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Intrinsic characterization of completely ruled
hypersurfaces

By VLADIMÍRA HÁJKOVÁ (Prague) and OLDR̆ICH KOWALSKI (Prague)

Abstract. The aim of the present paper is to give an intrinsic characterization
of completely ruled (immersed) hypersurfaces in Euclidean spaces through the induced

Riemannian metrics. The “number” of locally non-isometric hypersurfaces is also cal-
culated in each dimension.

There are many recent results devoted to, or related to, ruled subman-

ifolds, see e.g. [1], [2], [5]. Let us recall [5] that an isometric immersion ϕ

of a Riemannian manifold Nn in the Euclidean space Rn+1 is ruled if Nn

admits a continuous codimension one foliation such that ϕ maps each leaf

(“ruling”) onto an open subset of an affine subspace of Rn+1. A ruled map

ϕ : Nn → Rn+1 is completely ruled if all rulings are complete (and thus

isometric to Rn−1). In [5] the following remark was made (with a short

indication of the proof). Because this fact is essential for our purpose, we

shall formulate it as

Theorem A. If ϕ : Nn → Rn+1 (n ≥ 3) is completely ruled then the

scalar curvature s of Nn is constant along each leaf of the nullity foliation.

Here the nullity foliation means the integral foliation of the (n − 2)-

dimensional distribution of Nn consisting of the nullity spaces of the curva-

ture tensor. In particular, Nn must be a Riemannian manifold of conullity

two [4] unless it is flat in some domain. Also, let us remark that each
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ruling of Nn admits a codimension one foliation composed of the nullity

leaves of Nn.

Now, the following nontrivial theorem is crucial for our goal (see [3],

Theorem 5.1, in a slightly modified notation):

Theorem B. Let (Nn, g), n ≥ 3, be a locally irreducible Riemannian

manifold admitting the (n− 2)-dimensional nullity foliation and such that

its scalar curvature is constant along each nullity leaf. Then, in a neigh-

borhood of each point p of a dense open subset U ⊂ Nn, there exist local

coordinates w, x1, . . . , xn−1 and an orthonormal coframe of the form

(1)


ω0 = f(w, x1)dw,

ωi = dxi +

(
n−1∑
j=1

Ai
j(w)x

j

)
dw (i = 1, . . . , n− 1),

where f ̸= 0 and Ai
j(w) + Aj

i (w) = 0 The scalar curvature of this metric

is given by

(2) s = −2f−1fx1x1 .

Let us add that f ̸= 0 and Ai
j = −Aj

i are arbitrary smooth functions

where the second partial derivative fx1x1 is nonzero on an open dense

subset. Under these conditions the converse of Theorem B also holds

(cf. [6]), i.e., the formulas (1) and (2) determine a Riemannian metric of

conullity two. Here the nullity foliation is given by the relations w = const.,

x1 = const. In [6] some criteria of local irreducibility and completeness are

also given.

Now, Theorem A says that the immersed completely ruled hyper-

surfaces must belong, as Riemannian manifolds, to the class described in

Theorem B. (The rulings are then characterized by w = const.) Thus, our

next goal is to characterize all Riemannian manifolds from Theorem B

which admit (locally) an isometric immersion in Rn+1. The following cal-

culations generalize and extend those from [6], Section 12.

Let Vp be a simply connected neighborhood of a point p ∈ U in which

the metric g is described through the local coordinates w, x1, . . . , xn−1 and

the orthonormal coframe (1). We are looking for a (1,1) tensor field S (the

shape operator) satisfying the Gauss equation

(3) RXY Z = g(SX,Z)SY − g(SY,Z)SX
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and the Codazzi equation

(4) (DXS)Y = (DY S)X.

(Here D denotes the Levi–Civita connection, and we use the sign conven-

tion RXY = D[X,Y ] − [DX , DY ] for the curvature transformations.)

Let (E0, E1, . . . , En−1) be the orthonormal moving frame which is

dual to (ω0, ω1, . . . ωn−1). We have

(5)


E0 = f−1(w, x1)

(
∂

∂w
−

n−1∑
i,j=1

Ai
jx

j ∂

∂xi

)
,

Ei =
∂

∂xi
, i = 1, . . . , n− 1.

