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Rees congruences in lattice-ordered algebras

G. BORDALO (Lisboa) and H. A. PRIESTLEY (Oxford)

Abstract. The Rees sublattices of a lattice have been characterised by J. Duda.
This characterisation is refined in case the lattice is modular of finite height or is
bounded distributive. Rees congruences in mono-unary algebras are also considered,
and applications are given to some important classes of distributive lattices with addi-
tional operations.

1. Introduction

Given any non-empty subset S of a set A there is a smallest equiv-
alence relation, θS , with respect to which S is an equivalence class. The
partition associated with this relation consists of S itself and the single-
ton sets {x} for x /∈ S. In case A is an algebra one may ask whether θS

belongs to Con A, the lattice of congruences of A. If this is so, then θS
is called a Rees congruence and S a Rees subset . Rees congruences were
first introduced in the context of semigroups by D. Rees in the classic
paper [6], and play an important role in semigroup theory. The notion
was extended to arbitrary algebras by R. F. Tichy in [9], and has been
further investigated in [8] (for lattices) and [3]. We observe that a Rees
congruence has the property that it is determined by a single congruence
class. This phenomenon is rather rare, although for certain classes of al-
gebras — for example groups, Boolean algebras and Heyting algebras —
it always holds.

A Rees subset of an arbitrary algebra need not, in general, be a sub-
algebra. However Rees subsets of lattices behave better. Note that the
congruence classes of a lattice congruence are always convex sublattices
(see, for example, [4], Ch. 5). If L is a lattice with no infinite chains, then
any sublattice has universal bounds, and a convex sublattice is a closed
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interval [a, b] := {x ∈ L | a ≤ x ≤ b}. We shall refer to Rees subsets in
this setting as Rees sublattices or Rees intervals, as appropriate. For an
Rees interval [a, b] the associated Rees congruence is the principal congru-
ence Θ(a,b). Note that the principal ideal of Con L generated by Θ(a,b) is
isomorphic to Con [a, b]. In particular Θ(a,b) is an atom of Con L if and
only if the Rees sublattice [a, b] is itself a simple algebra.

In [5] J. Duda gave the following elegant characterisation for Rees
congruences in lattices.

Theorem 1.1. A convex sublattice M of a lattice L is a Rees sub-
lattice if and only if, given a, b ∈ M , a < b, and x ∈ L rM , one of the
following holds:

(1) {a, b, x} is a chain;
(2) {a, b, x} generates the pentagon N5.

Recall that a point x in a lattice L is called a node if for every y ∈ L,
either y ≤ x or x ≤ y. The zero, 0, and unit, 1, of L, when such exist, are
nodes. We say a node x is non-trivial if 0 < x < 1. Note that (1) holds in
Duda’s theorem whenever M = [a, b] and x is a node of L. Further, if L
is modular, (2) cannot occur, and [a, b] is a Rees sublattice if and only if
a and b are nodes. If additionally either

(i) L is of finite height (equivalently L has no infinite chains), or
(ii) L is distributive with universal bounds,

we can relate Rees intervals to natural hereditary properties of join- and
meet-irreducible elements and of prime ideals and prime filters, respec-
tively (Theorems 2.3 and 2.4). The key to these results is provided by the
technical lemma 2.2.

Conditions (i) and (ii) above hold simultaneously if and only if L is
finite and distributive. For this case we obtain, in Section 3, very explicit
structural information relating to Rees sublattices.

Throughout our notation follows [4], where can also be found most of
the basic lattice-theoretic results that we use.

Our second concern is Rees congruences in lattices with additional
operations. Many of the varieties which serve as algebraic models of non-
classical propositional calculi consist of algebras with an underlying dis-
tributive lattice structure. Thus we are led to consider algebras of the form
(A;∨,∧, F ), in which the reduct (A;∨,∧) is a lattice. An equivalence re-
lation θS on A is a Rees congruence if and only if it is a Rees congruence
for (A;∨,∧) and for (A; F ). In many important examples, F consists of
0 and 1 as nullary operations, plus a single unary operation. We are thus
led in Section 4 to investigate Rees congruences in mono-unary algebras.
Finally, with the aid of the results obtained in this case, we illustrate
the ways in which Rees congruences may behave for algebras in different
classes of distributive-lattice-ordered algebras.
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2. Rees congruences in modular and distributive lattices

Before turning to the characterisation of Rees sublattices we interpose
a few elementary observations about the way in which the Rees congru-
ences of an algebra A sit inside Con A. Certainly the Rees congruences
form a unital meet subsemilattice of Con A, since the meet of any family of
Rees subsets is again a Rees subset. (Joins clearly are much less tractable,
and we do not consider them at all.) When L is modular of finite height
Con L is Boolean and we have the following result.

