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Groups with a few nonabelian centralizers

By SEYYED MAJID JAFARIAN AMIRI (Zanjan) and HOJJAT ROSTAMI (Zanjan)

Abstract. For a group G, let cent(G) denote the set of centralizers of single el-

ements of G and nacent(G) denote the set of all nonabelian centralizers belonging to

cent(G). We first characterize all finite groups G with |nacent(G)| = 2. We denote by

ω(G), the maximum possible size of a subset of pairwise noncommuting elements of a

finite group G. In this article we find a necessary and sufficient condition for some finite

groups G satisfying |cent(G)| = |nacent (G)| + ω(G). In particular we show that this

equality is valid for some simple groups.

1. Introduction and main results

Throughout this paper G is a finite nonabelian group and Z(G) is its center.

We denote by cent(G) = {CG(g) : g ∈ G} where CG(g) is the centralizer of

the element g in G and nacent(G) denotes the set of all nonabelian centralizers

belonging to cent(G). A subgroup H of G is called a proper centralizer of G if

H = CG(x) for some x ∈ G \ Z(G). In recent years many authors have studied

the influence of |cent(G)| on the structure of the group G (see [1], [10], [11] and

[14], [15], [16]).

Schmidt [13] characterized all groups G with |nacent(G)| = 1 (such groups

are called CA-groups). In this article we determine all groups G with

|nacent(G)| = 2.

Theorem 1.1. Let G be a group such that |nacent(G)| = 2. If CG(a) is a

proper nonabelian centralizer for some a ∈ G, then one of the following holds:

(1) G
Z(G) is a p-group for some prime p.
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(2) CG(a) is the Fitting subgroup of G of prime index p, p divides |CG(a)| and
|cent(G)| = |cent(CG(a))|+j+1, where j is the number of distinct centralizers

CG(g) for g ∈ G \ CG(a).

(3) G
Z(G) is a Frobenius group with cyclic Frobenius complement CG(x)

Z(G) for some

x ∈ G.

Let G be a finite group and let X be a subset of pairwise noncommuting

elements of G such that |X| ≥ |Y | for any other set of pairwise noncommuting

elements Y in G. Then the subset X is said to have the maximum size and this

size is denoted by ω(G). Various attempts have been made to find ω(G) for some

groups G (see for example [3–6] and [12]).

The following result states the relation among |cent(G)|,ω(G) and |nacent(G)|
for some groups.

Theorem 1.2. Let G be a finite group and k ≤ 6 be a positive integer.

Then |nacent(G)| = k if and only if |cent(G)| = ω(G) + k.

So the natural question is to find the largest integer k such that if

|nacent(G)| ≤ k for some group G, then |cent(G)|−ω(G) = |nacent(G)|. It seems

that k = 7.

If n > 0 is an integer and q is a power of a prime p, then we denote by

PSL(n, q) and Sz(q), the projective special linear group of degree n over the finite

field of size q and the Suzuki group over the field with q elements, respectively. In

what follows we give some simple groups G where |cent(G)| = |nacent(G)|+ω(G).

We notice that there is a minor error in Theorem 2.1 of [15] when |cent(Sz(q))|
was computed and we correct it in Theorem 1.3 (2).

Theorem 1.3.

(1) If G = PSL(2, q) or PSL(3, 3), then |cent(G)| = |nacent(G)|+ ω(G).

(2) If G = Sz(q) where q = 22m+1 and m > 0, then

|cent(G)| = (q2 + 1)(q − 1) +
q2(q2 + 1)

2
+

q2(q2 + 1)(q − 1)

4(q + 2r + 1)

+
q2(q2 + 1)(q − 1)

4(q − 2r + 1)
+ (q2 + 2)

where r = 2m and also |nacent(G)| = |cent(G)| − ω(G) = q2 + 2.

