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The geometry of a Randers rotational surface

By RATTANASAK HAMA (Bangkok), PAKKINEE CHITSAKUL (Bangkok)
and SORIN V. SABAU (Sapporo)

Abstract. We study the behaviour of geodesics on a Randers rotational surface

of revolution. The main tool is the extension of Clairaut relation from Riemannian case

to the Randers case. Moreover, we consider the embedding problem of this surface in a

Minkowski space as a hypersurface. Finally, we study the rays and poles as well as the

structure of the cut locus of a Randers rotational surface of revolution of von Mangoldt

type.

1. Introduction

The differential geometry of Riemannian surfaces has been extensively de-

veloped and it is almost impossible to find a reference containing all results on

this topic (see for example [1], [7], [13] and many other resources). However, the

geometry of Finsler surfaces, except for local computations, has not have been

developed at the same rate (see [2], [15]).

In the present paper we study the global geometry of an abstract surface of

revolution homeomorphic to R2 endowed with a Finsler metric of Randers type.

Finslerian Clairaut relation is our main tool. This is a first generalisation of this

type of the geometry of a Riemannian surface of revolution, a well understood

topic.

We review some basic notions of Finsler geometry.

In 1931, E. Zermelo studied the following problem (see [5]):

Suppose a ship sails the sea and a wind comes up. How must the captain

steer the ship in order to reach a given destination in the shortest time?
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The problem was solved by Zermelo himself for the Euclidean flat plane

and by D. Bao, C. Robles and Z. Shen ([4]) in the case when the sea is a

Riemannian manifold (M,h) under the assumption that the wind W is a time-

independent mild breeze, i.e. h(W,W ) < 1. In the case when W is a time-

independent wind, they have found out that the path minimizing travel-time are

exactly the geodesics of a Randers metric

F (x, y) = α(x, y) + β(x, y) =

√
λ · |y|2 +W 2

0

λ
− W0

λ
,

where W = W i ∂
∂xi is the wind velocity, |y|2 = h(y, y), λ = 1 − |W |2 and W0 =

h(W,y).

The Randers metric F is said to solve the Zermelo’s navigation problem in the

case of a mild breeze. The condition h(W,W ) < 1 ensures that F is a positive-

definite Finsler metric. Moreover, it can be shown that a Randers space is of

constant flag curvature if and only if the underlying Riemannian manifold (M,h)

is of constant sectional curvature and the wind W is a Killing vector field of h

(see [4], [2]). The Zermelo’s navigation approach was extended in [19] to Kropina

metrics as well. Finally, we recall that the geometry of the sphere regarded as

Randers surface of revolution with Killing wind was studied in detail ([11]), but

the more general case of a Randers surface of rotation, of whose Riemannian

sectional curvature is not constant, is studied in the present paper for the first

time.

Our paper is two aimed. We intend to study the geometry of a Randers

type metric on a surface of revolution by generalising the Clairaut relation to the

Finslerian setting, as well as to illustrate the Zermelo’s navigation process for a

better understanding of it.

More precisely, we perturb the induced canonical Riemannian metric h of

a surface of revolution by the rotational vector field W obtaining in this way a

Randers type metric on M through the Zermelo’s navigation process. We study

some of the local and global geometrical properties of the geodesics on the surface

of revolution M endowed with this Randers metric.

Here are our main results.

Theorem 1.1. Let (M,F = α + β) be the rotational Randers metric con-

structed from the navigation data (h,W ), where (M,h) is a Riemannian surface

of revolution whose warp function is bounded m(r) < 1
µ , µ > 0, and W = µ ∂

∂θ is

the breeze on M blowing along parallels, then the unit speed Finslerian geodesics

P : (−ϵ, ϵ) →M are given by

P(s) = (r(s), θ(s) + µs), (1)
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where γ(s) = (r(s), θ(s)) is a h-unit speed geodesic.

Unlike Riemannian manifolds, Finsler manifolds cannot always be isometri-

cally embedded in a sufficiently higher dimensional Minkowski space ([16]). How-

ever, this is possible in the present case.

Theorem 1.2. The rotational Randers space (M,F = α+β) can be isomet-

rically embedded into the Minkowski space (Uµ, F̃ ) if and only if the Riemannian

surface of revolution (M,h) can be isometrically embedded in (R3, δ).

The geometry of a Riemannian surface of revolution is completely governed

by the Clairaut relation (see [13]), but the correspondent of this relation in Finsler

geometry is unknown. We give here a generalisation of the Riemannian Clairaut

relation to the case of a Randers rotational surface of revolution.

Theorem 1.3. Let γ(s) = (r(s), θ(s)) be an h-geodesic of Clairaut con-

stant ν, that makes an angle ϕ(s) with the profile curve passing through γ(s),

and let P(s) be the corresponding F -geodesic on the Randers rotational surface

of revolution (M,F ). Then the following relations hold good.√
1 + 2µν + µ2m2 cos(ψ − ϕ) = 1 + µν, (2)

m sinψ =
ν + µm2√

1 + 2µν + µ2m2
, (3)

where ψ is the angle between Ṗ(s) and the profile curve passing through P(s).

Obviously, these two forms of the Clairaut relation are equivalent and they

reduce to the classical Clairaut relation when F is Riemannian.

The geometry of geodesics of (M,F ) can now be easily obtained using these

relations (see Section 3.2). We mention here a result about the set of poles of a

Randers rotational metric (see Section 3.2 for definitions).

Theorem 1.4. For any point q ̸= p, let γ be a geodesic from q, which is not

tangent to the twisted meridian through q. Then γ cannot be a ray, that is the

vertex p is the unique pole of (M,F ).

The cut locus of a point q in a Riemannian or Finsler manifold is, roughly

speaking, the set of all other points for which there are multiple minimizing

geodesics connecting them from q. In Section 4.2 we define the notion of Finsler

von Mangoldt surface of revolution and determine the structure of the cut locus

of a point in a rotational Randers von Mangoldt surface of revolution (see [13],

[18] for the Riemannian case and [14] for the general Finsler case).
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Theorem 1.5. Let (M,F = α + β) be a rotational Randers von Mangoldt

surface of revolution. Then, for any point q ̸= p, the Finslerian cut locus C(F )
q

of q is the Jordan arc

C(F )
q = P−

q |[−c,0] ∪ {φ(s, τq(s)) : s ∈ [ρ,∞)},

where P−
q is the F-geodesic segment from q to p, and P−

q (−c) is the first conjugate
point of q along P−

q .

2. A rotational surface of revolution

2.1. The geometry of a Riemannian surface of revolution. A Riemannian

(abstract) surface of revolution is a complete Riemannian manifold (M,h) home-

omorphic to R2 that admits a point p ∈M such that the Gaussian curvature G of

h is constant on each geodesic circle {x ∈M : dh(p, x) = ρ} ⊂M , for any radius

ρ > 0. The point p is called the vertex of the surface of revolution (M,h).

Remark 2.1. It can be seen that (M,h) is a surface of revolution if and only

if for any two points x, y ∈ M , such that dh(p, x) = dh(p, y), there exists a

Riemannian isometry φ : M → M such that φ(x) = y. One can consider this

property as the definition of a Riemannian (abstract) surface of revolution.

