz = (z − 1)/z(4z − 6).

Putting dβ = ρeiω and dγ = ρe−iω, with ω ∈ (0, π), we note that Tn can be

rewritten as

Tn = dαα
n

(
1 +

2ρ/dα

α
3
2n

cos(ω + nθ)

)
. (17)

After using the above identity in the Diophantine equation (8) and performing

some calculations, we arrive at

cos(ω + xθ)

α
3
2x

=
cos(ω + λθ)

α
3
2λ

+
cos(ω + δθ)

α
3
2 δ

− cos(ω + zθ)

α
3
2 z

+
(2ρ/dα) cos(ω + λθ) cos(ω + δθ)

α
3
2 (x+z)

− (2ρ/dα) cos(ω + xθ) cos(ω + zθ)

α
3
2 (λ+δ)

. (18)

Multiplying by α
3
2x in both sides of (18) and taking absolute values, we get

| cos(ω + xθ)| < 1

α
3
2 (λ−x)

+
1

α
3
2 (δ−x)

+
1

α
3
2 (z−x)

+
4ρ/dα

α
3
2 z

<
1

α
3
2 (λ−x)

(
2 +

1

α
3
2

+
4ρ

dαα6

)
<

2.5

α
3
2 (λ−x)

.

In the above estimates, we used inequalities (7), and x+ z = λ+ δ. But

2 cos(ω + xθ) = 1 + e2i(ω+xθ) = 1−
(
−dβ
dγ

)(
β

γ

)x

.

Then ∣∣∣∣1− (−dβ
dγ

)(
β

γ

)x∣∣∣∣ < 2.5

α
3
2 (λ−x)

. (19)

In order to find an upper bound for λ−x, we use Theorem 1 with the parameters

t := 2, η1 := −dβ
dγ

, η2 :=
β

γ
, b1 := 1, b2 := x.
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Thus, Λ1 := 1− (−dβ/dγ)(β/γ)
x, and from (19), we have that

|Λ1| <
2.5

α
3
2 (λ−x)

. (20)

The number field K = Q(α, β) contains η1, η2 and has degree D = 6 over Q. A

simple check shows that the minimal polynomials of η1 and η2 are∏
σ∈G

(
X + σ

(
dβ
dγ

))
= 11X6 − 33X5 + 64X4 + 73X3 + 64X2 + 33X + 11, bb

and ∏
σ∈G

(X − σ(β/γ)) = X6 + 4X5 + 11bX4 + 12X3 + 11X2 + 4X + 1, bb

respectively, where G is the Galois group Gal(K/Q).

Furthermore, the conjugates of η1 and η2 satisfy∣∣∣∣dβdγ
∣∣∣∣ = ∣∣∣∣dγdβ

∣∣∣∣ = 1,

∣∣∣∣dβdα
∣∣∣∣ = ∣∣∣∣dγdα

∣∣∣∣ = 0.773 . . . ,

∣∣∣∣dαdβ
∣∣∣∣ = ∣∣∣∣dαdγ

∣∣∣∣ = 1.293 . . .

and ∣∣∣∣βγ
∣∣∣∣ = ∣∣∣∣γβ

∣∣∣∣ = 1,

∣∣∣∣βα
∣∣∣∣ = ∣∣∣γα ∣∣∣ = 0.4008 . . . ,

∣∣∣∣αβ
∣∣∣∣ = ∣∣∣∣αγ

∣∣∣∣ = 2.494 . . . .

Hence, h(η1) =
1
6

(
log 11 + 2 log |dα

dβ
|
)
< 0.5 and h(η2) =

1
3 (log |α/β|) < 0.31. So,

we can take A1 := 3 and A2 := 2, given that | log η1| < 2 and | log η2| < 2. Finally,

Λ1 ̸= 0 because β/γ is a algebraic integer while dγ/dβ isn’t. We put B := x.

