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On the characterization of Pethő’s Loudspeaker

By MARIO WEITZER (Leoben)

Abstract. For d ∈ N and r ∈ Cd let γr : Z[i]d → Z[i]d, where γr(a) = (a2, . . . , ad,

−⌊ra⌋) for a = (a1, . . . , ad), denote the (d-dimensional) Gaussian shift radix system

associated with r. γr is said to have the finiteness property iff all orbits of γr end up in

(0, . . . , 0); the set of all corresponding r ∈ Cd is denoted by G(0)
d . It has a complicated

structure even for d = 1.

In the present paper a conjecture on the full characterization of G(0)
1 – which is

known as Pethő’s Loudspeaker – is formulated and proven in substantial parts. It is

shown that G(0)
1 is contained in a conjectured characterizing set GC , while the other

inclusion is partially settled algorithmically. Furthermore the circumference and area

of the Loudspeaker are computed under the assumption that the conjecture holds. The

proven parts of the conjecture also allow to fully identify all so-called critical and weakly

critical points of G(0)
1 .

1. Introduction

In 2005 Akiyama et al. [1] introduced so-called shift radix systems (cf. also

[2], [3], [4]). For a natural number d and a real vector r ∈ Rd the mapping

τr : Zd → Zd defined by

τr(a) = (a2, . . . , ad,−⌊ra⌋) (a = (a1, . . . , ad)), (1.1)
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is called the d-dimensional shift radix system associated with r (SRS) and r its

parameter. In [5] the notion has been generalized to the complex setting. For

a complex vector r ∈ Cd the analogously defined mapping γr : Z[i]d → Z[i]d is

called the d-dimensional Gaussian shift radix system associated with r (GSRS)

(note that ra := r1a1 + · · ·+ rdad and ⌊z⌋ := ⌊ℜ(z)⌋+ i⌊ℑ(z)⌋ for z ∈ C). Let 1

Gd := {r ∈ Cd | ∀ a ∈ Z[i]d : ∃ (m,n) ∈ N2 : m ̸= n ∧ γmr (a) = γnr (a)} (1.2)

G(0)
d := {r ∈ Cd | ∀ a ∈ Z[i]d : ∃ n ∈ N : γnr (a) = 0} (1.3)

where for any n ∈ N0, γ
n
r (a) means the n-fold iterative application of γr to a.

The GSRS γr is said2 to have the finiteness property iff r ∈ G(0)
d .

SRS are closely related to two important notions of numeration systems.

Indeed, as pointed out in [1], [7], SRS form a generalization of β-expansions (see

[6], [12], [14]) and canonical number systems (CNS) (see [9], [11], [13] and [10,

Section 4.1]). The finiteness properties in the contexts of β-expansions and CNS

are in one-to-one correspondence with the finiteness property for SRS.

GSRS on the other hand are a generalization of Gaussian numeration systems

[8]. For a β ∈ Z[i] \ {0} and C := {c ∈ Z[i] | ⌊c/β⌋ = 0} the pair (β, C) is called

Gaussian numeration system iff every x ∈ Z[i] can be written uniquely in the

form x = a0 + a1β + · · · + anβ
n where n ∈ N0, ai ∈ C for i ∈ {0, . . . , n} and

an = 0 iff x = 0. It is shown in [5] that (β, C) is a Gaussian numeration system iff

−1/β ∈ G(0)
1 . Furthermore the digit representation of x with respect to (β, C) is

given by ai = β{−1/βγi−1/β(−x)} where i ∈ N0 and the fractional part of some

z ∈ C is defined as {z} := {ℜ(z)}+ i{ℑ(z)}.
In the present paper a conjecture on the characterization of G(0)

1 is given.

Because of its shape and in honor of Attila Pethő G(0)
1 is known as Pethő’s Loud-

speaker [5]. In Section 2 the set GC is defined and it is conjectured that G(0)
1 = GC .

The main result is stated in Section 3 and proven in Section 5 and Section 6 where

it is shown that G(0)
1 ⊆ GC and the other inclusion is partially settled by applica-

tion of analogues of two algorithms introduced in [15]. In Section 7 consequences

like the Loudspeaker’s circumference and area are derived under the assumption

that the main conjecture holds. Finally all weakly critical and critical points of

the Loudspeaker are identified in Section 8.