It is known (see [18], [13]) that the surface or revolution (M,h) can be en-

dowed with the warped Riemannian metric

ds2 = dr2 +m2(r)dθ2, (4)

where (r, θ) ∈ [0,∞)×(0, 2π] are the h-geodesic polar coordinates around p onM ,

and m : [0,∞) → [0,∞), is a smooth odd function such that m(0) = 0, m′(0) = 1.

Remark 2.2. The above definition is a natural generalisation of the classical

Riemannian surface of revolution M isometrically embedded in R3 (see [7], [13]).

Indeed, for a positive function f : [0,∞) → [0,∞) one defines a classical surface

of revolution

M := {(f(u) cos v, f(u) sin v, u) ∈ R3; u ∈ [0,∞), 0 < v ≤ 2π} (5)

by revolving the profile curve x = f(z) around the z axis. Clearly, M is a surface

homeomorphic to R2.

Abstract surfaces of revolution include surfaces that cannot be isometrically

embedded in the Euclidean space R3 and surfaces whose profile curve cannot be

written as x = f(z).
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Returning to the general case, recall that the equations of an h-unit speed

geodesic γ(s) := (r(s), θ(s)) of (M,h) are
d2r

ds2
−mm′

(
dθ

ds

)2

= 0

d2θ

ds2
+ 2

m′

m

dr

ds

dθ

ds
= 0

(6)

with the unit speed parametrization condition(
dr

ds

)2

+m2

(
dθ

ds

)2

= 1. (7)

It follows that every profile curve, ormeridian, is an h-geodesic, and that a parallel

{r = r0} is geodesic if and only if m′(r0) = 0. A point p ∈ M is called a pole if

any two h-geodesics from p do not meet again. In other words, the cut locus of p

is empty. A unit speed geodesic of (M,h) is called a ray if dh(γ(0), γ(s)) = s, for

all s ≥ 0.

We observe that (6) implies

dθ(s)

ds
m2(r(s)) = ν = const, (8)

that is the quantity dθ
dsm

2 is conserved along the h-geodesics.

Theorem 2.1 (Clairaut Relation). If γ(s) = (r(s), θ(s)) is a geodesic on

the surface of revolution (M,h), then the angle ϕ(s) between γ̇ and the profile

curve passing through a point γ(s) satisfy m(r(s)) sinϕ(s) = ν.

The constant ν is called the Clairaut constant and it plays an important role

in the study of h-geodesics of M . Indeed, one can easily see that the Clairaut

constant ν vanishes if and only if γ is tangent to a meridian. Moreover, if the

Clairaut constant ν is non-vanishing, then γ does not pass through the vertex

of M .

Lemma 2.2 ([13]). We denote by Lh(r) the h-length of a parallel found at

distance r from the vertex p.

(1) If lim infr→∞ Lh(r) = 0 then for any point q ̸= p, the sub-ray µq|[d(p,q),∞) of

the meridian µq from p through q is the unique ray emanating from q.

(2) If
∫∞
1

L−2
h (r) = ∞ then for any point q ̸= p, a geodesic γ from q, which is

not tangent to the meridian through q, cannot be a ray, that is the vertex p

is the unique pole of (M,h).
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Figure 1. The angle ϕ between γ̇ and a meridian for a classical surface

of revolution.

We recall here a remarkable class of Riemannian surfaces of revolution. A

Riemannian surface of revolution with vertex p is called von Mangoldt surface if,

for any two points x, y ∈ M such that dh(p, x) ≥ dh(p, y) we have G(x) ≤ G(y),

where G is the Gauss curvature of h (see [18], [13]). The cut locus structure of

such a surface is determined in detail.

Theorem 2.3 ([18], [13]). If (M,h) is a von Mangoldt surface with vertex p,

then for any q ∈ M , q ̸= p, the h-cut locus C(h)
q of q coincides to the sub-arc

τq[t0,∞), where τq is the opposite meridian of the meridian µq from p through q,

and τq(t0) is the first conjugate point of q along τq.

Remark 2.3. The von Mangoldt surfaces are important in modern differen-

tial geometry not only for their computable cut locus, but also for Toponogov

comparison theorems that use a von Mangoldt surface as model ([8]).

2.2. A rotational Randers metric. Let m : [0,∞) → [0,∞), be a smooth odd

function such that m(0) = 0, m′(0) = 1, and we consider the Riemannian surface

of revolution (M,h) as above. Furthermore, we assume that m is bounded, i.e.

there exists a constant µ > 0 such that m(r) < 1
µ for all r ≥ 0. We construct

a rotational Randers metric on M by putting W := µ · ∂
∂θ that is, in the h-

orthogonal coordinates system
(

∂
∂r ,

∂
∂θ

)
of TxM we have W = (W 1,W 2) = (0, µ).

It follows h(W,W ) = h
(
µ · ∂

∂θ , µ · ∂
∂θ

)
= µ2 · h

(
∂
∂θ ,

∂
∂θ

)
= (µm)2 < 1.

The navigation data (h,W ) gives new data aij =
λ·hij+WiWj

λ2 , bi = −Wi

λ
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where Wi = hijW
j , λ = 1− h(W,W ) = 1− µ2m2 > 0. We observe that

(W1,W2) = (0, µm2).

A simple computation shows that

(aij) =


1

1− µ2m2
0

0
m2

(1− µ2m2)
2

 , bi =

 0

− µm2

1− µ2m2

 , i, j = 1, 2. (9)

It is straightforward to see that α(b, b) = aijbibj = h(W,W ) = hijW
iW j < 1.

We obtain

Proposition 1. If (M,h) is a surface of revolution whose profile curve is

the bounded function x = m(r) < 1
µ and W is the breeze on M blowing along

parallels, then the Randers metric (M,F = α + β) obtained by the Zermelo’s

navigation process on M is a Finsler metric on M , where α =
√
aij(x)yiyj ,

β = bi(x)y
i are defined in (9).

We will call this Finsler metric the rotational Randers metric on the surface

of revolution M . We point out that the assumptionm bounded is essential for the

positive definiteness of F . This assumption combined with the Clairaut relation

for h-geodesics implies |ν| = |m(r(s))| · | sinϕ(s)| ≤ |m(r(s))| < 1
µ , and therefore

the Clairaut constant of the h-geodesics on (M,h) must satisfy |ν| < 1
µ .

An isometry of a Finsler manifold (M,F ) is a mapping ϕ : M → M that is

diffeomorphism such that for any x ∈M and X ∈ TxM , we have

F (ϕ(x), ϕ∗,x(X)) = F (x,X).

Equivalently, if we denote by dF the induced distance function of F on M ,

then the isometry group of (M,F ) coincides with the isometry group of the quasi-

metric space (M,dF ), that is we have

dF (ϕ(x), ϕ(y)) = dF (x, y),

for any points x, y ∈ M ([6]). The isometry group of (M,F ) is a Lie group of

transformations on M .