By Theorem 1, we obtain

|Λ1| > exp(−3 · 306 · 35.5 · 62 · (1 + log 6) · (1 + log(2x)) · 3 · 2)

> exp(−1.7 · 1015 log x). (21)

In above inequality, we used the inequality 1+log(2x) < 3 log x valid for all x ≥ 3.

Therefore, combining (20) and (21), we conclude that

λ− x < 2 · 1015 log x. (22)

Going back to equality (18), we group the dominant terms α− 3
2 (x−1) and

α− 3
2 (λ−1) in one side and all the other terms in the other side, multiply the

resulting equation by 2α
3
2x, and take absolute values, getting∣∣∣2 cos(ω + xθ)− 2 cos(ω + λθ)α− 3

2 (λ−x)
∣∣∣ < 2

α
3
2 (δ−x)

+
2

α
3
2 (z−x)

+
8ρ/dα

α
3
2 (λ+δ)

<
1

α
3
2 (δ−x)

(
2 +

2

α
3
2

+
8ρ

dαα6

)
<

2.6

α
3
2 (δ−x)

. (23)

We remark that
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i) 2 cos(ω + xθ)− 2 cos(ω + λθ)α− 3
2 (λ−x) ̸= 0. Indeed, otherwise

2 cos(ω + xθ)

α
3
2x

=
2 cos(ω + λθ)

α
3
2λ

.

Multiplying by ρ and then adding dα to each side, we obtain by (17) that

Tx/α
x = Tλ/α

λ, or equivalently α−(λ−x) = Tx/Tλ. However, as α−1 is a unit

(an algebraic integer whose reciprocal is also an algebraic integer), we have

that Tx/Tλ = 1, or x = λ, which is not possible.

ii) 2 cos(ω + xθ)− 2 cos(ω + λθ)α− 3
2 (λ−x) is equal to

2Re
[
ei(ω+xθ)

(
1− α− 3

2 (λ−x)ei(λ−x)θ
)]

= e−i(ω+xθ)
(
1− (α− 3

2 e−iθ)λ−x
)[

1− e2iω(e2iθ)x
(α− 3

2 eiθ)λ−x − 1

(α− 3
2 e−iθ)λ−x − 1

]
.

But, given that

α− 3
2 eiθ = β/α, α− 3

2 e−iθ = γ/α, e2iω = dβ/dγ , e2iθ = β/γ, (24)

we conclude from (23) and (5) that

∣∣∣∣1− ( γα)λ−x
∣∣∣∣
∣∣∣∣∣1−

(
dβ
dγ

)(
β

γ

)x

(
β
α

)λ−x

− 1(
γ
α

)λ−x − 1

∣∣∣∣∣ < 2.6

α
3
2 (δ−x)

. (25)

As in the previous application of the linear forms in logarithms, we consider

the number field K = Q(α, β) and D = 6. Further, we compute that h(γ/α) =

h(β/γ) < 0.31. Hence, we obtain from Theorem 1 that∣∣∣∣1− (γα)λ−x
∣∣∣∣ > exp(−3 · 305 · 25.5 · 62 · (1 + log 6) · (1 + log(λ− x)) · 2)

> exp(−1.4 · 1012 log(2(λ− x)) > exp(−6 · 1014 log log x). (26)

We have used in above inequality the fact that 1 + log(λ− x) < 2 log(2(λ− x)),

for all λ− x ≥ 1 and, by (22), that log(2(λ− x)) < 4 · 102 log log x for all x ≥ 3.

On the other hand,

h

(
(β/α)λ−x − 1

(γ/α)λ−x − 1

)
≤ 2h((β/α)λ−x − 1).
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Given that β/α is an algebraic integer and

|σ(β/α)λ−x − 1| ≤ 2.5λ−x + 1, for all σ ∈ G,

we conclude that h((β/α)λ−x−1) ≤ log(2.5λ−x+1) < (λ−x) log 3. Furthermore,∣∣∣∣log( (β/α)λ−x − 1

(γ/α)λ−x − 1

)∣∣∣∣ ≤ | log(1− (β/α)λ−x)|+ | log(1− (γ/α)λ−x)|

≤ 2

∞∑
m=1

1

m

∣∣∣∣βα
∣∣∣∣(λ−x)m

< 2

∞∑
m=1

(
1

2(λ−x)

)m

=
2

2λ−x − 1
.

