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A variant of Wilson's functional equation

By BRAHIM FADLI (Kenitra), DRISS ZEGLAMI (Meknes)
and SAMIR KABBAJ (Kenitra)

Abstract. In the present paper we determine the complex-valued solutions (f, g)

of the functional equation

f(xy) + f(σ(y)x) = 2f(x)g(y),

in the setting of groups and monoids that need not be abelian, where σ is an involutive

automorphism.

1. Introduction

In [7]Wilson dealt with functional equations related to and generalizing the

cosine functional equation g(x + y) + g(x − y) = 2g(x)g(y) on the real line. He

generalized the cosine equation to

f(x+ y) + f(x− y) = 2f(x)g(y), x, y ∈ R, (1.1)

that contains the two unknown functions f and g. In [8] he introduced his second

generalization

f(x+ y) + f(x− y) = 2g(x)h(y), x, y ∈ R, (1.2)

that contains the three unknown functions f, g and h. These functional equations

have been extended to abelian groups: You just replace the domain of de�nition R
by an abelian group (G,+). They have been solved in that setting. The equation

(1.1) has even been extended to general groups (see, e.g., [5, Chapter 11]).
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The purpose of the present paper is to solve the following equation

f(xy) + f(σ(y)x) = 2f(x)g(y), x, y ∈ M, (1.3)

where M is a possibly non-abelian group or monoid (that is, a semigroup with

identity) and σ : M → M is an involutive automorphism, for unknown functions

f, g : M → C. A special case of (1.3) is the variant f(xy) + f(σ(y)x) = 2f(x) of

Jensen's functional equation.

As a consequence we obtain the solutions f, g, h : M → C of the more general

functional equation

f(xy) + f(σ(y)x) = 2g(x)h(y), x, y ∈ M. (1.4)

Note that the variant (1.3) of Wilson's functional equation is a generalization

of the equation

g(xy) + g(σ(y)x) = 2g(x)g(y), x, y ∈ M, (1.5)

which was introduced and solved on semigroups by H. Stetkær in [6]. TakingM

an abelian group, our equation becomes

f(x+ y) + f(x+ σ(y)) = 2f(x)g(y), x, y ∈ M, (1.6)

which was solved by H. Stetkær in [4].

By elementary methods we �nd all solutions of (1.3) on monoids that are gen-

erated by their squares and on groups, in terms of multiplicative and additive func-

tions. This contrasts the solutions of the functional equation f(xy) + f(y−1x) =

2f(x)g(y), where the non-abelian phenomena like 2-dimensional irreducible rep-

resentations may occur (see [1]). Our formulas for the solutions of (1.3) on groups

are the same as those on abelian groups, so that our results constitute a natural

extension of earlier results of, e.g., [4], from the abelian to the non-abelian case.

Finally, we note that the sine addition law on semigroups given in [2] is a key

ingredient of the proof of our main results (Theorem 3.6 and Theorem 3.7).

2. Notation and terminology

To formulate our results we introduce the following notation and assump-

tions that will be used throughout the paper:

Let G be a group and M a monoid, that is a semigroup (a set with an asso-

ciative composition rule) with an identity element that we denote e. The map
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σ : M → M denotes an involutive automorphism. That it is involutive means that

σ(σ(x)) = x for all x ∈ M . It is easy to derive that σ(e) = e for any involutory

automorphism σ : M → M (see [5, Lemma A.31]). If (G,+) is an abelian group,

then the inversion σ(x) := −x is an example of an involutive automorphism.

Another example is the complex conjugation map on the multiplicative group of

nonzero complex numbers. For more examples of involutive automorphisms we

refer, e.g., to [2].

For any complex-valued function F on M we let Fe and Fo denote the even

and odd parts of F with respect to σ, i.e.,

Fe =
F + F ◦ σ

2
and Fo =

F − F ◦ σ
2

.

We say that F is even if F = Fe, and odd if F = Fo.