A smooth vector field X on M is called an F -Killing vector field if every

local one-parameter transformation group ϕt of M generated by X consists of

local isometries of (M,F ).
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Proposition 2. (1) The vector field W = µ ∂
∂θ is a Killing vector field on

the surface of revolution M for the Riemannian structures h and a, as well

as for the Randers metric F = α+ β.

(2) The compact Lie group SO(2) acts by isometries on (M,F ), (M,h) and

(M,a).

Proof. 1. Remark that the tangent map of the flow φ of W is actually the

identity map of TxM , for any x = (r, θ) ∈M , that is

φ∗,x : TxM → Tφs(x)M, φ∗,x(X) = X|φs(x).

Then the details follows direct from the definitions.

2. Remark that if we write the surface of revolution (5) as Φ : M → C× R,
(r, θ) 7→ (m(r)eiθ, r), then we can define the action

ξ : SO(2)×M →M, (α, p) 7→ (m(r)ei(θ+α), r),

for any p = (m(r)eiθ, r) ∈ M . We show that this action is by isometries, that

is ξα : M → M , ξα(p) = ξ(α, p) is an isometry for each of the three metrical

structures on M , for any α ∈ S1 = SO(2).

Locally, on M , we can see that ξα :M →M actually is

ξα(p) = ξα(Φ(r, θ)) = ξα(m(r)eiθ, r) = (m(r)ei(θ+α), r) = Φ(r, θ + α),

that is, on M , we have ξα : (r, θ) 7→ (r, θ + α) and hence the tangent mapping

(ξα)∗,(r,θ) : T(r,θ)M → T(r,θ+α)M is the identity map. Therefore, taking into

account that functions hij , aij , bi are all depending on r only, that is are all

rotational invariant, the mapping ξα must be an isometry for the three metrical

structures on M . �

We can prove now one important result.

Proof of Theorem 1.1. Recall that Zermelo navigation gives

h(γ̇(s), γ̇(s)) = 1 if and only if F (Ṗ(s), Ṗ(s)) = 1. (10)

Then the conclusion follows from [11], or can be verified directly. �

Corollary 1. The pair (M,F ) is a forward complete Finsler surface of Ran-

ders type.
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Proof. If γ(s) = (r(s), θ(s)) is an h-geodesic that can be extended to in-

finity by taking s → ∞, then the corresponding Finslerian geodesic P(s) =

(r(s), θ(s) + µs) can also be extended to infinity. Therefore, the completeness

of the Riemannian metric h implies the completeness of F . �
Proposition 3. Let q ∈M be a point different from the vertex p and assume

q = (r0, 0). Consider the parallel {r = r0} through q, γ : [0, 2π] →M , on M and

denote by γ+ and γ− the same parallel traced in the direction of W and −W ,

respectively.

Then there exists a point q̂, different from q, on γ|[0,2π] such that

LF (γ
+|qq̂) = LF (γ

−|qq̂) = πµm(r0),

where γ+|qq̂ and γ−|qq̂ denote the arcs of γ+ and γ− from q to q̂, respectively.

Proof. Since γ is a parallel, we have γ̇ = (0, 1), ˙γ+ = W = (0, µ), ˙γ− =

−W = (0,−µ).
For any s1, s2 ∈ [0, 2π) the F -length of the sub-arcs γ+|[0,s1] and γ−|[0,s2],

respectively, are

LF (γ
+|[0,s1]) =

∫ s1

0

F (γ̇+)ds =

∫ s1

0

[√
a22(γ+(s))(γ̇+(s))2 + b2(γ

+(s))γ̇+(s)
]
ds

=

∫ s1

0

[
m(r0)

1− µ2m2(r0)
· µ− µm2(r0)

1− µ2m2(r0)
· µ

]
ds =

µm(r0)

1 + µm(r0)
s1 (11)

and similarly

LF (γ
−|[0,s2]) =

µm(r0)

1− µm(r0)
s2. (12)

Putting now conditions that two travellers on the parallel {r = r0} starting

from q tracing γ+ and γ−, respectively, meet on the way at the point q̂ = γ+(s1) =

γ−(s2), and that they travel equal lengths, we get the linear systems1 + s2 = 2π
s1

1 + µm(r0)
=

s2
1− µm(r0)

with the solution (s1, s2) = (π(1 + µm(r0)), π(1 − µm(r0))) and hence the con-

clusion follows. �
Corollary 2. For each r0 ∈ R such that m′(r0) = 0, there exists two closed

unit speed F -geodesics P+ and P− on M , that trace the parallel {r = r0} in the

direction of W and −W , of length

L+
F (r0) =

2πm(r0)

1 + µ ·m(r0)
and L−

F (r0) =
2πm(r0)

1− µ ·m(r0)
,

respectively.
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Proof. It follows immediately from formulas (11) and (12) by putting s1 =

2π and s2 = 2π, respectively. �

Remark 2.4. (1) The h-length of the parallel {r = r0} is Lh(r0) = 2πm(r0).

(2) Remark that L+
F (r0) < Lh(r0) < L−

F (r0). This is constant with fundamen-

tal property of the solution of Zermelo navigation problem, namely that

the F -geodesics deviated in the rotation direction are always shorter than

h-geodesics. Nevertheless, in the case of Randers rotational surface or revo-

lution, this is true for any parallel, regardless it is geodesic or not.

(3) The number of closed F -geodesics on M is double the number of closed h-

geodesics.

Corollary 3. If the function m has n discrete critical points, then there

exists at least 2n closed F-geodesics on M .

Lemma 2.4. For any point q ∈ M the h-distance and F -distance from p

to q coincide, i.e. dF (p, q) = dh(p, q).

6 6

-

�

q̃ q

p

P

γ µq

Figure 2. The h and F -distances from the vertex for a classical surface

of revolution.

Proof. If q = p the result is trivial. Let us consider q ̸= p to belong to a

parallel {r = r0}, that is q has coordinates (r0, θ0), and let us consider the h-unit
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speed meridian µq: {θ = θ0} from p through q. Obviously dh(p, q) = r0. On

the other hand, the unit speed F -geodesic P : [0, L] → M from p to q can be

constructed in the following way. Let us denote by q̃ the point on the parallel

{r = r0} through q such that q̃ = φ(−L, q) where φ is the flow of the wind W ,

and by γ the h-unit speed meridian from p to q̃, that is γ(s) = φ(−s,P(s)).

The existence of such a point q̃ is guaranteed by the intermediate value theorem.

Obviously dh(p, q̃) = r0 = L since both h-geodesic γ and F -geodesic P use the

same unit length parameters (see Figure 2). �
Remark 2.5. We observe that the h-circles {x ∈ M : dh(p, x) = ρ} coincide

with the F -circles {x ∈ M : dF (p, x) = ρ}, for any ρ > 0, i.e. the h-parallels

coincide with the F -parallels.

Remark 2.6. More generally, we can define a generic abstract Finsler surface

of revolution, not necessarily of Randers type.

A complete Finsler manifold (M,F ) homeomorphic to R2 that admits a point

p ∈M such that for any two points x, y ∈M , such that dF (p, x) = dF (p, y), there

exists a Finsler isometry φ : M → M such that φ(x) = y is called an abstract

Finsler surface of revolution.