Below we shall apply Theorem 1 with the data

t := 3, η1 := −dβ
dγ

, η2 :=
β

γ
, η3 :=

(β/α)λ−x − 1

(γ/α)λ−x − 1
,

b1 := 1, b2 := x, b3 := 1.

We put B := x. Referring to the previous calculations, we take A1 := 3, A2 := 2

and A3 := 12(λ−x) log 3 ≥ max{Dh(η3), | log(η3)|}. The conclusion of Theorem 1

leads us to the following inequality:∣∣∣1− (dβ/dγ) (β/γ)
x ((β/α)

λ−x − 1) ((γ/α)
λ−x − 1)−1

∣∣∣
> exp(−3 · 307 · 45.5 · 62 · (1 + log 6)(1 + log(3x))) · 3 · 2 · 12(λ− x) log 3)

> exp(−6.5 · 1033 log2 x). (27)

In above inequality, we used that the inequality 1+ log(3x) < 3 log x holds for all

x ≥ 3, as well as inequality (22). Combining the inequalities (25), (26) and (27),

we get

exp(−6.5 · 1033 log2 x− 6 · 1014 log log x) < 2.6

α
3
2 (δ−x)

,

which leads us to

δ − x < 7.2 · 1033 log2 x+ 6.6 · 1014 log log x < 8 · 1033 log2 x. (28)

Given that z − x = (δ − x) + (λ− x), we obtain

z−x < 7.2 · 1033 log2 x+6.6 · 1014 log log x+2 · 1015 log x < 8 · 1033 log2 x. (29)

Let us record what we have proved so far.
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Lemma 3. Let 3 ≤ x < min{y, w} ≤ max{y, w} < z be positive integers

such that TxTz = TyTw and x+ z = y+w. If h = λ− x, k = δ− x and l = z− x,

then the inequalities

l < 8 · 1033 log2 x, k < 8 · 1033 log2 x, h < 2 · 1015 log x (30)

hold.

Once again we return to equation (18) and this time we rewrite it as follows

cos(ω + xθ)

α
3
2x

+
cos(ω + zθ)

α
3
2 z

− cos(ω + δθ)

α
3
2 δ

− cos(ω + λθ)

α
3
2λ

=
(2ρ/dα) cos(ω + λθ) cos(ω + δθ)

α
3
2 (x+z)

− (2ρ/dα) cos(ω + xθ) cos(ω + zθ)

α
3
2 (λ+δ)

.

As before, we multiply both sides above by 2α
3
2x and the take absolute values, to

get∣∣2 cos(ω + xθ) + 2 cos(ω + zθ)α− 3
2 (z−x) − 2 cos(ω + δθ)α− 3

2 (δ−x)

− 2 cos(ω + λθ)α− 3
2 (λ−x)

∣∣ < 1

α
3
2x

. (31)

We let A stand for the term inside the absolute value on the left-hand side of the

above inequality. With the aim to use once more time a linear forms in logarithms,

we show that A is not zero and then rewrite A in a way that allows us to use

Theorem 1. To see that A ̸= 0, assume otherwise. We get

2 cos(ω + xθ)

α
3
2x

+
2 cos(ω + zθ)

α
3
2 z

=
2 cos(ω + λθ)

α
3
2λ

+
2 cos(ω + δθ)

α
3
2 δ

.

We multiply by ρ and add δα in both sides. We recognize from (17) that the

resulting expression is equivalent to

Tx

αx
+

Tz

αz
=

Tλ

αλ
+

Tδ

αδ
.

