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Petrov’s law of the iterated logarithm on simply
connected nilpotent Lie groups

By DANIEL NEUENSCHWANDER (Bern)

Abstract. We carry over Petrov’s law of the iterated logarithm (for symmetric
random variables) to all simply connected positively graded nilpotent Lie groups.

1. Introduction

In 1971, Petrov proved the following theorem (see Petrov (1971),

Theorem and remark at the end of his paper; furthermore, denote by Φ(x)

the standard normal distribution function):

Theorem 1. Let {Xn}n≥1 be independent (real-valued) random vari-

ables, Sn :=
∑n

k=1 Xk and assume {Bn}n≥1 are positive numbers such

that Bn → ∞ and Bn+1/Bn → 1 (n → ∞). Assume that

sup
x∈R

|P (Sn < B1/2
n x)− Φ(x)| = O(logBn(logBn)

−1−δ)

for some δ > 0. Then

lim sup
n→∞

Sn

(2Bn log logBn)1/2
a.s.
= 1.

The same theorem, but under the additional assumption that the Xn

are symmetric, was already proved before by Petrov (1968). The aim of

this note will be to carry over Theorem 1 for symmetric random variables

to all simply connected nilpotent positively graded Lie groups. Simply
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connected nilpotent Lie groups are the groups arising as follows: Consider

a skew-symmetric bilinear map [ . , . ] : Rd×Rd → Rd satisfying the Jacobi

identity [
[x, y], z

]
+

[
[y, z], x

]
+
[
[z, x], y

]
= 0 (x, y, z ∈ Rd).

Then G ∼= Rd, equipped with the multiplication given by the Campbell–

Hausdorff-formula

x · y := x+ y +
1

2
[x, y] +

1

12

{[
[x, y], y

]
+
[
[y, x], x

]}
+ . . . (x, y ∈ G)

is a simply connected nilpotent Lie group. If [ . , . ], . ] ≡ 0, then G is

even called step 2-nilpotent. Of course, the neutral element e is 0 and the

inverse element x−1 of x is −x. The simplest (non-commutative) simply

connected (step 2-)nilpotent Lie group is the Heisenberg group H. See

Neuenschwander (1996) for an account of probabilistic results on H and

(p. 9) the general form of the Campbell–Hausdorff formula for higher steps

of nilpotency. The Heisenberg group has its origin in quantum mechanics,

where it can be interpreted as the Lie algebra generated by the location

operator, the momentum operator, and the identity operator. Another

representation of H is as group of upper triangular 3× 3-matrices with 1’s

in the diagonal. Also Heisenberg groups of higher order and all groups of

type H (introduced by Kaplan (1980) in the context of composition of

quadratic forms) are simply connected step 2-nilpotent Lie groups.

2. Petrov’s LIL

Let G ∼= Rd be a simply connected step r-nilpotent Lie group. A

gradation of G is a vector space decomposition

(1) G ∼= Rd ∼=
r⊕

i=1

Vi

such that

[Vi, Vj ] ⊂ Vi+j (i, j ∈ {1, 2, . . . , r})

(where Vs := {0} (s > r)). W.l.o.g. we may assume that the underlying

basis of Rd is a so-called Jordan–Hölder basis, i.e. a basis E =
∪r

i=1 Ei,
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where Ei = {ei,1, e1,2, . . . , ei,d(i)} is a basis of Vi (d(i) thus denoting the

dimension of Vi). For x ∈ G ∼= Rd we will write x = (x1, x2, . . . , xd) with
respect to a Jordan–Hölder basis. Denote, for a > 0, the dilatation δa
of G by

δa(x) := (ax1, ax2, . . . , axd(1), a
2xd(1)+1, a

2xd(1)+2, . . . , a
2xd(1)+d(2), . . . ,

arxd(1)+d(2)+···+d(r−1)+1, a
rxd(1)+d(2)+···+d(r−1)+2, . . . , a

rxd).(2)

On the other hand, we define the gauge | . | on G by

|x|:=max{|x1|, |x2|, . . . , |xd(1)|, |xd(1)+1|1/2, |xd(1)+2|1/2, . . . , |xd(1)+d(2)|1/2,

. . . , |xd(1)+d(2)+···+d(r−1)+1|1/r, |xd(1)+d(2)+···+d(r−1)+2|1/r, . . . , |xd|1/r}

(x ∈ G).