1N := {n ∈ Z | n > 0}.
2From now on a real vector r and its associated GSRS γr shall be identified in terms of properties.
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2. The conjecture

Let P0(0) := (1, 0), P0(6) :=

(
22

23
,
4

23

)
, P0(7) :=

(
26

27
,
4

27

)
P1(n) :=

(
1− 2

n2 − 2
,

n

n2 − 2

)
, n ∈ Z

P2(n) :=
(
1− 1

n2 − n− 1
,

n− 1

n2 − n− 1

)
, n ∈ Z

P3(n) :=
(
1− 1

n2 − n
,
n− 1

n2 − n

)
, n ∈ Z \ {0, 1}

P4(n) :=
(
1− 1

n2
,
n

n2

)
, n ∈ Z \ {0}

P5(n) :=
(
1− 1

n2 + 1
,

n

n2 + 1

)
, n ∈ Z

P6(n) :=
(
1− 1

n2 + n+ 1
,

n+ 1

n2 + n+ 1

)
, n ∈ Z

P7(n) :=
(
1− 1

n2 + n+ 2
,

n+ 1

n2 + n+ 2

)
, n ∈ Z

P8(n) :=
(
1− 1

n2 + 2
,

n

n2 + 2

)
, n ∈ Z

P9(n) :=
(
1− 1

n2 + 3
,

n

n2 + 3

)
, n ∈ Z

P10(n) :=
(
1− 2

n2 + n+ 6
,

n+ 1

n2 + n+ 6

)
, n ∈ Z

and let GC denote the union of the region bounded by the following infinite

polygonal chain and the same region reflected at the real axis. The boundary

of GC shall also be as given below where a solid line between two points indicates

belonging of the corresponding line segment and an overline over a point indicates

belonging of the corresponding vertex to GC .

P0(0) — P5(0) — P6(0) . . .

P5(1) — P6(1) — P5(1) . . . P7(1) . . .

P5(2) — P6(2) . . . P7(2) . . . P8(2) . . .
P4(3) . . . P5(3) — P6(3) . . . P7(3) . . . P8(3) —

P3(4) . . . P4(4) . . . P5(4) — P6(4) . . . P7(4) . . . P8(4) —

P3(5) . . . P4(5) . . . P5(5) — P6(5) . . . P7(5) . . . P8(5) — P9(5) —
P0(6) — P2(6) — P3(6) . . . P4(6) . . . P5(6) — P6(6) . . . P7(6) . . . P8(6) — P9(6) —

P0(7) — P2(7) — P3(7) . . . P4(7) . . . P5(7) — P6(7) . . . P7(7) . . . P8(7) — P9(7) —

P1(8) — P2(8) — P3(8) . . . P4(8) . . . P5(8) — P6(8) . . . P7(8) . . . P8(8) — P9(8) — P10(8) . . .
.
.
.

P1(n) — P2(n) — P3(n) . . . P4(n) . . . P5(n) — P6(n) . . . P7(n) . . . P8(n) — P9(n) — P10(n) . . .
.
.
.
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Conjecture 2.1. If GC is as defined above then G(0)
1 = GC .

Note that for all i ∈ {1, . . . , 10} : limn→∞ Pi(n) = P0(0). The following

figure shows the part of GC which lies in the first quadrant and a magnification

of the part where it gets regular. It can be seen that ultimately the boundary of

GC consists of a sequence of pikes which have ten vertices each. For n ∈ N pike n

shall refer to the pike which contains the vertex P5(n).

3. The main result

Theorem 3.1. Let GC be as in Section 2 and D :=
{
z ∈ C | |z| ≤ 2047

2048

}
.

Then

(i) G(0)
1 ⊆ GC

(ii) GC ∩D ⊆ G(0)
1 ∩D

The first part is proven in Section 5 and the second part in Section 6.

4. Preliminaries

For n ∈ N, π = (a1, . . .an) ∈ (Z[i]d)n is called a cycle of r ∈ Cd (or γr,

see footnote 2) iff for all i ∈ {1, . . . , n} it holds that γr(ai) = ai mod n+1 (note

that mod has precedence over + and −), a cycle iff there is a vector r ∈ Cd

for which π is a cycle of r, and nontrivial iff π ̸= (0), the trivial cycle. Let

P (π) := {r ∈ Cd | π cycle of r}, the associated polyhedron of π or – if π is

a nontrivial cycle – the cutout polyhedron of π. P (π) is either empty or the
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intersection of finitely many half spaces and therefore it does in fact always form

a – possibly degenerate – convex polyhedron [5]. It is clear that

G(0)
d = Gd \

∪
π ̸=(0)

P (π) (4.1)

which provides a method to “cut out” regions (the cutout polyhedra) from Gd [1].