A function f : M → C is abelian, if

f(xπ(1)xπ(2) . . . xπ(n)) = f(x1x2 . . . xn)

for all x1, x2, . . . , xn ∈ M , all permutations π of n elements and all n = 2, 3, . . . .

On abelian monoids all functions are abelian. Any abelian function f is central,

meaning f(xy) = f(yx) for all x, y ∈ M .

A function a : M → C is called additive, if it satis�es a(xy) = a(x) + a(y)

for all x, y ∈ M .

A multiplicative function on M is a map χ : M → C such that χ(xy) =

χ(x)χ(y) for all x, y ∈ M . A character on a group G is a homomorphism from

G into the multiplicative group of non-zero complex numbers. While a non-zero

multiplicative function on a group can never take the value 0, it is possible for a

multiplicative function on a monoid to take the value 0 on a proper, non-empty

subset of M . If χ : M → C is multiplicative and χ ̸= 0, then

Iχ = {x ∈ M | χ(x) = 0}

is either empty or a proper subset of M . The fact that χ is multiplicative estab-

lishes that Iχ is a two-sided ideal in M if not empty (for us an ideal is never the

empty set). It follows also that M \ Iχ is a subsemigroup of M . These ideals play

an essential role in our discussion of equation (1.3) on monoids.

IfM is a topological space, then we let C(M) denote the algebra of continuous

functions from M into C.
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3. Main results

We �rst give a result for the sine addition law on monoids. All of this comes

directly from Lemma 3.4 in [2]. For the notation Iχ see the section Notation and

terminology.

Lemma 3.1. Let M be a monoid, and suppose f, g : M → C satisfy the sine

addition law

f(xy) = f(x)g(y) + f(y)g(x), x, y ∈ M,

with f ̸= 0. Then there exist multiplicative functions χ1, χ2 : M → C such that

g =
χ1 + χ2

2
.

Additionally we have the following.

(i) If χ1 ̸= χ2, then f = c(χ1 − χ2) for some constant c ∈ C \ {0}.
(ii) If χ1 = χ2, then letting χ := χ1 we have g = χ ̸= 0.

If M is a group, then there is an additive function a : M → C, a ̸= 0, such

that f = aχ.

If M is a monoid which is generated by its squares, then there exists an

additive function a : M \ Iχ → C for which

f(x) =

{
a(x)χ(x) for x ∈ M \ Iχ
0 for x ∈ Iχ.

Furthermore, if M is a topological group, or if M is a topological monoid

generated by its squares, and f, g ∈ C(M), then χ1, χ2, χ ∈ C(M). In the group

case a ∈ C(M) and in the second case a ∈ C(M \ Iχ).

In the following Lemma we derive some properties of solutions of (1.3). We

prove these results on a monoid M .

Lemma 3.2. Let M be a monoid, let σ be an involutive automorphism

on M , and let the pair f, g : M → C be a solution of the functional equation (1.3)

such that f ̸= 0.

(a) The even part (f + f ◦ σ)/2 of f is f(e)g, so it is proportional to g.

(b) f is odd if and only if f(e) = 0.

(c) (fo, g) is a solution of the sine addition law, i.e.,

fo(xy) = fo(x)g(y) + fo(y)g(x) for all x, y ∈ M.
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(d) Both f and g are abelian functions.

(3) g is even.

Proof. (a) and (b) Taking x = e in (1.3) we get f(y)+f(σ(y)) = 2f(e)g(y)

which is (a). Using the same identity we get (b).

(c) The method used here is closely related to and inspired by the one in [6,

Proof of Theorem 2.1]. Let a, b, c ∈ M be arbitrary. With x = ab and y = c the

equation (1.3) becomes

f(abc) + f(σ(c)ab) = 2f(ab)g(c). (3.1)

To get rid of σ in the second term on the left hand side of (3.1) we take x = σ(c)a

and y = b which gives us

f(σ(c)ab) + f(σ(b)σ(c)a) = 2f(σ(c)a)g(b) = 2g(b)[2f(a)g(c)− f(ac)]. (3.2)

We reformulate the second term on the left hand side of (3.2) as follows

f(σ(b)σ(c)a) = f(σ(bc)a) = 2f(a)g(bc)− f(abc),

which turns the identity (3.2) into

f(σ(c)ab) + 2f(a)g(bc)− f(abc) = 4f(a)g(b)g(c)− 2f(ac)g(b).

