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Killing vector fields on compact Finsler manifolds

By JINLING LI (Beijing), CHUNHUI QIU (Xiamen) and TONGDE ZHONG (Xiamen)

Abstract. In this paper, we obtain the Weitzenböck type formula for Killing vector

fields on a compact Finsler manifold. By using the “Bochner technique”, we prove that

Killing vector fields are parallel or vanish identically under certain curvature condition

and other extra condition. In particular, we discuss Killing vector fields on some compact

special Finsler manifolds. Moreover, we prove that the number of the independent

Killing vector fields in a Minkowskian space is equal to the dimension of a Minkowskian

space.

1. Introduction

Bochner [6]–[9] initiated a method, the well-known “Bochner technique”,

which used the Laplace operator and the general maximum principle of Hopf to

deal with the relation between vector or tensor fields and the curvature of man-

ifolds, and got the global properties of manifolds. From then on, the Bochner

technique became a very useful method in geometrical study. Such as, both in

Riemannian and Kählerian manifolds, the Bochner technique has been discussed

in details in [10], [32], [19]. The Bochner technique is to integrate the Laplacian

of the pointwise square norm of a harmonic form over a compact Riemannian

manifolds, yielding thereby two terms. One is the global square norm of the co-

variant derivatives of the harmonic form. The other involves the curvature tensor.

Under the suitable assumption of the curvature tensor, it can be obtained that

the harmonic form must be zero or parallel. In the papers of Bochner [6]–[9], he
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obtained some vanishing theorems for harmonic forms and Killing vector fields.

In the generalized space, the Killing equations were obtained by Hokari [16],

Knebelman [18] and Soós [30]. Recently, under the initiation of S. S. Chern,

the global differential geometry of real and complex Finsler manifolds has gained

a great development [13]–[26]. S. S. Chern has pointed out that “complex Finsler

geometry is very important in the research of complex analysis in several complex

variables, since on every complex manifold with or without boundary there exist

a Carathéodory metric and a Kobayashi metric, and under proper condition they

are C(2) metrics, and the most important fact is that naturally they are Finsler

metrics, . . . , to extend harmonic integral to the case of Finslerian will be a new re-

search region of differential geometry, and we expect the prospects are boundless”

[13], [14]. T. D. Zhong and C. P. Zhong [33] and J. X. Xiao, T. D. Zhong

and C. H. Qiu [23] discussed the Bochner technique in real Finsler manifolds

and strongly Kähler–Finsler manifolds, respectively. J. L. Li, C. H. Qiu and

T. D. Zhong [21] researched an extension of Hodge theorem to the natural

projection of complex horizontal Laplacian on complex Finsler manifolds. In ad-

dition, there appeared some papers about using complex connections of Finsler

geometry to research the theory of integral representation of functions in several

complex variables on complex Finsler manifolds [24]. In this paper, we try to

discuss the Killing vector fields and we can obtain the Weitzenböck type formula

for Killing vector fields on a compact Finsler manifold. By using the “Bochner

technique”, we prove that Killing vector fields are parallel or vanish identically

under certain curvature condition and other extra condition. In particular, we

discuss Killing vector fields on some compact special Finsler manifolds.

2. Preliminaries

Let M be a smooth manifold of dimension n and π : TM → M be the

tangent bundle of M . We denote by M̃ the complement of zero section o(M) in

TM and π̃ : M̃ → M is the slit tangent bundle of M . Our geometrical objects

are sections of the pulled-back bundle π̃∗TM or its dual π̃∗T ∗M , or their tensor

products, where π̃∗TM := {(v, w) ∈ M̃ × TM | π̃(v) = π(w)} is the sub-bundle

of the bundle M̃ × TM .

Let {π−1(U), (x, y) = (x1, . . . , xn, y1, . . . , yn)} be the local coordinates on

TM induced by the covering of the system of local coordinate neighborhoods

{U, u = (u1, . . . , un)} on M , where

xi := ui ◦ π, yi(v) := v(ui)(v ∈ π−1(U)).
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In the above local coordinates, if p ∈M and v ∈ TpM , then

v = yi(v)

(
∂

∂ui

)
p

∈ TpM ;

(
∂

∂xi

)
v

,

(
∂

∂yi

)
v

∈ TvTM.

And if we denote by X(M) the space of smooth vector fields on M , then

∂

∂ui
∈ X(U);

∂

∂xi
,
∂

∂yi
∈ X(π−1(U)).

Every vector field X on M induces a Finsler vector X̂ = π̃∗X on M̃ such

that

X̂(v) := (v,X(π(v)) for all v ∈ M̃.

In general, we denote by T̂ := π̃∗T the pull-back tensor field of any tensor field T

on M . Local coordinates {U, u = (u1, . . . , un)} on M produce the basis sections{
∂
∂ui

}
and {dui}, respectively, for TM and T ∗M . So ∂̂

∂ui is the local section of

the pulled-back bundle π̃∗TM , and we denote by d̂ui := π̃∗(dui) the local section

of π̃∗T ∗M . If f is a function on M , we consider its vertical lift fv := f ◦ π on

TM .