Clearly, |δa(x)| = a|x|, so | . | is what is called a homogeneous gauge. The
symbol | . | will be used for the ordinary modulus function on R, too; it
will be clear from the context which one is meant. Now we say what a
standard gaussian law on G is. (SeeNeuenschwander (1996) for comple-
ments and details.) A continuous convolution semigroup (c.c.s. for short)
on G is a weakly continuous one-parameter family {µt}t≥0 of probability
measures on G with the property µt ∗ µs = µs+t (s, t ≥ 0). It follows
automatically that µ0 is the degenerate probabiliy measure at 0 ∈ G. It
can be shown that the so-called generating distribution (note that here the
word “distribution” is used in the sense of a linear functional, not in the
sense of a probability measure)

A(f) := lim
t→0+

∫
G

(
f(x)− f(0)

)
µt(dx)

exists for all bounded real-valued C∞-functions f on G. In general, such
generating distributions on Lie groups have a decomposition corresponding
to the classical Lévy–Hinčin formula: They consist of a translation term,
a second-order differential operator (which corresponds to the gaussian
part), and a term which arises as limit of composed Poisson laws. Now
standard Brownian motion on G can be defined as the c.c.s. {γt}t≥0 whose
generating distribution is given by the Kohn Laplacian

d(1)∑
i=1

∂2

∂x2
i

f(0).
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For the Heisenberg group H, a more explicit description is possible: Let

{B1(t)}t≥0, {B2(t)}t≥0 be independent standard real-valued Brownian mo-

tions and let {A(t)}t≥0 be Lévy’s area process:

A(t) :=
1

2

t∫
0

(B2dB1 −B1dB2).

In other words, A(t) is the area enclosed by the curve {(B1(s), B2(s)}0≤s≤t

and the chord joining (B1(t), B2(t)) to the origin. Now standard Brownian

motion on H is given by the process{
(B1(t), B2(t), A(t))

}
t≥0

.

A G-valued random variable X is called symmetric, if X and −X have the

same law. Denote by J the set of all intervals in Rd. Let {γt}t≥0 be the

standard gaussian c.c.s. on G defined above. Now we may formulate our

result:

Theorem 2. Let G be a simply connected positively graded nilpo-

tent Lie group. Let {Xn}n≥1 be independent symmetric G-valued random

variables, Pn :=
∏n

k=1 Xk and assume {an}n≥1 are positive numbers such

that an → ∞ and an+1/an → 1 (n → ∞). Assume that

sup
J∈J

|P (δ
a
−1/2
n

(Pn) ∈ J)− γ1(J)| = O
(
log an(log an)

−1−δ
)

for some δ > 0. Then

lim sup
n→∞

|δ(2an log log an)−1/2(Pn)|
a.s.
= 1.

Proof. The proof is based on the proof of the Theorem in Pet-

rov (1971). We show what has to be changed, generalized and adapted.

Let {W (t)}t≥0 be the G-valued process with independent and stationary

increments (in the sense of the group multiplication · on G) correspond-

ing to {γt}t≥0. The main idea is to use estimations for the stochastic

intergrals occurring in the development of W (t) (by analogy to the Lévy

area integral on H) and on the other hand to observe that (for symmetric

random variables Xn on G) from the reflection principle, an analogue of

the result of the Lemma in Petrov (1971) holds. In the following, let C
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denote a generic constant. Let us explain the details. First, we look for
a generalization of line 3 of the proof of the Theorem in Petrov (1971),
which tells that

(3) 1− Φ(t) ∼ 1

t
exp(−t2/2) (t → ∞).

Put
χ(n) := (2an log log an)

1/2.

Thus we have, by the symmetry of the Xn and the exponential upper tail
estimate which follows from Theorem 1.2 in Baldi (1986) and Section 4
of the same paper (see also Schott (1981), (1983) for special cases), an
analogue of (5) in Petrov (1971), namely

(4) P (|δχ(n)−1(Pn) ≥ b) = P (|Pn| ≥ bχ(n)) ≤ C(log an)
−b2

for 0 < b < (1 + δ)1/2. As in Petrov (1971) it follows that there exists a
subsequence {nk}k≥1 of {n}n≥1 and a τ > 0 such that

(5) P (|δχ(n)−1(Pn)| ≥ b) ≤ C(k log(1 + τ))−b2

for 0 < b < (1 + δ)1/2 and k large enough. As in the proof of Berthuet
(1979), Lemma 2 (“maximal lemma”) one obtains, by the reflection princi-
ple and due to the symmetry of the random variablesXn, for any projection
q of G ∼= Rd onto some one-dimensional coordinate subspace,

(6) P
(

max
1≤k≤n

|q(Pk)| ≥ t
)
≤ CP (|Pn| ≥ t) (t ∈ R).

Now (5) and (6) yield

(7)
∞∑
k=1

P
(

max
1≤n≤nk

|δχ(n)−1(Pn)| ≥ 1 + γ
)
< ∞ (γ > 0).

Now by a Borel–Cantelli argument similar to the one on p. 702 in Pet-
rov (1971) it follows that for every ε > 0

(8) |δχ(n)−1(Pn)| ≤ 1 + ε a.s. for almost all n.

The other direction, namely

(9) |δχ(n)−1(Pn)| ≥ 1− ε a.s. for infinitely many n,

follows already by using the classical result on the x1-component. □
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