Cutout polyhedra can be used to prove that a given parameter r ∈ Cd does

not belong to G(0)
d . However they are insufficient to prove that it does belong.

For that Brunotte’s algorithm can be used ([1, Theorem 5.1]) which is based

on sets of witnesses. A set V ⊆ Z[i]d is called a set of witnesses for r iff it

is stable under γ
(1)
r := γr, γ

(2)
r := −γr ◦ (− id), γ

(3)
r := conj ◦γr ◦ conj, and

γ
(4)
r := − conj ◦γr ◦ (− conj) (where id is the identity on Z[i] and conj is the

function on Cd which replaces every entry of the input vector by its complex

conjugate) and contains a generating set of the group (Z[i]d,+) which is closed

under taking inverses. Every such set of witnesses has the decisive property

r ∈ G(0)
d ⇐⇒ ∀ a ∈ V : ∃ n ∈ N : γnr (a) = 0. (4.2)

In the case of a finite set of witnesses this provides a method to decide whether or

not a given parameter r belongs to G(0)
d . This is what Brunotte’s algorithm does

for any given parameter r in the interior of Gd – it finds a finite set of witnesses.

It shall be denoted by Vr – the set of witnesses associated with r – and can be

computed using the following iteration:

V0 := {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1), (±i, 0, . . . , 0), . . . , (0, . . . , 0,±i)}

∀ n ∈ N : Vn := Vn−1 ∪ γ(1)r (Vn−1) ∪ · · · ∪ γ(4)r (Vn−1)

Vr :=
∪

n∈N0

Vn (4.3)

If r is an element of the interior of Gd the mappings γ
(i)
r , i ∈ {1, 2, 3, 4} are

contractive apart from a finite subset of Z[i]. Therefore the above iteration

becomes stationary eventually [1]. Let Πr – the graph of witnesses associated

with r – denote the edge-colored multidigraph with vertex set Vr having an edge

of color i from a to b iff γ
(i)
r (a) = b. If Ei is the set of all edges (ordered

pairs) of color i then the graph Πr is completely characterized by (E1, E2, E3, E4)

(as there are no isolated vertices) and thus the graph and the 4-tuple can be

identified. For any such graph Π = (E1, E2, E3, E4) let – just as for cycles –
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P (Π) := {r ∈ Rd | ∀ i ∈ {1, 2, 3, 4} : ∀ (a,b) ∈ Ei : γ
(i)
r (a) = b} and Pr := P (Πr).

If r ∈ int(Gd) then Πr is finite and Pr is a convex polyhedron. Furthermore G(0)
d

is the disjoint union of those Pr the corresponding parameters r of which belong

to G(0)
d [15]. The algorithms introduced in [15] are based on this fact and can

easily be adapted to the complex case. The results presented in Section 6 have

been achieved in this way.

For further considerations it should be noted that the Loudspeaker is sym-

metric with respect to the real axis [5].

5. One inclusion

In the following we refer to 19 infinite families of cycles the corresponding

cutout polygons of which cover the whole region outside GC in the upper half

of the unit disk. The definition of these families as well as descriptions of the

associated cutout polygons (which were computed by Lemma 5.1 of [15]) can be

found online at:

http://institute.unileoben.ac.at/mathstat/personal/weitzer-Dateien/

LoudspeakerCycles.pdf

The families were found by manual search. First a list of cycles was computed by

brute force until the corresponding cutout polygons would completely cover the

necessary parts of several successive sectors. The cycles found in this way (among

which there were many redundant ones, especially close to the boundary of G1)

were then grouped to families by hand.

The corresponding cutout polygons of the following selection of cycles covers

everything outside GC in the upper half of the unit disk which proves Theo-

rem 3.1 (i):