The rotational Randers metric constructed above is a special case of abstract

Finsler surface of revolution.

Nevertheless, it worth mentioning that the flag curvature K of F = α + β

is constant on each geodesic circle {x ∈ M : dF (p, x) = ρ} ⊂ M , for any radius

ρ > 0 (see Lemma 4.1). The point p is called the vertex of the surface of revolution

(M,F = α+ β) and in this case it coincides with the vertex of (M,h).

We restrict ourselves in the present paper to this special metric leaving the

general case of an abstract Finsler surface of revolution for a forthcoming research.

2.3. The isometric embedding. We consider now the problem if (M,F ) can

be isometrically embedded in a Minkowski space.

Let us begin by constructing a rotational Minkowski metric of Randers type

F̃ = α̃ + β̃ in R3 obtained from the Zermelo navigation data (R3; δ, W̃ ), where

δ = (δij) is the canonical Euclidean metric of R3 and W̃ = (−µy, µx, 0) is the

rotation around the z axis, where µ > 0 is a positive constant.

First thing to notice is that |W̃ |δ = µ2(x2 + y2) and hence |W̃ |δ < 1 if and

only if x2 + y2 < 1
µ2 . Therefore, in order to obtain a positive definite Minkowski

metric F̃ = α̃+ β̃ we will restrict ourselves to the cylinder

Uµ :=

{
(x, y, z) ∈ R3 : x2 + y2 <

1

µ2

}
. (13)

We obtain immediately
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Proposition 4. The pair (Uµ, F̃ = α̃ + β̃) is a positive definite Minkowski

space of Randers type obtained as a solution of Zermelo navigation problem in R3

with navigation data (δ, W̃ ), where Uµ is given by (13) where (x, y, z, Y 1, Y 2, Y 3)

are coordinate in TR3.

Indeed, remark that F̃ is obtained through the Zermelo navigation process

from navigation data (δ, W̃ ) in R3. Obviously the sectional curvature of δ is zero

and W̃ is Killing with respect to δ, this from Theorem 3.1. in [4] it follows that

F̃ must be of zero flag curvature, that is Minkowski.

A simple computation shows that in this case the Riemannian metric (ãij)

and function (b̃i) obtained through Zermelo navigation process from δ and W̃ are

(ãij) =
1

λ̃2

1− µ2x2 −µ2xy 0

−µ2xy 1− µ2y2 0

0 0 λ̃

 , (b̃i) = − 1

λ̃
W̃ , (14)

where λ̃ = 1− µ2(x2 + y2).

Lemma 2.5. The mapping ϕ : M → R3, (r, θ) 7→ (m(r) cos θ,m(r) sin θ, r)

is an isometric embedding of (M,a) in (R3, ã), where a = (aij) is given in (9) and

ã = (ãij) in (14).

Proof. Taking into account that

(dx, dy, dz) = (m′ cos θdr −m sin θdθ,m′ sin θdr +m cos θdθ, dr)

a straightforward computation shows that

ã = ã11(dx)
2 + ã22(dy)

2 + ã33(dz)
2 + 2ã12dxdy = a11(dr)

2 + a22(dθ)
2 = a. �

Lemma 2.6. The linear 1-form β is mapped to β̃, that is ϕ∗(β) = β̃, where

β = b2(r) ·y2 and β̃ = b̃1Y
1+ b̃2Y

2, (bi)i=1,2 is given in (9) and (b̃j)j=1,2,3 in (14).

Proof. Using notations y = y1 · ∂
∂r + y2 · ∂

∂θ = (yi)i=1,2 ∈ TM and Y =

Y 1 · ∂
∂x + Y 2 · ∂

∂y + Y 3 · ∂
∂z = (Y j)j=1,2,3 ∈ TR3 ≃ R3.

Then, {
y1 ·m′ cos θ − y2 ·m sin θ = Y 1

y1 ·m′ sin θ + y2 ·m cos θ = Y 2

and solving this linear system for y1, y2 we obtain
y1 =

1

m′ (cos θ · Y
1 + sin θ · Y 2)

y2 =
1

m
(− sin θ · Y 1 + cos θ · Y 2).
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We compute now

ϕ∗(b2y
2) = ϕ∗

(
−µm2

1− µ2m2
· y2

)
=
µy

λ̃
· Y 1 − µx

λ̃
· Y 2 = b̃1Y

1 + b̃2Y
2. �

We obtain

Proof of Theorem 1.2. Let us assume that there exists an Riemannian

isometric embedding ϕ : (M,h) → (R3, δ), for instance we consider the map-

ping ϕ defined in Lemma 2.5 (it can be easily checked that this is a Riemannian

isometric embedding). From Lemmas 2.5 and 2.6 follows that this ϕ is an isomet-

ric embedding of the rotational Randers space (M,F ) into the Minkowski space

(Uµ, F̃ ).

Conversely, assume that there exists a Finslerian isometric embedding ϕ of

the rotational Randers space (M,F ) into the Minkowski space (Uµ, F̃ ). A straight-

forward computation shows that the mapping ϕ defined in Lemma 2.5 satisfies

this requirement. Then, by same computations as above one can easily check that

this ϕ is actually a Riemannian isometric embedding of (M,h) into (R3, δ). �

More general results concerning isometrically embeddings for Randers type

metrics with Zermelo navigation data (h,W ), where h is an isometrically embed-

ded Riemannian metric in R3 and W is a Killing vector field, will be reported

elsewhere.

3. Geodesics of a Randers rotational surface of revolution

3.1. The Clairaut relation. We are interested in finding a similar relation

with the Clairaut relation for the geodesics of (M,F ). One can easily see that

there are many directions to approach this problem. Simply study how is the

h-Clairaut constant ν controlling the behaviour of Finslerian geodesics, search

for a substitute of the Clairaut constant in the Finslerian case, or can replace

sinϕ = cos(π2 −ϕ) with the Finslerian inner product g. We will consider here the

simplest case.

Remark first that θ is cyclic coordinate for the Finslerian Lagrangian LF =

F 2 = (α + β)2 as well, that is ∂LF

∂θ = 0. From the general theory of calculus of

variations it follows that ∂
∂θ is an infinitesimal symmetry and that the Finslerian

momentum

p2 :=
1

2

∂LF

∂y2

is a first integral for LF .
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A simple computation shows that the α-length of the tangent vector Ṗ of an

F -geodesic P(s) is given by

α2(P, Ṗ) =

(
1 + µν

1− µ2m2(r(s))

)2

.

Then we get

Theorem 3.1. The conservation law for the Finslerian momentum p2 is

given by

p2(s) =
ν

1 + µν
.

Proof. One can see that

p2 =
1

2

∂F 2

∂y2
= F · ∂F

∂y2
= F

∂(α+ β)

∂y2
= F ·

[
a22y

2√
a11(y1)2 + a22(y2)2

+ b2

]
,

where we take into account ∂α2

∂y2 = 2α22y
2.