A function F : TM → R is called a (positive definite) Finsler metric if the

following conditions are satisfied [22]:

(i) F is continuous on TM and smooth on M̃ ;

(ii) F is positive-homogeneous of degree 1;

(iii) F (v) > 0 for all v 6= 0;

(iv) The fundamental tensor g, defined locally by its components

gij :=
1

2

∂2E

∂yi∂yj
, E = F 2,

is positive definite.

Remark 2.1. In fact, it suffices to assume that g is fibrewise non-degenerate

(see, e.g. [17], [31]).

A manifold M endowed with a Finsler metric is called a Finsler manifold.

Now, we give some notations and preliminary knowledge on Finsler manifolds.

The Cartan tensor is given by

Cijk =
1

2

∂gij
∂yk

=
1

4

∂3E

∂yi∂yj∂yk
,
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which is homogeneous of degree −1 and symmetric in all three of its indices. And

we obtain

Cijky
i = Cijky

j = Cijky
k = 0. (1)

The formal Christoffel symbols γijk are given by

γijk =
1

2
gih
(
∂ghj
∂xk

+
∂gkh
∂xj

− ∂gjk
∂xh

)
,

where (gij) is the inverse matrix of (gij). In local coordinates, the equations of

the geodesics can be written in the form

d2xi

d2s
+ 2Gi

(
x,
dx

ds

)
= 0,

where

Gi =
1

2
γijky

jyk

is homogeneous of degree two in yi’s. The successive derivatives of Gi with respect

to u are denoted by

Gij =
∂Gi

∂yj

and

Gijk =
∂Gij
∂yk

, (2)

where Gij is the Christoffel symbol of the non-linear connection D̃ associated to

the Cartan connection [1] and Gijk is the Berwald curvature tensor of the Berwald

derivative [29], [4]. And for any ξ ∈ X (M), we have

D̃ξ = ξk;hdx
h ⊗ ∂

∂xk
=

[
∂ξk

∂uh
+Gkh ◦ ξ

]
dxh ⊗ ∂

∂xk
,

where

Gkh ◦ ξ : U −→ π̃−1(U) −→ R, p 7−→ Gkh(ξ(p)).

Let T = T
i1···ip
j1···jq

∂̂
∂ui1
⊗· · ·⊗ ∂̂

∂uip
⊗d̂uj1⊗· · ·⊗d̂ujq be an arbitrary smooth local

section of π∗TM ⊗ · · · ⊗ π∗TM︸ ︷︷ ︸
p

⊗π∗T ∗M ⊗ · · · ⊗ π∗T ∗M︸ ︷︷ ︸
q

. Then the horizontal

covariant derivative T
i1···ip
j1···jq |k

in the sense of Cartan [11] is given by

T
i1···ip
j1···jq |k

=
∂T

i1···ip
j1···jq
∂xk

−
∂T

i1···ip
j1···jq
∂yl

Glk + T
i1···iα−1liα+1···ip
j1···jq Γiαlk − T

i1···ip
j1···jβ−1ljβ+1···jqΓ

l
jβk
,
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where the subscript |k denotes the horizontal covariant derivative with respect to

the Cartan connection, and the Cartan connection coefficients Γikj are given by

Γikj = gihΓkhj , (3)

and

Γkij = γkij − Cjih
∂Gh

∂yk
− Ckih

∂Gh

∂yj
+ Ckjh

∂Gh

∂yi
, (4)

so we have

Gij = Γikjy
k. (5)

The curvature tensor Rijhk induced by the horizontal part of Cartan connec-

tion is defined by

Rijhk=

(
∂Γijh
∂xk

−
∂Γijh
∂yl

∂Gl

∂yk

)
−

(
∂Γijk
∂xh

−
∂Γijk
∂yl

∂Gl

∂yh

)
+ ΓimkΓmjh − ΓimhΓmjk. (6)

And the third curvature tensor R̃ijhk induced by the Cartan connection is the

form

R̃ijhk = Rijhk + CijmR
m
rhky

r, (7)

where

Cijk = gihCjhk.

From (1) and (7), we have

R̃ijhky
j = Rijhky

j .

The horizontal covariant derivative T
i1···ip
j1···jq (k)

in the sense of Berwald [4] is

given by

T
i1···ip
j1···jq (k)

=
∂T

i1···ip
j1···jq
∂xk

−
∂T

i1···ip
j1···jq
∂yl

Glk+T
i1···iα−1liα+1···ip
j1···jq Giαlk −T

i1···ip
j1···jβ−1ljβ+1···jqG

l
jβk
,

where the subscript (k) denotes the horizontal covariant derivative with respect

to the Berwald connection, and the Berwald connection coefficient Gijk is given

by (2). The hh-curvature tensor induced by the Berwald connection is given by

Hi
jhk =

(
∂Gijh
∂xk

−Gijhl
∂Gl

∂yk

)
−

(
∂Gijk
∂xh

−Gijkl
∂Gl

∂yh

)
+GimkG

m
jh −GimhGmjk,

where

Gijhl =
∂Gijh
∂yl

.
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Let

Aijk = FCijk,

and

li =
yi

F
.