Further, by equation (8), and the fact that x + z = λ + δ, it follows that also

(Tx/α
x)(Tz/α

z) = (Tλ/α
λ)(Tδ/α

δ). So, we have that the sets {Tx/α
x, Tz/α

z}
and {Tλ/α

λ, Tδ/α
δ} give the roots of the same quadratic equation. Thus,

Tx/α
x = Tλ/α

λ, or Tx/α
x = Tδ/α

δ,

and in any case we get a contradiction, as we noted earlier. On the other hand,

A can be rewriten as

ei(ω+xθ)
(
1 + α− 3

2 (z−x)ei(z−x)θ − α− 3
2 (δ−x)ei(δ−x)θ − α− 3

2 (λ−x)ei(λ−x)θ
)
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+e−i(ω+xθ)
(
1 + α− 3

2 (z−x)e−i(z−x)θ − α− 3
2 (δ−x)e−i(δ−x)θ − α− 3

2 (λ−x)e−i(λ−x)θ
)

and putting

B = 1 + α− 3
2 (z−x)ei(z−x)θ − α− 3

2 (δ−x)ei(δ−x)θ − α− 3
2 (λ−x)ei(λ−x)θ,

we get

A = e−i(ω+xθ)B

(
1 + e2i(ω+xθ)B

B

)
, (32)

where B denotes the complex conjugate of B. Moreover,

B =

(
1−

(
e−iθα− 3

2

)δ−x
)[

1−
(
e−iθα− 3

2

)λ−x
(
e−iθα− 3

2

)z−λ − 1(
e−iθα− 3

2

)δ−x − 1

]
. (33)

Hence, from equations (31), (32), (33) and the identities in (24), we conclude that∣∣∣∣1−(−dβ
dγ

)(
β

γ

)x
B

B

∣∣∣∣ ∣∣∣∣1−( γα)δ−x
∣∣∣∣×
∣∣∣∣∣1− ( γα)λ−x

(
γ
α

)z−λ − 1(
γ
α

)δ−x − 1

∣∣∣∣∣< 3

α
3
2x

. (34)

Here, we use linear forms in one, two and three logarithms to find a lower bound

on each of the above absolute values.

As in the previous applications of Theorem 1, we have K = Q(α, β), D = 6,

h(γ/α) = h(β/γ) < 0.31, h(−dβ/dγ) < 0.5 and

h

(
(γ/α)z−λ − 1

(γ/α)δ−x − 1

)
≤ 2h

(
(γ/α)z−λ − 1

)
< 2 log 3(z − x).

Also, given that

B = (β/α)z−x − (β/α)δ−x − (β/α)λ−x + 1 ∈ OK, h(B) = h(B)

and |σ(B)| < 3 · 2.5z−x + 1 < 3z−x for all σ ∈ G and z − x ≥ 2, we get

h(B/B) ≤ 2h(B) ≤ 2 log 3(z − x).

Furthermore,

∣∣log(B/B)
∣∣ ≤ 2

∣∣log (1− ((β/α)λ−x + (β/α)δ−x − (β/α)z−x
))∣∣

< 2
∞∑

m=1

(∣∣∣∣βα
∣∣∣∣λ−x

· (2 + (|β|/α))

)m

=
2(2 + (|β|/α))

(α/|β|)λ−x − (2 + (|β|/α))
.
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In last inequality above, we used the fact that∣∣(β/α)λ−x + (β/α)δ−x − (β/α)z−x
∣∣ ≤ (|β|/α)λ−x

(
1 + (|β|/α)δ−λ + (|β|/α)z−λ

)
≤ (|β|/α)λ−x(2 + (|β|/α)) < 1.

Applying Theorem 1 three times with the above information, we can conclude

that ∣∣∣∣1− (−dβ
dγ

)(
β

γ

)x
B

B

∣∣∣∣ > exp
(
−2.6 · 1052 log3 x

)
, (35)∣∣∣∣1− ( γα)δ−x

∣∣∣∣ > exp
(
−5.6 · 1014 log log x

)
(36)

and ∣∣∣∣∣1− ( γα)λ−x
(
γ
α

)z−λ − 1(
γ
α

)δ−x − 1

∣∣∣∣∣ > exp
(
−6.8 · 1051 log2 x log log x

)
. (37)

Thus, the inequalities (34), (35), (36) and (37) lead us to inequality

x < 1.8 · 1052 log3 x+ 4.6 · 1051 log2 x log log x+ 3.8 · 1014 log log x,

from which we have x < 4.5 · 1058. We record what we have just proved.