Subtracting this from (3.1) we get after some simpli�cations that

f(abc)− f(a)g(bc) = [f(ab)− f(a)g(b)]g(c) + [f(ac)− f(a)g(c)]g(b). (3.3)

With the notation hx(y) := f(xy)− f(x)g(y) we can reformulate (3.3) to

ha(bc) = ha(b)g(c) + ha(c)g(b).

This shows that the pair (ha, g) satis�es the sine addition law for any a ∈ M . In

particular for a = e. Since he = f − f(e)g = f − fe = fo then (fo, g) is a solution

of the sine addition law.

(d) If fo ̸= 0, we know from [5, Theorem 4.1] that both fo and g are abelian

functions. Since f = fe + fo = f(e)g + fo, then f is also an abelian function.

If fo = 0, then we see that f = fe = f(e)g and f(e) ̸= 0. Indeed, f(e) = 0

would entail f = 0, contradicting our assumption. So g is a solution of the

functional equation

g(xy) + g(σ(y)x) = 2g(x)g(y) for all x, y ∈ M.
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According to [6, Theorem 2.1], there exists a multiplicative function χ : M → C
such that g = (χ + χ ◦ σ)/2. Then g is an abelian function and hence so is

f = f(e)g.

(e) Since f is abelian, then f is central. So the functional equation (1.3)

becomes

f(xy) + f(xσ(y)) = 2f(x)g(y), x, y ∈ M, (3.4)

Replacing y by σ(y) does not change the left hand side of (1.3). Thus we arrive

at f(x)g(y) = f(x)g(σ(y)) for all x, y ∈ M . Since f ̸= 0, then g = g ◦ σ i.e. g is

even. �

In the following corollary, we solve the variant of Jensen's functional equation,

namely

f(xy) + f(σ(y)x) = 2f(x), x, y ∈ M, (3.5)

on monoids.

Corollary 3.3. LetM be a monoid and let σ be an involutive automorphism

on M . The solutions f : M → C of (3.5) are the functions of the form f = a+α,

where a : M → C is an additive map such that a ◦ σ = −a, and where α is a

complex constant.

Proof. It is clear that f ≡ 0 is a solution of (3.5), so we suppose that

f ̸= 0. On putting g = 1 in Lemma 3.2 we get that fe = f(e) and fo is additive,

so f = fe + fo has the desired form. The other direction of the proof is trivial to

verify. �
Proposition 3.4. Let M be a monoid, let σ be an involutive automorphism

on M , and let the pair f, g : M → C be a solution of the functional equation (1.3)

such that f ̸= 0.

(a) g is a solution of the variant (1.5) of d'Alembert's functional equation.

(b) Both fe and fo satisfy (1.3) with the same g as for f .

Proof. (a) Choose x0 ∈ M such that f(x0) ̸= 0. Using (1.3) and the fact

that f is abelian we get

2f(x0)[g(xy) + g(σ(y)x)] = f(x0xy)+ f(σ(x)σ(y)x0)+ f(x0σ(y)x)+ f(yσ(x)x0)

= f(x0xy) + f(x0σ(y)x) + f(yσ(x)x0) + f(σ(x)σ(y)x0)

= f(x0xy) + f(σ(y)x0x) + f(σ(x)x0y) + f(σ(y)σ(x)x0)

= 2f(x0x)g(y) + 2f(σ(x)x0)g(y)

= 2[f(x0x) + f(σ(x)x0)]g(y) = 4f(x0)g(x)g(y),

for all x, y ∈ M , which implies that g is a solution of (1.5).
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(b) Since fe = f(e)g and g satis�es (1.5), then fe satis�es (1.3) with the

same g as for f and hence also fo = f − fe. �

As a consequence of Proposition 3.4, in the special case of σ = id, we have

the following result.