Proposition 2.1. Let L be a modular lattice of finite height and let
a < b in L be such that Θ(a,b) is a Rees congruence. Then the following
statements are equivalent:

(i) the complement of θ(a,b) in Con L is a Rees congruence;
(ii) a = 0 or b = 1.

Proof. We denote the least element of ConL by ∆.
Assume (i) holds. We have Θ(p,q) ∩ Θ(s,t) = ∆ if and only if |[p ∨ s,

q ∧ t]| ≤ 1. Thus if 0 < a < b < 1 then both Θ(a,b) ∩ Θ(0,a) = ∆ and
Θ(a,b) ∩ Θ(b,1) = ∆. If the complement of Θ(a,b) were a Rees congruence
Θ(c,d) then [c, d] ⊆ [0, a] and [c, d] ⊆ [b, 1], which is impossible. Hence (ii)
holds.

Now assume (ii). It will be sufficient to prove that Θ(0,a) is the pseu-
docomplement of Θ(a,1) in Con L. Let ψ be a congruence of L such that
ψ ∩ θ(a,1) = ∆. We wish to show that ψ ≤ Θ(0,a). Suppose not. Then
there exist b, c ∈ L, b 6= c such that (b, c) ∈ ψ and (b, c) /∈ Θ(0,a). This
implies that b, c /∈ [0, a], so that b, c ∈ [a, 1], since a is a node. Then we
have (b, c) ∈ Θ(a,1) and (b, c) ∈ ψ, which contradicts ψ ∩Θ(a,1) = ∆. Thus
Θ(a,1)

∗ = Θ(0,a). Because Con L is a Boolean lattice, Θ(0,a) is in fact the
complement of Θ(a,1). ¤

We now take up our main theme: the characterisation of Rees sublat-
tices in important classes of lattices. In order effectively to apply Duda’s
theorem to modular lattices we need the following lemma. We use the no-
tation x‖y to indicate that elements x and y in a lattice are incomparable
in the underlying order.

Lemma 2.2. Let L be a modular lattice, and suppose that a, b and x
in L are such that a < b and {a, b, x} does not form a chain. Then there
exists y such that y < b and a‖y or there exists z such that a < z and z‖b.

Proof. If either x < b and a‖x or, dually, a < x and x‖b then x
serves as y or z. Now assume a‖x and x‖b. We then have a < a ∨ x and
b∧ x < b. If (a∨ x)‖b we take z = a∨ x and if a‖(b∧ x) we take y = b∧ x.
Finally assume (for a contradiction) that a ∨ x is comparable to b and a
is comparable to b ∧ x. Suppose it were the case that b < a ∨ x. Then
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b∨x ≤ a∨x. But a < b implies that a∨x ≤ b∨x. Hence a∨x = b∨x. Dually,
if a < b∧x, we would have a∧x = b∧x. Further x is not comparable to a or
to b since {a, b, x} is not a chain. But then S = {a∧x, a, b, x, a∨x} would
form a sublattice isomorphic to N5. Therefore we must have a ∨ x ≤ b
and b ∧ x ≥ a. However this would imply that a ≤ x ≤ b, contrary to
hypothesis. ¤

Given a lattice L, let J (L) (respectively M(L)) be the set of join-
irreducible (meet-irreducible) elements of L. We note that by definition
the zero element, 0, of L, if it exists, does not belong to J (L), and dually.