Note that there are some simple groups G for which the equality |cent(G)| −
ω(G) = |nacent(G)| does not hold. For example, it can be checked by Gap [8]

that |cent(A8)| = 5448, |ω(A8)| = 4201 and |nacent(A8)| = 1562 where A8 is the

alternating group of degree 8.
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2. Proof of the main results

Definition 2.1. Let G be a group. A set
∏

= {H1, . . . , Hn} of subgroups

Hi(i = 1, . . . , n) is called a partition of G if every element x ∈ G \ {1} belongs to

one and only one subgroup Hi ∈
∏
.

For a finite group G, let Fit(G) denote the Fitting subgroup of G, i.e., the

largest normal nilpotent subgroup of G. In what follows we determine all groups

with |nacent(G)| = 2.

Proof of Theorem 1.1. Suppose that X = {x1, . . . , xω(G)} is a set of

pairwise non-commuting elements of G having maximum size. Then CG(xi) is

abelian for each i by Proposition 2.5 (a)(1) of [1]. Put Y = {xi ∈ X : axi = xia}.
Then it is easy to see that CG(y) ⊂ CG(a) for every y ∈ Y and CG(x)∩CG(a) =

Z(G) for every x ∈ X \ Y . Also we have CG(g) ∩ CG(g
′) = Z(G) for every

g ̸= g′ ∈ X \ Y . Therefore Π =
{CG(a)

Z(G) ,
CG(x)
Z(G) : x ∈ X \ Y

}
is a partition of G

Z(G) .

Since Z(CG(a)) is a normal subgroup of G, we have Fit
(

G
Z(G)

)
̸= 1. It follows

from Satz 3 of [7] that one of the following holds:

(i) G
Z(G) is a p-group for some prime p.

(ii) Fit
(

G
Z(G)

)
∈Π and

∣∣ G
Z(G) : Fit

(
G

Z(G)

)∣∣= p, p is a prime divisor of
∣∣Fit ( G

Z(G)

)∣∣.
(iii) G

Z(G) is a Frobenius group.

(iv) G
Z(G)

∼= S4.

We first prove that G
Z(G) � S4. Suppose, for a contradiction, that G

Z(G)
∼= S4.

Since CG(a) is a proper normal subgroup of G (note that CG(a) is the unique

proper nonabelian centralizers in G), we have CG(a)
Z(G)

∼= A4 or C2 × C2. It follows

that CG(a)
Z(CG(a)) is cyclic which is a contradiction.

In case (ii), we conclude that Fit(G) = CG(a) and
∣∣ G
CG(a)

∣∣ = p. Therefore∣∣CG(x)
Z(G)

∣∣ = p for each x ∈ X \ Y . Also we have |cent(G)| = |cent(CG(a))| + j + 1

where j = |X \ Y |, as wanted.
Finally if G

Z(G) is a Frobenius group, then CG(a)
Z(G) is contained in Frobenius

kernel and CG(x)
Z(G) is a Frobenius complement for some x ∈ X \ Y . Since CG(x)

Z(G) is

abelian, we have the result by Corollary 6.17 of [9]. This completes the proof. �

In the following result we give a lower bound for |nacent(G)|.

Proposition 2.2. Let G be a group. Then |cent(G)| − ω(G) ≤ |nacent(G)|.
The equality occurs if and only if ω(G) is the number of abelian centralizers

belonging to cent(G).



432 Seyyed Majid Jafarian Amiri and Hojjat Rostami

Proof. Put s = |cent(G)|−|nacent(G)|. If s = 0, then we have the result. So

suppose that s > 0 and {CG(x1), . . . , CG(xs)} is the set of all abelian centralizers

which belong to cent(G). Then {x1, . . . , xs} is a set of pairwise noncommuting

elements of G and so ω(G) ≥ s. The proof is now complete. �

Proposition 2.2 motivates us to ask when the equality |cent(G)| = ω(G) +

|nacent(G)| is valid. We will prove Theorem 1.2 by Propositions 2.3, 2.4, 2.5, 2.7,

2.9 and 2.10.

Proposition 2.3. Let G be a finite group. Then |nacent(G)| = 1 if and only

if |cent(G)| = ω(G) + 1.