C0(1), . . . , C0(14),

C8(2,−1), C2(3,−1), C19(3, 0), C4(6, 0),

C1(n,m) : n ≥ 2,−1 ≤ m ≤ n−5

3
, C2(n,m) : n ≥ 4,−1 ≤ m ≤ n−7

3
,

C3(n,m) : n ≥ 5, 0 ≤ m ≤ n−5

3
, C4(n,m) : n ≥ 7, 0 ≤ m ≤ n−7

3
,

C5(n,m) : n ≥ 2, 0 ≤ m ≤ n−2

3
, C6(n,m) : n ≥ 4, 0 ≤ m ≤ n−4

3
,

C7(n,m) : n ≥ 5, 0 ≤ m ≤ n−5

5
, C8(n,m) : n ≥ 3,−1 ≤ m ≤ n−8

5
,
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C9(n,m) : n ≥ 4,
n−4

5
≤ m ≤ n−4

3
, C10(n,m) : n ≥ 5,

n−6

5
≤ m ≤ n−5

3
,

C11(n,m) : n ≥ 4,
n−5

5
≤ m ≤ n−4

3
, C12(n,m) : n ≥ 6,

n−7

5
≤ m ≤ n−6

3
,

C13(n,m) : n ≥ 3,
n−3

5
≤ m ≤ n−3

3
, C14(n,m) : n ≥ 6,

n−7

5
≤ m ≤ n−6

3
,

C15(n,m) : n ≥ 6,
n−7

5
≤ m ≤ n−6

3
, C16(n,m) : n ≥ 7,

n−4

5
≤ m ≤ n−4

3
,

C17(n,m) : n ≥ 5,
n−5

5
≤ m ≤ n−5

3
, C18(n,m) : n ≥ 8,

n−4

5
≤ m ≤ n−5

3
,

C19(n,m) : n ≥ 4,
1−n mod 3

2
≤ m ≤ 2n−2(n mod 3)−5

9
.

The figures below show a regular sector (where the polygons of the infinite families

are sufficient to cut out the respective part). In the first figure it can be seen for

n = 20 that the whole region outside GC in the sector 1
n < arctanϕ ≤ 1

n−1 of the

unit disk is being cut out. It can be shown by comparing the coordinates of the

vertices of the polygons that this is the case for every n ≥ 7. The subsequent figure

shows the polygons moved apart in groups to illustrate how they fit together. It

can be seen that the dotted lines (indicating parts of the boundary which do not

belong to the corresponding polygon) of one group hit solid ones (indicating parts

which do belong) of the other group and vice versa, and that single missing points

are also complemented (indicated by prominent dots at the respective position).

Note that the polygons from the family 19 are needed to cut out a small region in

the respective sector which would otherwise not be covered if only the polygons

from the families one to 18 were considered. In fact a single (but not arbitrary)

cutout polygon of family 19 would be sufficient (i.e. a single m in the respective

interval for any given n).

6. The other inclusion

By applying analogues of the two algorithms introduced in [15], Section 3,

the proof of Theorem 3.1 (ii) could be achieved (being much more efficient it

was mostly Algorithm 2 that was applied). The disk {z ∈ C | |z| ≤ 2047
2048}, which

covers the settled region, contains all pikes up to and including the 30th. Since the

8th pike is already regular and the general regular structure of the Loudspeaker

is therefore verified for quite many pikes, it appears reasonable to assume that

Conjecture 2.1 is in fact true. Despite best efforts a general proof could not be

given by now.
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Translating the two algorithms of [15] to the complex setting is straight

forward. As pointed out in Section 4, G(0)
d is the disjoint union of those Pr the

corresponding parameters r of which belong to G(0)
d . It is easy to see that, just

as in the real case, any given convex hull H ⊆ Gd of finitely many interior points

of Gd intersects with only finitely many of the Pr (cf. [15], Theorem 3.2). Thus

the analogue of Algorithm 1 of [15], which essentially computes exactly those Pr

which intersect with H, also holds for all inputs H. If r ∈ Dd then Vr is finite

and Pr = {s ∈ Rd | ∀ a ∈ Vr : ∀ i ∈ {1, 2, 3, 4} : γ
(i)
r (a) = γ

(i)
s (a)} is given by a

system of 16|Vr| linear inequalities the solution of which is a convex polyhedron.