Lemma 4. Let 3 ≤ x < min{y, w} ≤ max{y, w} < z be positive integers

such that TxTz = TyTw and x+ z = y+w. If h = λ− x, k = δ− x and l = z− x,

then the inequalities

x < 4.5 · 1058, k < l < 1.5 · 1038, h < 2.8 · 1017 (38)

hold.

6. Reducing h, k, l and x when x + z = y + w

We use Lemma 1 to reduce the bounds given in the inequalities (38) to cases

that can be treated computationally.

6.1. Reduction of h. From inequality (19) is clear that∣∣∣sin(ω + xθ − π

2

)∣∣∣ = | cos(ω + xθ)| < 2.5 · α− 3
2h.
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Putting m :=
⌊(
ω + xθ − π

2

)
/π
⌉
, where ⌊y⌉ is the nearest integer to the real

number y, we obtain that −π/2 ≤ ω + xθ − π
2 −mπ ≤ π/2. Hence,

2.5 · α− 3
2h >

∣∣∣sin(ω + xθ − π

2

)∣∣∣ = ∣∣∣sin(ω + xθ − π

2
−mπ

)∣∣∣
≥
∣∣∣∣2ωπ +

(
2θ

π

)
x− 2m− 1

∣∣∣∣ , (39)

where we have used the inequality

| sin y| = sin |y| ≥ 2

π
|y| for all − π/2 ≤ y ≤ π/2.

Thus, we conclude from inequality (39) that∣∣∣∣( θ

π

)
x−m+

(
ω

π
− 1

2

)∣∣∣∣ < 1.3 · α− 3
2h. (40)

We take

Γ1 := (θ/π)x−m+ (ω/π − 1/2),

which is nonzero.

If Γ1 > 0, then, by (40), we get

0 <

(
θ

π

)
x−m+

(
ω

π
− 1

2

)
< 1.3 · α− 3

2h. (41)

We put

τ :=
θ

π
, µ :=

ω

π
− 1

2
, A := 1.3, B := α

3
2 .

Inequality (41) can be rewritten as

0 < τx−m+ µ < AB−h. (42)

The fact that T is non-degenerate ensures that γ is an irrational number. Lastly,

we take M := 4.5 · 1058 which is an upper bound on x by inequalities in (38), and

apply Lemma 1 to inequality (42). With the help of Mathematica, we found that

the maximum value of ⌊log(Aq/ϵ)/ logB⌋ is 19, which is an upper bound on h,

according to Lemma 1. This was when Γ1 > 0. But if Γ1 < 0, then, from (40),

we obtain

0 <
(π
θ

)
m− x+

( π

2θ
− ω

θ

)
< α− 3

2h. (43)

In this other case, we have that

0 < τm− x+ µ < AB−x, (44)
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where

τ :=
π

θ
, µ :=

π

2θ
− ω

θ
, A := 1, B := α3/2.

Finally, we take M := 6.3 · 1058 which is an upper bound on m because m =⌊(
ω + xθ − π

2

)
/π
⌉
< 1.4x, and apply again Lemma 1 to inequality (44). With

the help of Mathematica, we found that the maximum value of ⌊log(Aq/ϵ)/ logB⌋
is 18, which is an upper bound on h, according to Lemma 1.

So, in summary, we have 1 ≤ h ≤ 19.