Corollary 3.5. Let M be a monoid and let the pair f, g : M → C be a

solution of the functional equation

f(xy) + f(yx) = 2f(x)g(y), x, y ∈ M, (3.6)

such that f ̸= 0. Then there exists a multiplicative function χ on M such that

f = αχ and g = χ for some α ∈ C.

Proof. On putting σ = id in Proposition 3.4 (a) we see that g satis�es the

symmetrized multiplicative Cauchy equation, that is

g(xy) + g(yx)

2
= g(x)g(y), x, y ∈ M.

Then g is a multiplicative function (see [5, Theorem 3.21]) . Interchanging x and y

in (3.6) does not change the left hand side. Thus we arrive at f(x)g(y) = f(y)g(x)

for all x, y ∈ M . Since f ̸= 0, then f is proportional to g. This �nishes the

proof. �

The following theorem solves the variant (1.3) of Wilson's functional equation

on an arbitrary group. For abelian groups it generalizes many results (see, e.g.,

[3, Lemma 4.2] and [4, Theorem III.4]).

Theorem 3.6. Let G be a group, let σ be an involutive automorphism on G,

and let the pair f, g : G → C be a solution of the functional equation (1.3) such

that f ̸= 0. Then there exists a character χ of G such that g = (χ + χ ◦ σ)/2.

Furthermore, we have the following possibilities:

(i) If χ ̸= χ ◦ σ, then

f = α
χ+ χ ◦ σ

2
+ β

χ− χ ◦ σ
2

,

for some α, β ∈ C.
(ii) If χ = χ◦σ, then there exists an additive function a : G → C with a◦σ = −a

such that

f = αχ+ aχ,

for some α ∈ C.
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Conversely, the formulas above for g and f de�ne solutions of (1.3).

Moreover, ifG is a topological group, and f, g ∈ C(G), then χ, χ◦σ, a ∈ C(G).

The monoid version (Theorem 3.7) di�ers from Theorem 3.6 only when χ =

χ ◦ σ (case (ii)), where the formulations are more complicated. The conclusions

of the two versions agree if χ vanishes nowhere, which is the case on groups.

Theorem 3.7. LetM be a monoid which is generated by its squares, let σ be

an involutive automorphism on M , and let the pair f, g : M → C be a solution of

the functional equation (1.3) such that f ̸= 0. Then there exists a multiplicative

function χ : M → C, χ ̸= 0, such that g = (χ + χ ◦ σ)/2. Furthermore, we have

the following possibilities:

(i) If χ ̸= χ ◦ σ, then

f = α
χ+ χ ◦ σ

2
+ β

χ− χ ◦ σ
2

,

for some α, β ∈ C.
(ii) If χ = χ ◦ σ, then there exists an additive function a : M \ Iχ → C with

a ◦ σ = −a such that

f(x) =

{
αχ(x) + a(x)χ(x) for x ∈ M \ Iχ
0 for x ∈ Iχ

for some α ∈ C.
Conversely, the formulas above for g and f de�ne solutions of (1.3).

Moreover, if M is a topological monoid generated by its squares, and f, g ∈
C(M), then χ, χ ◦ σ ∈ C(M), while a ∈ C(M \ Iχ).

Proof of Theorems 3.6 and 3.7. From Proposition 3.4 (a) we see that g

is a solution of (1.5). According to [6, Theorem 2.1], there exists a multiplicative

function χ : M → C such that g = (χ + χ ◦ σ)/2. If χ = 0, we get g = 0 which

implies that f = 0 contradicting our assumption. Hence χ ̸= 0. Additionally, by

[5, Corollary 3.19] we see that χ is unique except that it can be interchanged by

χ ◦ σ.
Let fe and fo denote the even and the odd parts of f . We see from Lemma 3.2

that fe = f(e)g, and that (fo, g) is a solution of the sine addition law.