We will evaluate now p2 on the F -geodesic P(s):

p2(s) =

[
a22(r(s))Ṗ2

α(P, Ṗ)
+ b2(r(s))

]
=

ν

1 + µν
,

by making use of a22(r(s))Ṗ2 = ν+µm2

λ2 . �

We have seen that the basis of Clairaut relation for h-geodesic is that the

inner product h
(
γ̇, ∂

∂θ

)
= ν is constant.

For the Finslerian case, we get

Proposition 5. The Finslerian inner product of Ṗ and ∂
∂θ is constant.

Proof. We remark first that

1

2

∂F 2

∂y2
(y1, y2) = gy

(
y,

∂

∂θ

)
, where y = y1

∂

∂r
+ y2

∂

∂θ
∈ T(r,θ)M. (15)

Indeed, by taking into account 0-homogeneity of g we have:

1

2

∂F 2

∂y2
=

1

2

∂

∂y2
[
gij(y)y

iyj
]
= g21(y)y

1 + g22(y)y
2.

On the other hand,

gy

(
y,

∂

∂θ

)
= gy((y

1, y2), (0, 1)) = g12(y)y
1 + g21(y)y

2
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and hence formula (15) follows.

Now, by evaluating (15) along F -geodesics P(s) and taking into account

Theorem 3.1 we obtain

gṖ

(
Ṗ, ∂

∂θ

)
=

ν

1 + µν
. �

Formally, we can define the Finslerian cosine function cosF by

gy(y,W ) = |y|gy · |W |gy · cosF (y,W ) =
√
gy(W,W ) · cosF (y,W ).

Hence, from Proposition 5, we obtain

gṖ

(
Ṗ, ∂

∂θ

)
=

√
gṖ

(
∂

∂θ
,
∂

∂θ

)
· cosF

(
Ṗ, ∂

∂θ

)
=

√
g22(P, Ṗ) · cosF

(
Ṗ, ∂

∂θ

)
and therefore we have

Corollary 4. √
g22(P, Ṗ) · cosF

(
Ṗ, ∂

∂θ

)
=

ν

1 + µν
.

This formula is the Finslerian version of the Clairaut relation given in The-

orem 2.1.

Remark 3.1. (1) One can now compute g22 for the Randers metric F = α+β

and substitute on the Corollary above, but we don’t need to do this here.

(2) A comparison of Finslerian cosF and usual cos should be interesting . We

will leave this study for another paper.

Remark 3.2. We observe again that Clairaut relation is equivalent to saying

that for the geodesics variation with the variation vector field tangent to parallel

direction, the constant vector field V = ν
1+µν · ∂

∂θ is a Jacobi vector field along

the base geodesic.

We denote the angles of the h-geodesic γ and the F -geodesic P with a merid-

ian by ϕ and ψ, respectively.

Then by straightforward computation we obtain

h(γ̇, Ṗ) = 1 + µν = constant. (16)

On the other hand, by using the definition of the scalar product, it follows

h(γ̇, Ṗ) = |γ̇| · |Ṗ| · cos(ψ − ϕ)

= |Ṗ| · cos(ψ − ϕ) =
√
1 + 2µν + µ2m2 cos(ψ − ϕ), (17)
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γ̇ Ṗ

Figure 3. The angle ψ between Ṗ and a meridian.

where we remark that

|Ṗ(s)| =
√
h(γ̇(s) +W, γ̇(s) +W ) =

√
h(γ̇(s), γ̇(s)) + 2h(W, γ̇) + h(W,W )

=

√
1 + 2µh

(
∂

∂θ
, γ̇

)
+ µ2h

(
∂

∂θ
,
∂

∂θ

)
=

√
1 + 2µ

dθ

ds

∣∣∣∣ ∂∂θ
∣∣∣∣2 + µ2

∣∣∣∣ ∂∂θ
∣∣∣∣2

=

√
1 + 2µ

dθ

ds
m2 + µ2m2 =

√
1 + 2µν + µ2m2. (18)

Proof of Theorem 1.3. 1. It follows immediately from relations (16)

and (17).

2. Another version of Finslerian Clairaut relation is also possible.

We compute as before

h

(
Ṗ(s),

∂

∂θ

)
= h

(
γ̇(s) +W,

∂

∂θ

)
= h

(
γ̇(s),

∂

∂θ

)
+ h

(
W (s),

∂

∂θ

)
=

(
dθ

ds
+ µ

)
m2. (19)

On the other hand, from the inner product definition we have

h

(
Ṗ(s),

∂

∂θ

)
= |Ṗ(s)| ·

∣∣∣∣ ∂∂θ
∣∣∣∣ · cos(π2 − ψ

)
, (20)

where | · | =
√
h(·, ·).

Using now (19) and (18), relation (20) implies the relation. �
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3.2. Geodesics behaviour on a Randers surface of revolution. We are

going to characterise the behaviour of the Randers geodesics by making use of

the Riemannian Clairaut relation for h or/and one of the Finslerian versions.

Let (M,F ) be a forward complete non-compact Finsler surface. A point

p ∈ M is called a pole if any two geodesics from p do not meet again. In other

words, the cut locus of p is empty.

A unit speed geodesic of (M,F ) is called a forward ray if dF (γ(0), γ(s)) = s,

for all s ≥ 0. In other words a forward ray is a globally forward minimizing

F -geodesic.

Proposition 6. If γ(s) = (r(s), θ(s)) is an h-ray, then the twisted ray

P(s) := (r(s), θ(s) + µs) is a forward ray.

Proof. Since γ is h-ray it follows P(s) is F -unit speed geodesic and taking

into account that h(γ̇(s), γ̇(s)) = F (Ṗ(s), Ṗ(s)) = 1 it follows P(s) is F forward

ray. �

It follows

Proposition 7. (1) If γ(s) = (r(s), θ0) is a meridian, then the twisted

meridian P(s) = (r(s), θ0 + µs) is a forward ray.

(2) A twisted meridian can not be tangent to a parallel nor to a meridian.

(3) The twisted meridians are not h-geodesics.

Proof. 1. It follows immediately from Proposition 6.

2. Since P(s) is a twisted meridian, the corresponding h-geodesic γ must be

a meridian, that is, ϕ = 0 and ν = 0 along γ.

Then the Clairaut relations (2) and (3) for our Finsler metric read

cosψ =
1√

1 + µ2m2
, (21)

and

sinψ =
µm√

1 + µ2m2
, (22)

respectively.

If the twisted meridian P(s) is tangent to a parallel in a point (r(s1), θ(s1))

it means ψ(s1) = π
2 , and Finslerian Clairaut relation (21) gives cos

(
π
2

)
= 0 =

1√
1+µ2m2(r(s1))

that is not possible.

Likely, if P(s) is tangent to a meridian in (r(s1), θ(s1)) it means ψ(s1) = 0

and Finslerian Clairaut relation (22) gives sin 0 = 0 = µm√
1+µ2m2

, that is not

possible either.
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3. Let us assume that γ(s) = (r(s), θ0) is a meridian on M , that is, γ is

a h-geodesic with Clairaut constant ν = 0. If the twisted meridian P(s) =

(r(s), θ0+µs) would also be an h-geodesic, then it should satisfy the Riemannian

Clairaut relation m(r(s)) sinψ(s) =constant.