6.2. Reduction of k and l. Here, we assume that k ≥ 2. Note first that

min
1≤h≤19

∣∣∣∣1− (γα)h
∣∣∣∣ > 0.9376. (45)

Thus, from inequality (25), we conclude that∣∣∣∣∣
(
dβ
dγ

)(
β

γ

)x (β
α

)h − 1(
γ
α

)h − 1
− 1

∣∣∣∣∣ < 2.8

α
3
2k

. (46)

We put

Λ2 := (dβ/dγ) (β/γ)
x
((β/α)

h − 1)((γ/α)
h − 1)−1 − 1.

Thus, given that k ≥ 2, we then get |Λ2| < 1/2.

Taking

logw = log |w|+ i argw with − π < argw ≤ π,

for the logarithm of a complex number w, we get

log(1 + w) =

∞∑
n=1

(−1)n−1w
n

n
for w ∈ C with |w| < 1.

From here, one easily shows that

| log(1 + w)| ≤ 2|w| if |w| ≤ 1/2.

Hence, with w = Λ2, and recalling that the complex logarithm is additive only

modulo 2πi and that log(β/γ) = 2θi, we obtain from inequality (46)∣∣∣∣∣log
((

dβ
dγ

)
(β/α)

h − 1

(γ/α)
h − 1

)
+ 2θxi+ 2πti

∣∣∣∣∣ < 5.6

α
3
2k

(47)
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for some t ∈ Z. Using | log(1 + Λ2)| ≤ 2|Λ2| < 1 and inequalities (38) and (47),

we have that

2π|t| ≤ 1 + 2θx+ max
1≤h≤19

∣∣∣∣∣log
((

dβ
dγ

)
(β/α)

h − 1

(γ/α)
h − 1

(γ/α)
h − 1

)∣∣∣∣∣ < 9 · 1058,

which leads to |t| < 1.5 · 1058. Let

ζ(h) := Re

[
−i log

((
dβ
dγ

)
(β/α)

h − 1

(γ/α)
h − 1

)]
.

We see from inequality (47) that

|2θx+ 2πt+ ζ(h)| < 5.6

α
3
2k

.

Furthermore, as −2.01812 < ζ(h) < −1.21087 holds for all 1 ≤ h ≤ 19 and

2θ ∈ (π/2, π), we get that t must be a negative integer. Hence, by replacing t

with −t, we can assume no less generality that

|2θx− 2πt+ ζ(h)| < 5.6

α
3
2k

, (48)

where x and t are positive integers < 4.5 · 1048.
For each h ∈ [1, 19], we used the reduction method of Lemma 1. Putting

Γ2 := 2θx− 2πt+ ζ(h), we have Γ2 ̸= 0 since Λ2 ̸= 0. We describe in parallel the

cases Γ2 > 0 and Γ2 < 0.

Γ2 > 0 Γ2 < 0

0 <

(
θ

π

)
x− t+

ζ(h)

2π
< 0.9α− 3

2k 0 <
(π
θ

)
t− x− ζ(h)

2θ
< 2.91α− 3

2k

τ :=
θ

π
, µh :=

ζ(h)

2π
τ :=

π

θ
, µh := −ζ(h)

2θ

A := 0.9, B := α
3
2 A := 2.91, B := α

3
2 .

Conditions on x and t in equation (48), allow us to take M := 4.5 · 1048 in both

cases. Further, τ is a irrational number, because otherwise βm = γm for some

positive integer m (by (24)). But this equality is not possible since if it were,

than conjugating the above relation with the automorphism σ : α → γ, β → β,

γ → α, we obtain βm = αm. However, in the above equation the absolute value
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of the left-hand side is < 1, while the absolute value of the right-hand side is > 1,

which gives us the contradiction.

A new implementation of Lemma 1 in Mathematica tells us that the maxi-

mum value of ⌊log(Aq/ϵ)/ logB⌋ is 6 and 7, respectively. So, we conclude that

2 ≤ k ≤ 7. On the other hand, as h ≤ k and

l = z − x = (λ− x) + (δ − x) = h+ k,

we get that 1 ≤ h ≤ 7 and 2 ≤ l ≤ 14.