Proof. The result follows from Lemma 2.6 of [1]. �

Proposition 2.4. Let G be a finite group. Then |nacent(G)| = 2 if and only

if |cent(G)| = ω(G) + 2.

Proof. Let X = {x1, . . . , xω(G)} be a set of pairwise noncommuting ele-

ments of G having maximum size and Γ = {CG(xi) : i = 1, . . . , w(G)}. Suppose

that |nacent(G)| = 2. Then G has only one proper nonabelian centralizer CG(y)

for some y ∈ G and so Proposition 2.2 yields |cent(G)| −ω(G) ≤ 2. Now we have

the result by Proposition 2.3.

Conversely suppose that |cent(G)| = ω(G) + 2. Then every element of Γ

is abelian and every abelian centralizer belonging to cent(G) is in Γ by Proposi-

tion 2.5 (a-1) of [1]. It follows that |nacent(G)| = 2, as wanted. �

Proposition 2.5. Let G be a finite group. Then |nacent(G)| = 3 if and only

if |cent(G)| = ω(G) + 3.

Proof. Let X = {x1, . . . , xω(G)} be a set of pairwise noncommuting ele-

ments of G having maximum size and Γ = {CG(xi) : i = 1, . . . , w(g)}. Suppose

that |nacent(G)| = 3. Then G has only two proper nonabelian centralizers CG(y)

and CG(z) for some y, z ∈ G and so by Proposition 2.2 we have |cent(G)|−
ω(G) ≤ 3. Now Propositions 2.3 and 2.4 imply that |cent(G)| = ω(G) + 3, as

wanted.

Conversely suppose that |cent(G)| = ω(G) + 3. Then |nacent(G)| = 3 by

Proposition 2.5 (a-1) of [1] and Proposition 2.2, as desired. �

Lemma 2.6. Let X = {x1, . . . , xω(G)} be a set of pairwise noncommuting

elements of a group G having maximum size. If |cent(G)| = ω(G) + 4, then at

most one of the CG(xi)’s is nonabelian.
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Proof. Set Xi = CG(xi) for each i and Γ = {X1, X2, . . . , Xω(G)}. Without

loss of generality suppose, for a contradiction, that X1 and X2 are nonabelian.

Then there are {a1, a2, a3} and {b1, b2, b3} of pairwise noncommuting elements of

X1 and X2, respectively. Therefore CG(ai) ̸= Xj ̸= CG(bi) for each i, j. Since

|cent(G)| = ω(G) + 4, we may assume that CG(bi) = CG(ai) for i = 1, 2, 3. Now

we claim that CG(a1x1) /∈ Γ ∪ {G,CG(ai) : 1 ≤ i ≤ 3}.
If CG(a1x1) = X1, then a1 ∈ Z(X1) which is impossible since a1 ∈ X1. If

CG(a1x1) = Xj for some j > 1, then x1 ∈ Xj , a contradiction. Also CG(a1x1) ̸=
CG(ai) for each i since x2 ∈ CG(bi) = CG(ai). This proves the claim and so we

have |cent(G)| > ω(G) + 4 which is a contradiction. �

Proposition 2.7. Let G be a finite group. Then |nacent(G)| = 4 if and only

if |cent(G)| = ω(G) + 4.

Proof. Let X = {x1, . . . , xω(G)} be a set of pairwise noncommuting ele-

ments of G having maximum size and set Xi = CG(xi) for 1 ≤ i ≤ ω(G). Let

Γ = {X1, . . . , Xω(G)} and |cent(G)| = ω(G)+4. Suppose that, for a contradiction,

that |nacent(G)| ≥ 5. ThenXk is nonabelian for some k by Proposition 2.2. With-

out loss of generality, assume that X1 is nonabelian. It follows from Lemma 2.6

that Xj is abelian for each j > 1. So there exist a1, a2, a3 ∈ X1 such that

aiaj ̸= ajai for all i ̸= j. Since {a1, a2, a3, x2, . . . , xω(G)} is not a set of pairwise

noncommuting elements of G, we have aixj = xjai for some i, j. Without loss

of generality assume that a1x2 = x2a1. Since X2 is abelian, X2 ⊂ CG(a1). It

is not hard to see that CG(a1x1) /∈ Γ ∪ {G,CG(a1), CG(a2), CG(a3)}. Therefore

|cent(G)| > ω(G) + 4 which is a contradiction.