However, Finslerian Clairaut relation for the twisted meridian P(s) given in

(22) implies

m(r(s)) sinψ(s) =
µm2√

1 + µ2m2
,

and this cannot be constant except for m = constant, but this is not possible due

to our definition of M . �

Remark 3.3. Relations (21) and (22) give the following Finslerian Clairaut

relation for twisted meridians

m(r(s))| cotψ(s)| = 1

µ
. (23)

If γ : {r = r0} is a parallel on M such that m′(r0) = 0, then P(s) =

(r0, θ(s)+µs) is the same parallel γ as set of points (as non-parametrized curve).

We get

Proposition 8. Parallels P(s) = (r0, θ(s)+µs) onM , such that m′(r0) = 0,

are geodesics of (M,F ).

We also have

Proposition 9. Meridians can not be F-geodesics.

Proof. Assume that the F -geodesic P is a meridian, that is we can write

P(s) = (r(s), θ0), and taking into account that this is also an F -geodesic it follows

that it must exist an h-geodesic γ(s) = (r(s), θ̃(s)) such that P(s) = (r(s), θ0) =

(r(s), θ̃(s)+µs). This means that the pre-image h-geodesic is γ(s) = (r(s), θ̃(s) =

θ0 − µs), and thus dθ̃(s)
ds = −µ.

But γ(s) being an unit speed h-geodesic means(
dr

ds

)2

= 1− µ2m2(r(s)) (24)

and

d2r

ds2
−mm′µ2 = 0 (25)

2µ
m′

m

dr

ds
= 0. (26)
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Since dr
ds cannot vanish due to (24) and positive definiteness of F , the second

equation above shows that this is possible only in the case m′(r(s)) = 0, that is,

m is constant along a meridian, but this is not possible. �

We will find the explicit equation of a segment of a geodesic of (M,F ), i.e.

P2(P1).

We recall that for the unit speed h-geodesic γ(s) = (r(s), θ(s)) we have(
dr
ds

)2
= m2−ν2

m2 .

It results ds
dr = m·

√
1

m2−ν2 and therefore from (7) we have dθ
dr = ν

m ·
√

1
m2−ν2 .

Using these, we can write

dP2

dP1
=
dθ

dr
+ µ · ds

dr

=
ν

m
·
√

1

m2 − ν2
+ µ ·m ·

√
1

m2 − ν2
=

( ν
m

+ µ ·m
)√

1

m2 − ν2
,

hence, we get

P1 = r, P2 =

∫ ( ν
m

+ µ ·m
)√

1

m2 − ν2
dr + C1

= θ(r) + µ

∫
m√

m2 − ν2
dr + C1, (27)

where C1 is the integration constant.

If we denote

ξ(r, ν) :=
ν

m

√
1

m2 − ν2
, η(r, ν) :=

m√
m2 − ν2

(28)

for m(r) > |ν|, then we get

Proposition 10. Let γ : [a, b) → M , γ(s) = (r(s), θ(s)) be a unit-speed

Riemannian h-geodesic whose Clairaut’s constant ν is nonzero. If r′(s) is nonzero

on [a, b) then the geodesic P parametrized by u satisfies

P2(b)−P2(a) ≡ ϵ

∫ r(b)

r(a)

(ξ(r, ν) + µη(r, ν)) dr mod 2π, (29)

b− a = ϵ

∫ r(b)

r(a)

η(r, ν)dr, (30)

where ξ and η are the functions defined in (28), and ϵ denoted the sign of

r′(s), s ∈ [a, b).
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Proof. It easy to see that (29) follows from (27) and in the fact that

b− a =

∫ b

a

ds =

∫ r(b)

r(a)

dr

r′(s)
= ϵ

∫ r(b)

r(a)

η(r, ν)dr. �

Remark that by combining (29) and (30) we get

P2(b)− P2(a) = θ(b)− θ(a) + µ(b− a),

a formula in accord with Theorem 1.1.

Similar with the Riemannian case we have

Proposition 11. Let P : I → M be a Finslerian unit speed geodesic. If

P = (r(s), θ(s) + µs) is not a parallel then the zero points of r′ are discrete.

Furthermore, if r′ = 0 for some s0 ∈ I then m′(r(s0)) is nonzero.

Proof. Let P = (r(s), θ(s) + µs) be a Finslerian unit speed geodesic that

is not a parallel.

• If P is a meridian. Then conclusion is obvious.

• If P is not a meridian, i.e. P do not pass through the vertex of M and

r′(s0) = 0, then P is tangent to the parallel r = r(s0) but P is not a parallel,

and therefore m′(r(s0)) ̸= 0. Since P1(s) = r(s) from the equations of the

h-geodesics it follows r′′(s0) ̸= 0.

That is, s0 is a critical non-degenerate point for the function r and therefore

its critical points are discrete. �

Another interesting property of geodesics on a surface of revolution is the

following:

Proposition 12. A geodesic P of (M,F ) can not be asymptotic to a parallel

which is not geodesic.

Proof. Recall that the same property holds for Riemannian geodesics γ of

the surface of revolution (M,h) (see for example [1]).

We assume that the F -geodesic P is asymptotic to a parallel {r = r0} which

is not a geodesic, that is m′(r0) ̸= 0. This means that {r = r0} is not geodesic

for the Riemannian metric h, nor for the Randers metric F . Since P is an F -

geodesic it follows that it exists a unit speed h-geodesic γ(s) = (r(s), θ(s)) such

that P(s) = (r(s), θ(s) + µs).

On the other hand, this formula shows that P asymptotic to {r = r0} means

that γ(s) must be asymptotic to {r = r0}. But this is not possible because the

Riemannian geodesic γ(s) can not be asymptotic to a parallel which is not a

geodesic. �



The geometry of a Randers rotational surface 493

We have shown that the parallels and meridians can be geodesics for F and

h in the same time. What about the rest of the geodesics? In particular we would

like to know if F is a Riemannian projectively equivalent surface. We will show

that this is not the case.

Straightforward computations show

Proposition 13. (1) The Riemannian metrics a and h are not projectively

equivalent.

(2) The Riemannian metric a and the Randers metric (M,F ) are not projectively

equivalent.

(3) The parallels and meridians of M are geodesics for (M,a).

In other words, an h-geodesic that is not a parallel nor a meridian is not a

geodesic of the Randers metric F . This shows that actually the geodesics of these

two structures are different. Obviously the twisted meridians are F -geodesics, but

they can not be h-geodesics, provided m(r) is not constant, that is not possible

in the present case.

Example 1 (A Randers paraboloid-like surface of revolution). We start by

constructing a rotational Randers metric on the surface of revolution with profile

curve

m : [0,∞) → R, m(r) =
r√

µ2r2 + 1
(31)

where µ is a positive constant. This function is bounded m(r) < 1
µ and when

revolved around z axis it gives a smooth surface of revolution, homeomorphic

to R2, that we call paraboloid-like.

If we consider the Riemannian surface of revolution (M,h), then from general

theory one can easily see that meridians are h-geodesics and there are no parallel

geodesics on M .