We wish to localise the notion of join- and meet-irreducible elements to
intervals. For this to be profitable we need a good supply of such elements.
To this end we shall assume that L has no infinite chains. This assump-
tion ensures that every element of L majorises an element of J (L) and
is majorised by an element of M(L) (see, for example, [4], Lemma 8.10).
If I = [a, b] is an interval in L then in general an element join-irreducible
in I will not be join-irreducible in L, and dually. We remark that the
modularity assumption is essential in the theorem that follows: (ii) fails
to imply (iii) in N5 for example.

Theorem 2.3. Let L be a modular lattice of finite height and let
I = [a, b] in L with a < b. Then the following conditions are equivalent:

(i) I is a Rees interval;
(ii) J (I) = (I r {a}) ∩ J (L) and M(I) = (I r {b}) ∩M(L);
(iii) a and b are nodes in L.

Proof. We have already noted the equivalence of (i) and (iii). Clearly
(iii) implies (ii).

We finally prove the contrapositive of (iii) implies (ii). Choose an
element x such that {a, b, x} does not form a chain. Applying Lemma 2.2
we may assume without loss of generality that there exists y such that
y < b and a‖y. Let w = a ∨ y. This belongs to I = [a, b], but not to
J (L). It remains to prove that w ∈ J (I). Suppose not. Then there exists
a′ ∈ J (I) with a′ < a∨y. Now, by modularity, a′ = a′∧(a∨y) = a∨(a′∧y).
Since a /∈ J (I) we have a′ 6= a. If we had a′ = a′ ∧ y then we would have
a ≤ a′ ≤ y, whence a and y would be comparable, contrary to hypothesis.
Thus we have shown that a′ is not join-irreducible in I, and have the
required contradiction. ¤

If we remove the restriction that our modular lattice L be of finite
height then we cannot expect condition (ii) above to characterise Rees
intervals, since (ii) holds vacuously in L when J (I) = M(I) = ∅ for all
intervals I ⊆ L (as happens, for example, when L is the lattice of all
open subsets of R, ordered by inclusion). However we can get a parallel
result for Rees intervals in bounded distributive lattices. Given a subset
Y of a lattice L we denote by ↑Y the order-filter generated by Y , viz.
{c ∈ L | (∃d ∈ Y ) c ≥ d}.
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Theorem 2.4. Let L be a distributive lattice with 0 and 1 and let
I = [a, b] in L with a < b. Then the following conditions are equivalent:

(i) I is a Rees interval;
(ii) ↑F is a prime filter in L for each prime filter F in I, and

dually;
(iii) a and b are nodes in L.

Proof. As before (i) and (iii) are equivalent, and imply (ii).
Suppose (ii) holds but (iii) fails. We may, as in the proof of Theorem

2.3, assume without loss of generality that there exists y such that y < b
and a‖y. Let F be the principal filter F in L generated by a∨y and define
G = F ∩ I. Certainly ∅ 6= G (since b ∈ G), a /∈ G (since a ∨ y > a),
and G is a filter. By the Prime Filter Theorem applied to the bounded
distributive lattice I we can find a prime filter G′ of I such that G ⊆ G′.
By hypothesis ↑G′ is a prime filter in L. But a ∨ y ∈ G ⊆ ↑G′, so that
either a ∈ ↑G′ or y ∈ ↑G′. The former would imply a ∈ G′, which is
impossible. Thus there exists x ∈ G′ such that y ≥ x. But then y ≥ a,
contradicting the incomparability of a and y. ¤

In Theorem 2.4 we have only considered Rees intervals, although not
every Rees sublattice need be an interval. The reason for this restriction
is our need to be able to invoke the Prime Filter Theorem and the Prime
Ideal Theorem in the sublattice. This would not be possible if it lacked
bounds.

Note that if L is finite and distributive then the map x 7→ ↑x is an
order-isomorphism from J (L) onto the prime filters of L, and dually. Thus
Theorems 2.3 and 2.4 coincide in this case.

3. The finite distributive case

Throughout this section we consider only lattices which belong to
the class Df of finite distributive lattices. The Birkhoff-Priestley duality
between Df and the class Pf of finite posets is then available. It allows
us to identify a finite distributive lattice L with the lattice O(J (L)) of
order-ideals (alias down-sets) of J (L) (its dual space). As usual in a poset
P , we denote by ↓U the order-ideal

{y ∈ P | (∃x ∈ U) y ≤ x}

generated by the subset U of P (and dually). Any set of join-irreducible
elements of a lattice will be assumed to carry the induced order.