Assume �rst f even. Hence fo = 0, so that

f = fe = f(e)g = f(e)
χ+ χ ◦ σ

2
,
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so we are in case (i) or (ii).

Assume next f not even. Hence fo ̸= 0. Since g = (χ + χ ◦ σ)/2 and χ is

unique, except that it can be interchanged by χ ◦ σ, we may apply Lemma 3.1

with χ1 = χ and χ2 = χ ◦ σ to �nd the form of fo.

(i) Assume that χ ̸= χ ◦ σ, then we get that

fo = β
χ− χ ◦ σ

2
,

for some β ∈ C \ {0}, so that

f = fe + fo = f(e)g + β
χ− χ ◦ σ

2
= α

χ+ χ ◦ σ
2

+ β
χ− χ ◦ σ

2
,

where α = f(e).

(ii) Assume that χ = χ ◦ σ. If M is a group we get from Lemma 3.1 that

fo = aχ for some additive function a. From fo being odd with respect to σ we

see that a ◦ σ = −a. Thus

f = fe + fo = f(e)g + fo = αχ+ aχ,

where α = f(e).

If M is a monoid which is generated by its squares, we get from Lemma 3.1

that there exists an additive function a : M \ Iχ → C for which

fo(x) =

{
a(x)χ(x) for x ∈ M \ Iχ
0 for x ∈ Iχ.

From fo being odd with respect to σ we see that a ◦σ = −a. Since f = fe + fo =

f(e)g + fo and χ(x) = 0 for x ∈ Iχ we have

f(x) =

{
αχ(x) + a(x)χ(x) for x ∈ M \ Iχ
0 for x ∈ Iχ

where α = f(e).

Conversely, simple computations prove that the formulas above for g and f

de�ne solutions of (1.3).

The continuity statements follow from Lemma 3.1. �
Example 3.8. For an application of our results on a non-abelian monoid, let

M = M(2,C) be the set of complex 2 × 2 matrices under matrix multiplica-

tion. Note that M is generated by its squares (see [2]). Let σ be the complex

conjugation operator

σ

(
a b

c d

)
=

(
a b

c d

)
for a, b, c, d ∈ C.
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We indicate here the corresponding continuous solutions of (1.3). We write R(λ)

(resp. Im(λ)) for the real part of the complex number λ (resp. the imaginary part

of λ).

The continuous non-zero multiplicative functions on M are (see [2, Exam-

ple 5.6]): χ = 1, or else

χ(X) =

{
| det(X)|λ−n(det(X))n when det(X) ̸= 0

0 when det(X) = 0

where λ ∈ C with R(λ) > 0 and n ∈ Z.
Let us �rst consider the case of χ ̸= 1. Since | det(X)| = | det(σ(X))|, we

have χ ◦ σ ̸= χ if and only if n ̸= 0.

In the case χ ◦ σ = χ we have n = 0 so

χ(X) =

{
| det(X)|λ when det(X) ̸= 0

0 when det(X) = 0.

In this case we have Iχ = {X ∈ M(2,C| det(X) = 0}.
In view of [2, Example 5.6], the continuous additive functions on M \ Iχ

satisfy the condition a ◦ σ = −a only if a = 0. The same is true for χ = 1, where

a : M → C.
In conclusion, the continuous solutions f, g : M(2,C) → C, where f ̸= 0,

of (1.3) are:

(a) g = 1 and f = α, where α is a non-zero complex number;

(b)

g(X) =

{
| det(X)|λ when det(X) ̸= 0

0 when det(X) = 0

f(X) = αg(X),

where α, λ are complex numbers such that α ̸= 0 and R(λ) > 0; and

(c)

g(X) =

{
| det(X)|λ−nR((det(X))n) when det(X) ̸= 0

0 when det(X) = 0

f(X) =


| det(X)|λ−n[αR((det(X))n) when det(X) ̸= 0

+βIm((det(X))n)]

0 when det(X) = 0

where α, β, λ are complex numbers such that R(λ) > 0 and n ∈ Z \ {0}.
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In the following lemma, we give a characterization of solutions of (1.4).