Conversely let |nacent(G)| = 4. Then by Proposition 2.2, we conclude that

that |cent(G)| − ω(G) ≤ 4. On the other hand |cent(G)| > ω(G) + 3 by Propo-

sitions 2.3, 2.4 and 2.5 which implies that |cent(G)| = ω(G) + 4. The claim is

established. �

Lemma 2.8. Let X = {x1, . . . , xω(G)} be a set of pairwise noncommuting

elements of G. If |cent(G)| = ω(G) + 5, then at most one of the CG(xi)’s is

nonabelian.

Proof. Let without losing generality CG(x1) and CG(x2) be nonabelian.

Suppose that {a1, a2, a3} and {b1, b2, b3} are subsets of pairwise noncommuting

elements of C(x1) and CG(x2), respectively. Then we have CG(ai) ̸= CG(xj) ̸=
CG(bi) for each i ∈ {1, 2, 3} and j ∈ {1, . . . , ω(G)}. Since |cent(G)| = ω(G) + 5,

we conclude that CG(ai1) = CG(bj1) and CG(ai2) = CG(bj2) for some i1, i2, j1, j2.

There is no loss of generality in assuming that i1 = j1 = 1 and i2 = j2 = 2. But
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it is easy to see that

CG(x1), CG(x2), . . . , CG(xω(G)), CG(a1), CG(a2), CG(a3), CG(a1x1), CG(a2x1)

are distinct, in contradiction to |cent(G)|. This completes the proof. �

Proposition 2.9. Let G be a finite group. Then |nacent(G)| = 5 if and only

if |cent(G)| = ω(G) + 5.

Proof. Suppose that |cent(G)| = ω(G) + 5 and X = {x1, . . . , xω(G)} is a

set of pairwise noncommuting elements of G. By Proposition 2.2 it is enough to

show that CG(xi) is abelian for each 1 ≤ i ≤ ω(G) .

Suppose, for a contradiction, that CG(xi) is nonabelian for some i, say i = 1.

Then CG(xj) is abelian for each j > 1 by Lemma 2.8. Assume that {b1, b2, b3} is

a subset of pairwise noncommuting elements of CG(x1). Then CG(bi) ̸= CG(xj)

for every i ∈ {1, 2, 3} and j ∈ {1, . . . , ω(G)}. Since {b1, b2, x2, . . . , xω(G)} is not

a set of pairwise noncommuting elements of G, we have xi ∈ CG(b1) ∪ CG(b2)

for some i. Without loss of generality, assume that x2 ∈ CG(b1). Similarly by

considering {b2, b3, x2, . . . , xω(G)}, we can assume that x3 ∈ CG(b2) since CG(x2)

and CG(x3) are abelian and also b1b2 ̸= b2b1. Therefore CG(x2) ⊆ CG(b1) and

CG(x3) ⊆ CG(b2). Now it is easy to see that

CG(x1), . . . , CG(xω(G)), CG(b1), CG(b2), CG(b3), CG(b1x1), CG(b2x1)

are distinct proper centralizers belonging to cent(G) which is impossible since

|cent(G)| = ω(G) + 4.

Conversely suppose that |nacent(G)| = 5. Then |cent(G)| − ω(G) ≤ 5 by

Proposition 2.2. It follows from Propositions 2.3-2.7 that |cent(G)| = ω(G) + 5.

This completes the proof. �

Proposition 2.10. Let G be a finite group. Then |nacent(G)| = 6 if and

only if |cent(G)| = ω(G) + 6.