Finally, we note that if k = 1, then h = 1 and l = 2. To summarize the last

two subsections, we present the following inequalities:

1 ≤ h ≤ k < l, k ≤ 7, l ≤ 14. (49)

6.3. Reduction of x. With the purpose of reducing the bound to x, we go back

to inequality (34). By inequalities (45) and

min
k≤7, l≤14
1≤h≤k<l

∣∣∣∣∣1− ( γα)h
(
γ
α

)l−h − 1(
γ
α

)k − 1

∣∣∣∣∣ > 0.91,

we can conclude that ∣∣∣∣(−dβ
dγ

)(
β

γ

)x(
B

B

)
− 1

∣∣∣∣ < 3.6

α
3
2x

, (50)

where

B = (β/α)l − (β/α)k − (β/α)h + 1.

Let

Λ3 := (−dβ/dγ) (β/γ)
x
(B/B)− 1.

By inequality (50), it is clear that |Λ3| < 1/2. From the arguments used at

equations (46) and (47), we obtain that∣∣∣∣log((−dβ
dγ

)(
B

B

))
+ 2θxi+ 2πti

∣∣∣∣ < 7.2

α
3
2x

,

for some t ∈ Z. Even more,

max
k≤7, l≤14
1≤h≤k<l

∣∣∣∣log((−dβ
dγ

)(
B

B

))∣∣∣∣ < 1.41,
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so |t| < 1.5 · 1058. Finally, we take

ζ(l, k, h) := Re

[
−i log

((
−dβ
dγ

)(
B

B

))]
.

Using an argument analogous to the one used at inequality (48), we get∣∣∣∣( θ

π

)
x− t+

ζ(l, k, h)

2π

∣∣∣∣ < 1.2

α
3
2x

,

for positive integers x, t smaller than 4.5 · 1048.
Now, putting

Γ3 := (θ/π)x− t+ (ζ(l, k, h)/2π),

it is clear that Γ3 ̸= 0.The cases Γ3 > 0 and Γ3 < 0 can be treated analogously

using Lemma 1.Making the appropriate choices of upper bound M , convergence

p/q, number ϵ, etc., we get that x ≤ 13.

We conclude with the following result, which summarizes both (49) and the

above bound on x.

Lemma 5. Let 3 ≤ x < min{y, w} ≤ max{y, w} < z be positive integers

such that TxTz = TyTw and x+ z = y + w. Then

3 ≤ x < 13, 4 ≤ y, w ≤ 20, 5 ≤ z ≤ 27

hold.

7. The proof of Main Theorem

Case x+ z ̸= y + w. We list the values of Tx, Ty, Tz, Tw, with x, y, z, w in

the range given by Lemma 2, which leads us to the conclusion that equation (8)

no has solutions. So, there is no quadruple of positive integers that satisfies (6)

in this case.

Case x + z = y + w. A quick inspection with the information given by

Lemma 5, shows that the only solutions to (8) are

x 9 9 12 9 12

y 12 12 13 13 13

w 12 13 15 13 16

z 15 16 16 17 17

However, equation (6) has no solutions in any of the cases either. Thus, the main

theorem is proved.
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8. A open problem

Although we have proved that there are no subdiophantine sequences with

four or more terms associated to T, we know nothing about the subdiophantine

triples.

By studying the Diophantine equation

aTn = bTm, (51)

in positive integers a, b, n, m with a < b relatively prime in a small range, we

obtained by computer search that for a, b ∈ {9, 56, 103} the equation (51) always

has solutions. Interestingly {9, 56, 103} is a subdiophantine triple associated to

T because

9× 56 = T13, 9× 103 = T14, 56× 103 = T17.

We propose to the reader to prove first that there are only finitely many subdio-

phantine triples for T and to determine all of them.
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[6] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart.
J. Math. Oxford 49 (1998), 291–306.

[7] C. Fuchs, F. Luca and L. Szalay, Diophantine triples with values in binary recurrences,
Ann. Sc. Norm. Super. Pisa Cl. Sc. 7 (2008), 579–608.

[8] P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41 (2006), 195–203.
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