As in [6] we see easily that the shape operator S must be of the form

(6)


SE0 = aE0 + bE1,

SE1 = bE0 + cE1,

SEi = 0 for i = 2, . . . , n− 1,

where the functions a, b and c satisfy ac− b2 ̸= 0. The Gauss equation is

then equivalent to

(7) s = 2(ac− b2).

The Codazzi equation (4) is equivalent to a system of equations

(8) (DEiS)Ej = (DEjS)Ei, i, j = 0, 1, . . . , n− 1.

For i = 0 and j = 1 we get, as in [6], the explicit equations

(9)


E0(b) + (c− a)f−1fx1 = E1(a),

E0(c)− 2bf−1fx1 = E1(b),

cf−1Ak
1 = 0 for k = 2, . . . , n− 1.

For i = 0, j ≥ 2 we obtain

(10)

{ −f−1bA1
j = Ej(a),

−f−1cA1
j = Ej(b).
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Next, for i = 1, j ≥ 2 we compute

(11) Ej(b) = Ej(c) = 0.

Finally, for i, j ≥ 2 the equations (8) are satisfied identically.

Now, let us suppose that the metric g on Vp is locally irreducible and

that A1
j = 0 for j = 2, . . . , n− 1 in an open domain of Vp. Then (1) takes

on the form

(12)


ω0 = f(w, x1)dw,

ω1 = dx1,

ωi = dxi +

(
n−1∑
j=2

Ai
j(w)x

j

)
dw (i = 2, . . . , n− 1).

Using the idea of the proof of Proposition 11.2 in [6] we can introduce new

local coordinates u1, . . . , un−1 in such a way that u1 = x1 and
∑n−1

i=2 (ω
i)2=∑n−1

i=2 (du
i)2. (Here u2, . . . , un−1 are certain linear combinations of x2, . . . ,

xn−1 with the coefficients which are functions of w. These coefficients come

out as solutions of a specific system of linear differential equations.) Hence

we see that

g = f2(w, u1)dw2 +
n−1∑
i=1

(dui)2 (n ≥ 3)

is a product metric, which is a contradiction.

Thus, under the assumption of irreducibility, the last equations of (9)

imply c = 0 on a dense subset of Vp and hence on the whole Vp. According

to (11), the function b depends on w and x1 only. The second equation

of (9) gives

(13) b = b(w)f−2

where b(w) ̸= 0. Further, the first part of (10) implies

(14) a = −
n−1∑
j=2

f−1bA1
jx

j + a(w, x1),

where a(w, x1) satisfies, due to the first equation of (9),

(15) (af)x1 = (bf−2)w.
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Now we check easily that the formulas (13)–(15) together with c = 0

determine a shape operator S satisfying the Codazzi equation (4). The

Gauss equation (7) then means, due to (2) and (13)

(16) f3fx1x1 = b(w)2.

Differentiating this equation with respect to x1, we obtain

(17) (f2)x1x1x1 = 0.

We get a general solution in the form

(18) f2 = f1(w)(x
1)2 + f2(w)x

1 + f3(w)

and the solvability condition f3fx1x1 > 0 for (16) is equivalent to

(19) 4f1f3 − (f2)
2 > 0.

Then (18) makes sense if and only if

(20) f1(w) > 0, f3(w) > 0.

We can summarize:

Proposition 1. In the locally irreducible case, an isometric immersion

of (Vp, g) into Rn+1 exists if and only if the function f(w, x1) satisfies (18)–

(20). If this is the case, then all such isometric immersions depend on two

arbitrary functions of one variable w.

(The last statement is obvious from (13)–(15).)

Now we formulate our basic theorem:

Theorem 1. Let a locally irreducible Riemannian manifold Nn admit

a completely ruled isometric immersion φ : Nn → Rn+1. Then there

is an open dense subset U ⊂ Nn such that, in a neighborhood of each

point p ∈ U , there exists a local coordinate system w, x1, . . . , xn−1 and an

orthonormal coframe of the form (1) where the function f(w, x1) satisfies

(18)–(20).
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Conversely, let I ⊂ R[w] be an interval and let f1(w), f2(w), f3(w),

Ai
j(w) be smooth functions on I satisfying (19), (20) and the skew-symme-

try conditions Ai
j + Aj

i = 0 (i, j = 1, . . . , n − 1). Then the Riemannian

manifold
(
I[w]×Rn−1[x1, . . . , xn−1], g

)
, where

(21)

g = [f1(w)(x
1)2 + f2(w)x

1 + f3(w)]dw
2

+
n−1∑
i=1

(
dxi +

( n−1∑
j=1

Ai
j(w)x

j

)
dw

)2

,

admits an isometric immersion in Rn+1 as a completely ruled hypersurface.