The criteria for a Rees interval obtained in Section 3 translate nicely
into dual space terms, as follows.
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Proposition 3.1. Let L be a finite distributive lattice and P = J (L)
be its dual space. Let I = [a, b] in L, with a < b. Then the following are
equivalent:

(i) I is a Rees interval;
(ii) P can be constructed as a linear sum P = P1 ⊕ P2 ⊕ P3 of

convex subposets P1, P2 and P3, where P2
∼= J (I).

Proof. We identify L with O(P ). We invokeLemma 3.2 of [1], which
establishes that, under duality, the correspondence J 7→ J (J) sets up a
bijection between intervals J in L and convex subposets of P . Given a
convex subposet Q of P , the associated interval [u, v] has v = ↓Q and
u = ↓QrQ.

We first show that if P has the structure described in (ii) then a
and b are nodes (and therefore I = [a, b] is a Rees interval). Note first
that P1 = ↓P2 r P2. Thus a = P1 and b = P1 ∪ P2. Further, a is the
order-ideal generated by the maximal elements of P1, and b is the order-
ideal generated by the maximal elements of P2. Now take any order-ideal
c ∈ O(P ). If c ∩ P3 = ∅ then c ⊆ b. If there exists x ∈ c ∩ P3, then x is
above every element of P2, so b ⊆ c. Hence b is a node. In a similar way,
every order-ideal U is either contained in P1 or meets P2, in which case it
contains P2. We deduce that a is a node.

Consider now I = [a, b], where a and b are nodes. In P the associated
convex subposet is b r a. Take x ∈ P , x 6∈ b r a. The order-ideal ↓x
generated by x must be such that ↓x ⊆ b or ↓x ⊇ b. If ↓x ⊆ b then x ∈ ↓a
(because x /∈ b r a). If on the other hand ↓x ⊇ b, then every maximal
element of b must lie below x. We conclude that P = ↓a⊕ (bra)⊕ (P r b)
and is the linear sum of convex subposets. ¤

Certainly directly decomposable lattices have no non-trivial nodes,
and therefore have no proper Rees sublattices. The converse fails. Consider
for example the 4-element fence N in Figure 1 below which is not of the
form described in Proposition 3.1. Thus the lattice N := O(N) is directly
indecomposable and has no non-trivial proper Rees sublattices.

Figure 1

Consider now a directly indecomposable lattice L ∈ Df with no
proper Rees intervals and |L| > 2. The dual space P of L cannot be
obtained as a linear sum of subspaces, since under duality linear sums in
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Pf correspond to reduced (alias vertical) linear sums in Df ([4], Exer-
cise 8.9), and any non-trivial reduced linear sum in Df has a non-trivial
node. On the other hand P must be connected (because L is indecom-
posable). We deduce that P cannot be series-parallel (that is, constructed
from singletons using only disjoint unions and linear sums). Series-parallel
orders have been studied in particular by I. Rival [7] and, in the context
of distributive lattice duality by G. Bordalo and H. A. Priestley [1],
[2]. A finite poset is series-parallel if and only if it does not contain a
subposet isomorphic to N. A proof of this characterisation can be found in
[7]. We conclude that an indecomposable lattice in Df with no non-trivial
nodes always admits N as a homomorphic image.

Proposition 3.2. Let L be a finite distributive lattice and assume
that L ∼= L1 × · · · × Ln, where each Li is directly indecomposable. For
each i such that |Li| > 2 either Li has a proper Rees sublattice or has N
as a homomorphic image.

Corollary 3.3. Every directly indecomposable finite distributive lat-
tice can be written as a reduced linear sum of sublattices each of which is
a 2-element chain, is directly decomposable, or has N as a homomorphic
image.