Lemma 3.9. Let M be a monoid, let σ be an involutive automorphism

on M , and let the triple f, g, h : M → C be a solution of the functional equation

(1.4). Then we have the following possibilities:

(a) f = 0, g = 0, h is arbitrary.

(b) f = 0, h = 0, g is arbitrary.

(c) f = h(e)g, where h(e) ̸= 0, and g is a solution of (1.3) with companion

function h/h(e), i.e.,

g(xy) + g(σ(y)x) = 2g(x)
h(y)

h(e)
, x, y ∈ M.

Proof. The �rst two cases are obvious, so we suppose that f ̸= 0. Taking

y = e in (1.4) we get f = h(e)g. If h(e) = 0 we get f = 0 contradicting our

assumption. Hence h(e) ̸= 0. Replacing f by h(e)g in (1.4), we obtain the

identity in (c). �

In view of Theorem 3.6 and Lemma 3.8 we �nd the complete solution of (1.4)

on an arbitrary group.

Theorem 3.10. Let G be a group, let σ be an involutive automorphism

on G, and let the triple f, g, h : G → C be a solution of the functional equation

(1.4). Then we have the following possibilities:

(a) f = 0, g = 0, h is arbitrary.

(b) f = 0, h = 0, g is arbitrary.

(c) There exists a character χ of G such that h = γ
2 (χ+χ◦σ) for some constant

γ ∈ C \ {0}. Furthermore:

(i) If χ ̸= χ ◦ σ, then

g = α
χ+ χ ◦ σ

2
+ β

χ− χ ◦ σ
2

,

f = αγ
χ+ χ ◦ σ

2
+ βγ

χ− χ ◦ σ
2

,

for some α, β ∈ C.
(ii) If χ = χ ◦ σ, then there exists an additive function a : G → C with

a ◦ σ = −a such that

g = αχ+ aχ, f = γ(αχ+ aχ),

for some α ∈ C.
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Moreover, if G is a topological group, and f, g, h ∈ C(G), then χ, χ ◦ σ, a ∈
C(G).

Conversely, the formulas above for f , g and h de�ne solutions of (1.4).

The monoid version (Theorem 3.10) of Theorem 3.9 is a consequence of

Lemma 3.8 and Theorem 3.7.

Theorem 3.11. Let M be a monoid which is generated by its squares, let σ

be an involutive automorphism on M , and let the triple f, g, h : M → C be a

solution of the functional equation (1.4). Then we have the following possibilities:

(a) f = 0, g = 0, h is arbitrary.

(b) f = 0, h = 0, g is arbitrary.

(c) There exists a multiplicative function χ : M → C, χ ̸= 0, such that h =
γ
2 (χ+ χ ◦ σ) for some constant γ ∈ C \ {0}. Furthermore:

(i) If χ ̸= χ ◦ σ, then

g = α
χ+ χ ◦ σ

2
+ β

χ− χ ◦ σ
2

,

f = αγ
χ+ χ ◦ σ

2
+ βγ

χ− χ ◦ σ
2

,

for some α, β ∈ C.
(ii) If χ = χ ◦σ, then there exists an additive function a : M \ Iχ → C with

a ◦ σ = −a such that

g(x) =

{
αχ(x) + a(x)χ(x) for x ∈ M \ Iχ
0 for x ∈ Iχ

and

f(x) =

{
γ(αχ(x) + a(x)χ(x)) for x ∈ M \ Iχ
0 for x ∈ Iχ

for some α ∈ C.
Moreover, if M is a topological monoid generated by its squares, and f, g, h ∈

C(M), then χ, χ ◦ σ ∈ C(M), while a ∈ C(M \ Iχ).
Conversely, the formulas above for f , g and h de�ne solutions of (1.4).
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