Proof. It suffices to prove the second part of the Theorem. First,

because I×Rn−1 is simply connected and the metric g is globally defined,

an isometric immersion always exists according to Proposition 1. Here

the condition c = 0 for the shape operator (6) is enforced if the metric

g is locally irreducible but we can assume this condition in the general

case, too. But c = 0 means that the second fundamental form of the

immersion is identically zero on each tangent (n − 1)-plane generated by

E1, . . . , En−1, i.e., along each hypersurface w = const. Moreover, these

hypersurfaces are known to be totally geodesic (cf. formulas (6.13) in [6]).

Thus, each hypersurface w = w0 ∈ I[w] of (I×Rn−1, g) is embedded as an

affine (n− 1)-space in Rn+1. Hence we get a completely ruled immersion.

�

Let us add that, if the Riemannian manifold in question is irreducible,

then every isometric immersion in Rn+1 is completely ruled. Also, if

I = R[w] and 0 < A < fi(w) < B for some A, B and i = 1, 2, 3, the

corresponding Riemannian manifold is complete (see [6], Corollary 11.1).

According to Proposition 11.2 from [6], each metric of the form (1)

can be expressed, using new local coordinates, in a more transparent form

(22) g =
n−1∑
i=1

(dui)2 + f2

(
w,

n−1∑
j=1

bj(w)u
j

)
dw2,

where bj(w) are smooth functions such that

(23)
n−1∑
j=1

[bj(w)]
2 = 1.
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If a completely ruled immersion exists and if g is locally irreducible, then

(24) f2(w, u) = f1(w)u
2 + f2(w)u+ f3(w),

where (19) and (20) hold and bi(w) ̸= 0 for i = 1, . . . , n − 1 on a dense

open subset.

Nevertheless, the form (22) of the metric is less convenient for the

computations made in the previous pages. We shall use (22)–(24) for

another purpose, namely for calculating the number of locally irreducible

completely ruled hypersurfaces up to the local isometries. Due to (22)–

(24), just n+1 arbitrary functions of one variable are involved. It remains

to evaluate how big is each local isometry class.

Let us have two Riemannian manifolds (M, g), (M, g) characterized

locally by the formulas (22)–(24) and suppose that F : (M, g) → (M, g) is a

local isometry. (Here the corresponding variables and functions connected

with the second manifold will be marked by bars.) Because w = const.

an w = const. define the rulings on the corresponding manifolds, we must

have (locally)

(25) w = φ(w),

where φ is a smooth function. We can assume (up to a possible change of

the sign) that, via F ,

(26) f

(
w,

n−1∑
j=1

bj(w)u
j

)
dw = f

(
w,

n−1∑
j=1

bj(w)u
j

)
dw

and also

(27)
n−1∑
i=1

(dui)2 =
n−1∑
i=1

(dui)2.

From the last equation we get

(28) ui =

n−1∑
j=1

aiju
j + ci (i = 1, . . . , n− 1)

where (aij) is a constant orthogonal matrix.
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Now, we write down explicitly the equation (26) using the formula
(24) and its analog. After almost routine calculations (which uses also
(23) and its analog) we conclude that the functions f i(w) and bj(w) can
be calculated from fi(w) and bj(w) using the arbitrary function φ(w), its
first derivative and the parameters from (28) (which are negligible). This
means that each local isometry class depends on one arbitrary function of
one variable. We obtain hence:

Theorem 2. The local isometry classes of locally irreducible Rie-
mannian manifolds Nn which admit completely ruled isometric immersion
in Rn+1 are parametrized by n arbitrary functions of one variable.

Remark. The problem of intrinsic characterization of ruled hypersur-
faces in Rn+1 which are not locally isometric to completely ruled ones is
much more difficult. For dimension n = 3, such a classification has been
done in [4], Chapter 10.
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