An h-geodesic of (M,h) that is not a meridian, when traced in the direction

of increasing parallels radii, intersect infinitely many times all the meridians.

Moreover, an h-geodesic of (M,h) that is not a meridian, intersects itself an

infinite number of times. The proofs are similar to the general case (see for

example [1]).

Proposition 14. Let (M,F ) be a Randers paraboloid-like surface of revo-

lution.

(1) There is no parallel geodesic.

(2) The twisted meridians are F -geodesics that intersect infinitely many times

all meridians of M .
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Figure 4. A Randers paraboloid-like surface of revolution for µ = 1.

The paraboloid-like with a meridian (a); the paraboloid-like with a

meridian (the straight line in the middle) and the same meridian

twisted by a wind with µ = 1 (b); the paraboloid-like seen from

the side with one meridian (the straight line in the middle) and four

twisted meridians at π
4

from each other (c); same picture seen from

the North pole (d).

(3) A geodesic that is not a twisted meridian intersects itself an infinite number

of times.

Proof. The first and second statements are obvious from the previous dis-

cussions.

The third statement follows from the fact that an h-geodesic γ of M that is

not a meridian intersects itself an infinite number of times. �

4. Rays, poles and cut locus of a Randers rotational surface

of revolution

4.1. Rays and poles. We will consider in the following a rotational Randers

surface of revolution (M,F ) which is forward complete, non-compact and home-

omorphic to R2. Let p be the vertex of M .
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Proposition 15. If lim infr→0 LF (r) = 0 then for any point q ̸= p, the

sub-ray Pq|[d(p,q),∞) of the twisted meridian Pq from p through q is the unique F

forward ray emanating from q.

Proof. First of all, taking into account that the h-length of the parallel is

Lh(r) = 2πm(r), by comparing with Corollary 2 we observe that lim infr→0 LF (r)

= 0 is equivalent to lim infr→0 Lh(r) = 0, and therefore on (M,h) the only h-ray

from q is the sub-ray of the meridian from p through q. It follows that the sub-

ray Pq|[d(p,q),∞) of the twisted meridian Pq from p through q is a forward ray of

(M,F ) emanating from q.

We show that this is the unique such ray. Assume γ is an F forward ray

which is not tangent to any twisted meridian, that is ν ̸= 0. Then the hypothesis

and Clairaut relation (8) implies γ must be bounded and therefore it cannot be

forward ray. �

Proof of Theorem 1.4. Since our profile function m is bounded, i.e.

m(r) < 1
µ , it follows

1
L2

h(r)
= 1

4π2
1

m2(r) ≥
µ2

4π2 and hence∫ ∞

1

1

L2
h(r)

dr = lim
τ→∞

∫ τ

1

1

4π2

1

m2(r)
dr ≥ µ2

4π2
lim
τ→∞

∫ τ

1

dr =
µ2

4π2
lim
τ→∞

(τ − 1) = ∞.

Therefore we obtain
∫∞
1

1
L2

h(r)
dr = ∞ and Lemma 2.2 implies that for the

Riemannian surface of revolution (M,h) the vertex p is the unique pole. The

conclusion follows from Propositions 6 and 15. �

Remark 4.1. In this case, the Busemann function bγ of a ray γ in (M,F ) co-

incides with the distance from p up to a constant, i.e. bγ(x) = dF (p, x)+constant,

for x ∈ M , the level sets b−1
γ are parallels on M , and bγ is an exhaustion (see

[10], [12] for details on Busemann functions for Finsler manifolds).

4.2. von Mangoldt surfaces. Recall that in the Riemannian case von Man-

goldt surfaces are surfaces of revolution with nice properties. We are going to

introduce here some Finslerian equivalent of these.

Lemma 4.1. The flag curvature K of the Randers rotational metric (M,F =

α + β) given by (9) lives on the base manifold M . Moreover K = G, where G is

the Gauss curvature of (M,h).

Proof. Firstly we recall that any Riemannian surface (M,h) is an Einstein

manifold with Ricci scalar Ric(h) = G(x). Two dimensional Einstein spaces are

therefore not interesting for Riemannian geometry, but this is not the case for

Finslerian case.
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Let us recall a result from [3]. Consider a Randers manifold (M,F = α+ β)

solution of the Zermelo’s navigation problem with navigation data (h,W ), where

(M,h) is a non-flat Riemannian manifold. Then (M,F ) is Finsler–Einstein with

Ricci scalar Ric(F ) = K(x) if and only if (M,h) is Einstein with Ricci scalar

Ric(h) = K(x), and W is Killing vector field for (M,h).

Let us particular this result to the case of the Randers rotational surface

described in the present paper. Based on what we observed already it follows that

on (M,F = α+β) is always Finslerian–Einstein with Ricci scalar Ric(F ) = K(x),

where K is the sectional curvature of (M,F ). Indeed, in the 2-dimensional case,

if we consider an g-orthonormal basis {e1, e2} of TxM , then

K = R 1
2 12 = Ric(F ),

where g is the Hessian of F 2, and R the Riemannian curvature tensor of F the

Finsler metric (see for example [2], p. 99). �

We give the following general definition.

Definition 4.1. The Finsler surface of revolution (M,F ) is called a Finsler

von Mangoldt surface if, for any two points x1, x2 ∈M such that

dF (p, x1) ≥ dF (p, x2)

we have

K(x1, y1) ≤ K(x2, y2) for all y1 ∈ T̃x1M, y2 ∈ T̃x2M

where T̃x1M = Tx1M/{0}, T̃x2M = Tx2M/{0}.

Obviously this is the natural generalisation of the Riemannian von Mangoldt

surfaces to the Finslerian setting.

Proposition 16. The Randers rotational surface of revolution (M,F =

α + β) is a Finsler von Mangoldt surface if and only if (M,h) is a Riemannian

von Mangoldt surface.

Proof. Assume (M,h) is von Mangoldt, that is G(x) ≤ G(y) for any points

x, y ∈ M such that dh(p, x) ≥ dh(p, y). Lemmas 2.4 and 4.1 imply (M,F ) is

Finsler von Mangoldt.

Conversely, if (M,F ) is Finsler von Mangoldt, then (M,h) must be von

Mangoldt. �

Now we can easily characterise the cut locus of our Randers rotational sur-

face.
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Remark 4.2. (1) Recall that an F -geodesic ray from p is obtained by twist-

ing a meridian on M .

More precisely, as explained already in the proof of Lemma 2.4 we can

construct the F -ray from p through any point q ̸= p as follows:

(a) Take the parallel γ : {r = r(q)} through q.

(b) Consider a point q− on this parallel such that φ(ρ, q−) = q, where

ρ := dh(p, q). Obviously such a point always exists on the universal

covering γ̃ : [0,∞) → M of the parallel γ by the intermediate value

theorem.

(c) Consider the meridian µq− from p through q−.

Then the F -geodesic Pq : [0,∞) → M , Pq(s) = φ(s, µq−(s)) from p =

Pq(0) = µq−(0) through q is obtained by twisting the meridian µq− as shown

by Theorem 1.1 (see Figure 5).

p q− = µq−(ρ)

q

µq−

Pq

-

* 6

Figure 5. The F -geodesic from p through q.