Proof. Let L be a finite directly indecomposable distributive lattice.
If L has no node x such that 0 < x < 1 then L itself has N as a homomor-
phic image. If L has non-trivial nodes, then the nodes must form a chain
0 < x1 < · · · < xn < 1. We now invoke Proposition 3.1 and the fact that
the dual space of a reduced linear sum of sublattices is the linear sum of
their dual spaces. ¤

Corollary 3.4. Let L be a directly indecomposable finite distributive
lattice with |L| > 2. Then the congruence lattice Con L either contains a
congruence φ with L/φ = {[a, b]} ∪ {{x} | x /∈ [a, b]} for some a < b or a
congruence θ such that L/θ ∼= N .

4. Rees congruences in distributive lattices
with additional operations

In this section we consider Rees subsets in algebras with a lattice
reduct. This is quite a simple task, thanks to the following elementary ob-
servation. Let (A; F ) be any algebra, let F ′ be a subset of the fundamental
operations F . Then θ is a Rees congruence of (A; F ) if and only if it is a
Rees congruence of its reduct (A; F ′) and is a congruence of (A;F r F ′).

Some interesting algebras arise from distributive lattices endowed with
an additional unary operation, for example pseudocomplemented distribu-
tive lattices and Ockham algebras (which include de Morgan algebras and
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Stone algebras). It is therefore of some interest to consider the mono-
unary algebra reduct of a distributive-lattice-ordered algebra of this type
and to determine its Rees subsets. We note that Proposition 4.1 and its
corollaries generalise easily to an arbitrary unary algebra.

Proposition 4.1. Let U = (U ; f) be a mono-unary algebra. Let ∅ 6=
U ′ ⊆ U be a subset. Then U ′ is a Rees subset of U if and only if either U ′
is a subalgebra of U or the restriction f¹U ′ is a constant function.

Proof. Suppose that U ′ is a Rees subset of U . Then θ = (U ′×U ′)∪∆
is a congruence of U . Suppose we can find x ∈ U ′ such that f(x) /∈ U ′.
However, for all y ∈ U ′, we have y θ x, so that f(y) θ f(x). But f(x) /∈
U ′ then implies that f(y) = f(x) for all y 6= x. The converse result is
obvious. ¤

Corollary 4.2. The subalgebra lattice Sub U of a mono-unary algebra
U = (U ; f) is isomorphic to a distributive sublattice of the congruence
lattice ConU consisting of Rees congruences.

Proof. Consider the mapping φ : Sub U → Con U defined by φ(U ′) =
ΘU ′ , the Rees congruence generated by the subalgebra U ′. Certainly φ is
one-to-one and preserves meets and joins. The subalgebra lattice Sub U
is a ring of sets and so is distributive. To complete the proof it suffices
to note that Θ(U1∪U2) is the (Rees) congruence relation having as classes
{U1∪U2}∪{{x} | x /∈ U1∪U2}, which is certainly the smallest congruence
containing ΘU1 and ΘU2 . ¤

Corollary 4.3. Let S be a Rees subset of a mono-unary algebra U =
(U ; f) such that S is not a subalgebra, and let F be the family of all
subalgebras U ′ of U such that S ∪ U ′ is again a subalgebra. Then F is
non-empty and has a minimum element.

Proof. If S is a Rees subset which is not a subalgebra, then f¹S
is a constant function, with image a, say. Consider the subalgebra 〈a〉
generated by a. Every subalgebra U ′ which contains a has the property
that S ∪ U ′ is a subalgebra of U . Thus F is non-empty, with 〈a〉 as its
minimum element. Moreover, the subalgebra generated by S is S∪〈a〉. ¤

Note that if the unary operation f of a mono-unary algebra (A; f) is
a permutation (that is, if (A; f) is a union of cycles) then Proposition 4.1
yields that every Rees subset must be a subalgebra.

We can derive some direct consequences for Ockham algebras, a rich
class of distributive-lattice-ordered algebras. We recall that an Ockham
algebra is an algebra (A;∨,∧,∼, 0, 1) for which (A;∨,∧, 0, 1) is a bounded
distributive lattice and ∼ is a negation operation satisfying de Morgan’s
laws and interchanging 0 and 1. From Proposition 4.1 we deduce the
following fact.