For d = 2, r = (rx, ry), and s = (x, y) (we identify C1 ≃ R2 and Z[i]1 ≃ Z2) the

16 inequalities induced by a = (a, b) are given by



On the characterization of Pethő’s Loudspeaker 229

∀ i ∈ {1, 2, 3, 4} : γ
(i)
r (a) = γ

(i)
s (a) ⇐⇒

xa+ yb− ⌊rxa+ ryb⌋ ≥ 0 ∧ xa+ yb+ ⌊−rxa− ryb⌋+ 1 > 0

xa− yb− ⌊rxa− ryb⌋ ≥ 0 ∧ xa− yb+ ⌊−rxa+ ryb⌋+ 1 > 0

− xa+ yb− ⌊−rxa+ ryb⌋ ≥ 0 ∧ −xa+ yb+ ⌊rxa− ryb⌋+ 1 > 0

− xa− yb− ⌊−rxa− ryb⌋ ≥ 0 ∧ −xa− yb+ ⌊rxa+ ryb⌋+ 1 > 0

xb+ ya− ⌊rxb+ rya⌋ ≥ 0 ∧ xb+ ya+ ⌊−rxb− rya⌋+ 1 > 0

xb− ya− ⌊rxb− rya⌋ ≥ 0 ∧ xb− ya+ ⌊−rxb+ rya⌋+ 1 > 0

− xb+ ya− ⌊−rxb+ rya⌋ ≥ 0 ∧ −xb+ ya+ ⌊rxb− rya⌋+ 1 > 0

− xb− ya− ⌊−rxb− rya⌋ ≥ 0 ∧ −xb− ya+ ⌊rxb+ rya⌋+ 1 > 0.
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If a ̸= (0, 0) then the solution set of the system of inequalities above is the

intersection of 4 half-open squares with side lengths 1/|a| (if a = (0, 0) then

the solution set is of course equal to C). The 4 squares are arranged in a way

such that the intersection of them is either a singleton, an open line segment, or

a nondegenerate, open, convex polygon. Both algorithms from [15] can now be

applied in the same way as for real SRS with the only difference being the systems

of inequalities one has to consider.

7. Consequences of the conjecture

Corollary 7.1. If G(0)
1 = GC then the perimeter of the Loudspeaker is

2

∞∑
n=8

(
(n− 2)

√
n2 + 1

(n2 − n− 1)(n2 − 2)
+

√
n2 + 1

(n2 + 1)(n2 + n+ 1)
+

√
n2 + 4

(n2 + 2)(n2 + n+ 2)

+

√
n2 − 2n+ 2

n4 − 2n3 + n
+

√
n2 + 1

n4 + 5n2 + 6
+

√
n6 + n4

n6 + n4
+

(n− 1)
√
n2 + 9

(n2 + 3)(n2 + n+ 6)

+

√
n2 + 2n+ 2

(n2 + n+ 1)(n2 + n+ 2)
+

(n− 7)
√
n2 + 2n+ 5

(n2 + n+ 6)(n2 + 2n− 1)

)
− π2

3

+
3845467959583

√
2

2154669737220
+

48281
√
5

270270
+

28279
√
10

311220
+

√
13

77
+

2789
√
17

79560

+
18018457

√
26

1214863650
+

√
29

432
+

√
34

322
+

3453570319189
√
37

335814194609712
+

√
53

1479

+
3
√
58

806
+

√
65

1653
+ 6

which is approximately 7.0317015814551008990992430035469692210269(4).

Proof. The perimeter of GC is two times the sum of all distances of succes-

sive vertices of the boundary of the intersection of GC and the first quadrant. �

Corollary 7.2. If G(0)
1 = GC and ψ denotes the digamma function then the

area of the Loudspeaker is

1

2

(
ψ(9− i)+ψ(9+ i)− 1

3
(3− i

√
3 )ψ

(
1

2
(17− i

√
3 )

)
−1

3
(3+ i

√
3 )ψ

(
1

2
(17+ i

√
3 )

)
− ψ(9−

√
2 )− ψ(9 +

√
2 )− 1

2
ψ(8− i

√
2 )− 1

2
ψ(8 + i

√
2 ) +

1

3
ψ(8− i

√
3 )

+
1

3
ψ(8 + i

√
3 ) +

1

5
(5−

√
5 )ψ

(
1

2
(17−

√
5 )

)
+

1

5
(5 +

√
5 )ψ

(1
2
(17 +

√
5)
)
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+
1

14
(7− i

√
7)ψ

(
1

2
(17− i

√
7)
)
+

1

14
(7 + i

√
7)ψ

(1
2
(17 + i

√
7)

)
− 1

69
(23− i

√
23 )ψ

(
1

2
(17− i

√
23 )

)
− 1

69
(23 + i

√
23 )ψ

(1
2
(17 + i

√
23 )

)
− 2ψ′(1) + ψ′′(1) +

6459645509579599739

831140131659037200

)
which is approximately 1.1616244963841538925201560564707674346082(2).