(2) Remark that we can always extend an F -ray P from p, i.e. a twisted merid-

ian, beyond its initial point obtaining in this way an F -geodesic segment by

twisting a similarly extended meridian. For any point q ̸= p in M it is cus-

tomary to denote by τq : [0,∞) →M be the unit speed h-geodesic emanating

from q = τq(0) through p = τq(ρ), where dh(q, p) = ρ.

In this way we can construct Finsler geodesic segments from a point

q ̸= p to p (see Figure 6). Remark that we obtain the geodesic segment

P−
q : [−ρ, 0] → M , P−

q (s) = φ(s, µ−
q−(s)) = φ(s, µq−(−s)) where we denote

µ−
q−(s) := µq−(−s) the inverse oriented meridian from p to q, µ−

q−(−ρ) = q−,

µ−
q−(0) = p, ρ := dh(q, p) = dF (q, p). Let us denote the F -geodesic from q

through p obtained in this way by ωq : [0,∞) →M , ω(s) = φ(s, τq−(s)). We
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say that ωq is obtained by twisting τq− by the flow of W keeping the vertex

p fixed.

p

q− = τq−(0)

q

τq−

ωq

-

*?
P−
q |[−ρ,0]

Figure 6. The F -geodesic from q to p.

We will use in the following the naming h- and F -conjugate points for the

conjugate points with respect to the Riemannian metric h and the Finslerian

metric F , respectively. Similarly, we will use h- and F -cut points for the cut

points with respect to the Riemannian and Finslerian metric, respectively.

Proof of Theorem 1.5. First of all, observe that from our hypothesis we

know that the h-cut locus of q is exactly τq|[c,∞), where τq(c) is the first h-

conjugate point of q along τq (see Theorem 7.3.1 in [13]).

We divide our proof in two steps.

At the first step, we will establish the correspondence of h-conjugate points

of q along τq with the F -conjugate points of q along an F -geodesic from q.

Let x̃ = τq(c) the h-conjugate point of q along the h-geodesic τq. Observe

that in the case of the Riemannian surface of revolution (M,h), c < ρ, because

p is the unique pole for h. This is equivalent to saying that x̃ is conjugate to q

along µ−
q .

Recall from Remark 4.2 that an F -geodesic from q to p is obtained by twisting

the inverse oriented meridian µ−
q− through q−, where q− is the point on the same

parallel with q chosen such that φ(ρ, µ−
q−(ρ)) = q, where ρ = dF (q, p) = dh(q, p).

Observe that x̃ = µ−
q (−c) is the first conjugate point of q along µ−

q if and

only if x− = µ−
q−(−c) is the first conjugate point of q− along µ−

q− , where x
− is

obtained by intersecting the parallel through x̃ with µ−
q− . The proof of this fact

is trivial by Proposition 7.2.4 in [13]. Indeed, recall that the Jacobi field along
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τq− is given by

Yq−(s) = Ma1,ρ(s)
∂

∂θ
|µq−

, s ∈ [0, ρ],

where Ma1,ρ(s) is a smooth function along τq− |[0,ρ] depending on a constant a1
chosen such that m′ is positive on [0, a1] and ρ. It is straightforward to see that

x− is an h-conjugate point of q− along τq− if and only if x̃ is an h-conjugate point

of q along τq, i.e. x
− and x̃ are on the same parallel.

Moreover, if consider the tangent vector along ωq defined by

J(s) := φµq− ,∗(Yq−(s)),

then one can see that J is actually a Jacobi field along ωq. Indeed, one can easily

verify that the flow φ of W maps the solutions of the Jacobi equation for Yq−

into the solutions of the Jacobi equation for J(s), and therefore we have proved

that the first F -conjugate point of q is obtained at the intersection of the parallel

through the first h-conjugate point with ωq (see Figure 7).

? ?

-


-

q− q

p

P−
q

µ−
q− µ−

q

x− x x̃

Figure 7. The h and F -conjugate points of q along the corresponding

geodesics.

At the second step, we will do the same thing for cut points of q, i.e. we will

establish the correspondence of h-cut points of q with the F -cut points of q.

Firstly, we will show that a point x− is an h-cut point of q− such that

dh(q
−, x−) < dh(q

−, p), if and only if the point x, found at the intersection of

the parallel through x− with the twisted meridian P−, is an F -cut point of q. In



500 Rattanasak Hama, Pakkinee Chitsakul and Sorin V. Sabau

other words, we will show that µ−
q− : [−ρ,−l] → M is a global minimizer from

q− = µ−
q−(−ρ) to x− = µ−

q−(−l), l < ρ, if and only if P−
q : [−ρ,−l] → M is a

global minimizer from q = P−
q (−ρ) to x = P−

q (−l).
If µ−

q− : [−ρ,−l] → M is a global minimizer, we assume P−
q is not a global

minimizer from q to x, i.e. there exists a shorter F -geodesic Q−
q :[−ρ,−l0]→M

which is a global minimizer from q = Q−
q (−ρ) to x = Q−

q (−l0), l < l0. Let

us consider the pre-image γ− of Q−
q , that is γ− : [−ρ,−l0] → M , Q−

q (s) =

φ(s, γ−(s)). Clearly γ−(−ρ) = q−, γ−(−l0) = x−0 , and since l < l0, the point x−0
is between x− and x on the parallel through x.

Since on the surface of revolution (M,h) the meridians and parallel are or-

thogonal it follows dh(q
−, x−) < dh(q

−, x−0 ), but this is contradiction with our

assumption l < l0. The converse implication is similar and therefore P−
q is a

global minimizer from q to x, hence P−
q |[−c,0] = {x ∈ C(F )

q : dF (x, p) ≤ ρ}.
Secondly, we will show that a point ỹ ∈ τq|[ρ,∞) is an h-cut point of q if and

only if the point y, found at the intersection of the parallel through ỹ with the

twisted meridian {φ(s, τq(s)) : s ∈ [ρ,∞)} is an F -cut point of q.

Indeed, such a ỹ is an h-cut point of q if and only if there exists two h-

geodesic segments α1 and α2 on M from q to ỹ of equal h-length. By making

use of Theorem 1.1 and an argument similar to Proposition 3, we can see that

under the action of the flow φ the end point ỹ is clearly mapped into the point

y described above and the h-maximal geodesic segments α1 and α2 are deviated

into two F -geodesic segments of same F -length from q to y. This concludes the

proof (see Figure 8).

6

p

q−

x−

x̃

x

q τq

{φ(s, τq(s)) : s ∈ [ρ,∞)}

-

?

τq−

Figure 8. The F -cut locus of q. �
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Remark 4.3. In the proof of Theorem 1.5 second step, first part we have

shown that a globally minimizing h-geodesic is deviated by φ into an F -globally

minimizing geodesic. However, similarly with the final part of the proof above,

one can consider equal length h-geodesics from q− to a point x− ∈ C(h)
q− and show

that under the action of the flow φ the end point x− is clearly mapped into the

point x described above and the h-maximal geodesic segments from q− to x− are

deviated into two F -geodesic segments of same F -length from q to y.
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