Rees congruences in lattice-ordered algebras 363

Proposition 4.4. Let (A;∨,∧,∼, 0, 1) be an Ockham algebra and let
I = [a, b] ⊆ A be a Rees interval with a < b. The lattice congruence
Θ(a,b) is an Ockham congruence if and only if ∼I := {∼x | x ∈ I} is either
contained in I or is a singleton.

If the Ockham algebra (A;∨,∧,∼, 0, 1) is a de Morgan algebra (that
is, ∼ satisfies ∼2a = a), then I = [a, b] with a < b is a Rees subset S of
the algebra (A;∨,∧,∼, 0, 1) if and only if it is a Rees subset of the reduct
(A;∨,∧) and is closed under ∼. (The same conclusion holds if the law
∼2a = a is replaced by ∼2ka = a for any k = 1, 2, 3, . . . ). By contrast it is
possible to find Ockham algebras whose Rees subsets are less closely tied
to those of the lattice reduct. Consider for example the 4-element chain
0 < a < b < 1 with the negation specified by

(i) ∼a = b, ∼b = 0,
(ii) ∼a = 1, ∼b = 1,
(iii) ∼a = b, ∼b = a.

Then [a, b] is a Rees interval in cases (ii) and (iii), but not in case (i), while
[0, a] is a Rees interval only in case (ii). In a similar manner it is possible
to contrive examples exhibiting a variety of other behaviours.

We now turn to pseudocomplemented lattices (not necessarily dis-
tributive) and to Heyting algebras. Members of these classes differ from
the Ockham algebras in that their additional operations, respectively ∗
and →, are determined by the underlying lattice structure. Accordingly
our proofs are purely lattice-theoretic.

Proposition 4.5. Let (L;∨,∧, ∗, 0) be a pseudocomplemented lattice
and let [a, b] be a Rees interval in L with a < b. Then the following are
equivalent:

(i) Θ(a,b) is a ∗-congruence;
(ii) a 6= 0.

Proof. We only need to prove (ii) =⇒ (i) in the non-modular case.
Assume that L is any lattice with zero such that for each a in L there
exists a∗ = max{x ∈ L | x ∧ a = 0}. Suppose that Θ(a,b) is a Rees
congruence and that a 6= 0. We show that Θ(a,b) is a ∗-congruence. Either
(1) or (2) in Duda’s Theorem must hold, for any x /∈ [a, b]. Note that we
cannot have a∗ ∈ [a, b] since a ∧ a∗ = 0. If {a, b, a∗} is a chain we must
have y∗ = 0 for any y ≥ a so (i) holds. Otherwise {a, b, a∗} generates a
sublattice isomorphic to N5. Note that a ∧ a∗ = 0 and b∗ ≤ a∗. If b∗ < a∗
we have b∧ a∗ > 0 which contradicts the fact that {a, a∗, b} generates N5.
Thus we must have b∗ = x∗ = a∗ for all x ∈ [a, b], so (i) holds. ¤

We conclude by examining, analogously, Heyting algebras viewed as
bounded distributive lattices carrying an additional binary operation →.



364 G. Bordalo and H. A. Priestley : Rees congruences in lattice-ordered algebras

Proposition 4.6. Let (H;∨,∧,→, 0, 1) be a Heyting algebra with a
node a 6= 0. Then [a, 1] is a Rees sublattice which is a Heyting subalgebra,
and the lattice congruence Θ(a,1) is a Heyting congruence. In particular if
L ⊕ 1 is a subdirectly irreducible Heyting algebra, then the unique atom
of Con (L⊕ 1) is a Rees congruence.

Proof. For the first part simply note that for x, y ≥ a the implication
x → y is given by max{z | z ∧ x ≤ y} and this lies above a since a ∧ x =
a ≤ y.

The final assertion relies on the fact that 1L is a node in L ⊕ 1, so
that Θ(1L,1) is a Rees congruence. ¤

Note that the Rees congruences of a Heyting algebra H are precisely
the lattice congruences of the form Θ(a,1) with a < 1, a 6= 0, and a a
node, plus the zero and unit of ConH. Therefore in this case the meet
subsemilattice of ConH formed by the Rees congruences is a sublattice, in
fact the Rees congruences form a chain in ConH.
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