Proof. The area can easily be calculated using the fact that GC is star-

shaped with respect to the origin. The total area is just two times the sum of the

areas of all triangles where two vertices are successive vertices of the boundary of

the intersection of GC and the first quadrant and the third one is (0, 0). �

8. Critical points

One consequence of Theorem 3.1 (i) is the following proposition on weakly

critical and critical points of G(0)
1 . A weakly critical point is a point r ∈ Cd any

open neighborhood of which intersects with infinitely many cutout polyhedra. A

critical point is a point r ∈ Cd any open neighborhood U of which satisfies that

U \G(0)
d cannot be covered by finitely many cutout polyhedra. Both notions were

first introduced in [1], Section 7.

Proposition 8.1. 1 and ±i are the only weakly critical points of G(0)
1 and 1

is the only critical point of G(0)
1 .

Proof. For n ∈ N the line through P5(n) and P6(n) hits the origin and

has a gradient of 1
n . Let r = (x, y) ∈ C (we identify C and R2) such that

|r| = 1 and 0 < y(n − 1) ≤ x, and z = (a, b) ∈ Z[i] such that |a| + |b| ≤ n and

max{|a|, |b|} < n. Then r lies on the unit circle in the sector between the real

axis and the line through P5(n − 1) and P6(n − 1). Then one can deduce the

following cases for the product rz = (xa− yb, xb+ ya):

a > 0 ∧ b ≥ 0 =⇒ a− 1 ≤ xa− yb < a ∧ b < xb+ ya < b+ 1

a ≤ 0 ∧ b > 0 =⇒ a− 1 < xa− yb < a ∧ b− 1 ≤ xb+ ya < b

a < 0 ∧ b ≤ 0 =⇒ a < xa− yb ≤ a+ 1 ∧ b− 1 < xb+ ya < b

a ≥ 0 ∧ b < 0 =⇒ a < xa− yb < a+ 1 ∧ b < xb+ ya ≤ b+ 1
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-10 10

-10

10

So the product, which is just z rotated by the argument of r, is contained in the

unit square lying next to z in rotational direction. This implies a specific behavior

of γ2r (z) = ⌈r⌊rz⌋⌉ if (a < 0 ∨ b < 0) =⇒ |a|+ |b| < n:

a > 1 ∧ b ≥ 0 =⇒ γ2r (z) = z + (−1, 1)

a = 1 ∧ b ≥ 0 =⇒ γ2r (z) = z + (−1, 0)

a ≤ 0 ∧ b > 1 =⇒ γ2r (z) = z + (−1,−1)

a ≤ 0 ∧ b = 1 =⇒ γ2r (z) = z + (0,−1)

a < 0 ∧ b ≤ 0 =⇒ γ2r (z) = z + (1,−1)

a ≥ 0 ∧ b < 0 =⇒ γ2r (z) = z + (1, 1)

Therefore the orbits of the Gaussian integers (n− 1, 1) and (−n+ 1, 0) both end

up in (0, 0) and cover the set Mn := {(a, b) ∈ Z[i] | |a| + |b| ≤ n ∧ ((a ≤ 0 ∨ b ≤
0) =⇒ |a|+ |b| < n)} as can be seen in the figure below for n = 10. A case study

shows that ∥γ2λr(z)∥1 ≤ ∥γ2r (z)∥1 for any z ∈ Mn and λ ∈ [0, 1] which implies

that the orbit of any element of Mn ends up in (0, 0) even if |r| ≤ 1.

In conclusion:

∀ n ∈ N : ∃m ∈ N : ∀ r = (x, y) ∈ C : (0 < y(n− 1) ≤ x ∧ |r| ≤ 1 =⇒ γmr (Mn)

= {(0, 0)}) (m = 2n2 − n− 1 is a possible choice)

Therefore all cycles of any r having the properties above have empty intersection

with Mn, which forces them to grow beyond all bounds as n increases. Thus

infinitely many cycles are needed to cut out, say, the set {P4(n) | n ≥ 3} from

the Loudspeaker which actually is being cut out entirely (Theorem 3.1 (i)). It

follows that 1 is a critical point.

Since for all (a, b) ∈ Z[i], ((a, b), (b,−a), (−a,−b), (−b, a)) is a cycle of (0, 1)

and ((a, b), (−b, a), (−a,−b), (b,−a)) is a cycle of (0,−1), it follows that i and

−i are weakly critical points. Theorem 3.1 (i) implies that the intersection of
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the closure of G(0)
1 and the boundary of G1 (unit circle) consists of these three

points which implies that there are no other critical or weakly critical points as

all weakly critical points lie on the boundary of G1 (cf. Lemma 7.2 of [1]). �
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