Proof. The proof is similar to Proposition 2.9. �

Remark 2.11. Note that if G is a group such that |nacent(G)| = 7, then

|cent(G)| = ω(G) + 7 by Proposition 2.2 and Theorem 1.2. But we can not

prove the converse of it and also we can not find any counterexample. So

we conjecture that the converse is not true. Although there is a group G =

SmallGroup(32, 50) = (C2×D8)oC2 such that |cent(G)|−ω(G) = 16−5 = 11 ̸=
|nacent(G)|.
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In what follows we will show that |cent(G)| − ω(G) = |nacent(G)| for some

finite simple groups G. Also we correct a minor error in Theorem 1.2 of [15] since

the author has not considered all conjugates of F , a Sylow 2-subgroup of the

Suzuki group Sz(q), as centralizers of some elements in the group.

Proof of Theorem 1.3.

(1) Suppose that G = PSL(2, q). If q ∈ {2, 3, 5} or q ≡ 0 mod 4, then G is

a CA-group and so we have the result by Proposition 2.3. Suppose that q > 5 is

odd. By the proof of Theorem 1.1 (2–3) ( or Lemma 3.21 of [3]), the number of

abelian centralizers belonging to cent(G) is

q + 1 +
q(q − 1)

2
+

q(q + 1)

2
= q2 + q + 1.

On the other hand it follows from Lemma 4.4 of [2] that ω(G) = q2 + q + 1 and

so we have the result by Proposition 2.2.

If G = PSL(3, 3), then ω(G) = 1067 by Theorem 1.3 of [2]. By Gap [8] we

have |cent(G)| − ω(G) = 1237− 1067 = 170 = |nacent(G)|, as wanted.
(2) It is well-known that G has a partition P = {Ax, Bx, Cx, F x | x ∈ G}

where A, B, C are cyclic and F is a Sylow 2-subgroup of G of order q2. Also

we have CG(g) ≤ H for every g ∈ H and H ∈ P. By the proof of Theorem 1.2

of [15], we see that F is a CA-group and |cent(F )| = q. Since F has q2 + 1

conjugates in G and they can be centralizers of some elements in G, the first part

is established.

By the above argument all conjugates of F are the only proper nonabelian

centralizers belonging tocent(G). On the other hand it follows from Theorem 1.2

of [2] that

ω(G) = (q2 + 1)(q − 1) +
q2(q2 + 1)

2
+

q2(q2 + 1)(q − 1)

4(q + 2r + 1)
+

q2(q2 + 1)(q − 1)

4(q − 2r + 1)
,

where r = 2m. Thus |cent(G)|−ω(G) = q2+2 which is the number of nonabelian

centralizers belonging to cent(G). This completes the proof. �

Now we give a family of groups G for which |cent(G)| − ω(G) is not the

number of nonabelian centralizers belonging to cent(G). A group G is called an

F -group if CG(x) ≤ CG(y) for x, y ∈ G \ Z(G), then CG(x) = CG(y).

Proposition 2.12. Let G be an F -group such that |nacent(G)| > 1. Then

|cent(G)| − ω(G) < |nacent(G)|.
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Proof. Let G be an F -group. If all centralizers of G are nonabelian, then

the proof is clear. Assume that {CG(xi) : 1 ≤ i ≤ n} are all distinct abelian cen-

tralizers of G. It is clear that {xi : 1 ≤ i ≤ n} is a set of pairwise noncommuting

elements of G. Now since G is not a CA-group, G has a proper nonabelian cen-

tralizer such as CG(y) and so {y, xi : 1 ≤ i ≤ n} is a set of pairwise noncommuting

elements of G. Therefore we have the result by Proposition 2.2. �

Finally our computation together with the computational group theory sys-

tem GAP in investigating finite groups of small order suggests that probably

every finite simple group is uniquely determined by the number of nonabelian

centralizers. More precisely we pose the following question

Question 2.13. Let H and G be finite simple groups. Is it true that if

|nacent(G)| = |nacent(H)|, then G ∼= H?
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