Note that the relation between the two connections is [25]

Gkij = Γkij + Ckij|hy
h = Γkij +Akij|hl

h, (8)

where the subscript |h denotes the horizontal covariant derivative with respect to

the Cartan connection.

Let

Aijk = FCijk,

we have

gij(k) = −2Aijk|hl
h, (9)

and

2Aijk|hy
i = 0. (10)

So

gij(k)y
i = 0.

The Riemann curvature tensorRjk naturally arises from the geodesic variation

of geodesics [25], which is defined by

Rik := Rijhky
jyh.

From (3), (4) and (6), we have

Rik = 2
∂Gi

∂xk
− ∂2Gi

∂xh∂yk
yh + 2GiklG

l − ∂Gi

∂yl
∂Gl

∂yk
.

Now we set

Rijhk = grjR
r
ihk, R̃ijhk = grjR̃

r
ihk, Hijhk = grjH

r
ihk,

and

Rij = Rkijk, R̃ij = R̃kijk, Hij = Hk
ijk.

The Ricci curvature is defined by

Ric := Rkk,

and it has the following properties [25]

Ric = Rijy
iyj = R̃ijy

iyj = Hijy
iyj .
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3. Weitzenböck type formula for the Killing vector fields

on compact Finsler manifolds

For any real-valued smooth function f ∈ C∞(TM), it is easy to find that

the local form gijf(i)(j) is well defined on the whole tangent bundle M̃ . Now,

let MX = {p ∈ M | X(p) 6= 0} for any X ∈ X(M). Therefore, for any f ∈
C∞(MX) ∩ C0(M), there is an operator defined locally by

∆Xf :=

{
gijfv(i)(j) ◦X on MX ,

0 on M\MX ,

The above operator is well defined on the whole manifold M , locally, we have

4Xf = gij
[(

∂2f

∂ui∂uj

)v

−Ghij
(
∂f

∂uh

)v]
◦X on U ∩MX . (11)

Here gij ◦X and Ghij ◦X are smooth functions on U ∩MX , so 4Xf is an elliptic

operator with smooth coefficients on U ∩MX .

Theorem 3.1. Let M be a compact Finsler manifold and ξ ∈ X(M). If ξ

satisfies

4ξ|ξ|2 ≥ 0

on Mξ, then |ξ|2 = const and

4ξ|ξ|2 = 0

everywhere on M , where |ξ|2 is the square of the length of the vector field ξ given

by

|ξ|2 = F 2(ξ) = (gij ◦ ξ)ξiξj .

Proof. Let m be the maximum value of |ξ|2 on M and V = {p ∈ M |
|ξ|2(p) = m}. Since M is compact, we have V 6= ∅. It is only to prove that

V = M when m is not equal to zero.

Since f = |ξ|2 is a continuous function on M , V is the closed subset of M .

For any point p ∈ V , that is |ξ|2(p) = m 6= 0, there is an open local coordinate

neighborhood U of p such that U ⊆ Mξ. So 4ξf is an elliptic operator on U ,

and f has the maximum value at p in U , then using the maximum principle of

Hopf([10]), we have |ξ|2 = |ξ|2(p) = m in U , that is U ⊂ V , so V is an open subset

of M . We obtain that V is a closed and open subset of M , then V = M . �
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Let f = |ξ|2 ∈ C∞(Mξ), we compute (11) on U ∩Mξ. Locally, we use the

symbol (ξk)v to denote the components of the tensor field ξ̂ = π̃∗ξ. And we set

γij = gij ◦ ξ = gij(ξ); γij = gij ◦ ξ = gij(ξ) on U ∩Mξ.

So

4ξ|ξ|2 = gij(γklξ
kξl)

v

(i)(j) ◦ ξ

= 2γijγkl((ξ
k)v(i) ◦ ξ)((ξ

l)v(j) ◦ ξ) + 2γijγkl((ξ
k)v(i)(j) ◦ ξ)ξ

l

+ γij([γkl(i)ξ
kξl])v(j) ◦ ξ + 2γij((γkl)

v
(j) ◦ ξ)((ξ

k)v(i) ◦ ξ)ξ
l. (12)

Because

(γkl)
v
(j) =

∂gkl
∂xj

◦ ξ +

(
∂gkl
∂ym

◦ ξ
)
∂(ξm)v

∂xj
− γmlGmkj − γkmGmlj , (13)

and

gkl(j) =
∂gkl
∂xj

− ∂gkl
∂ym

∂Gm

∂yj
− gmlGmkj − gkmGmlj , (14)

from (13), (14) and (9), we have

(γkl)
v
(j) ◦ ξ = 2(Cklm ◦ ξ)

(
∂ξm

∂uj
+
∂Gm

∂yj
◦ ξ
)
− 2(Aklj|h ◦ ξ)(lh ◦ ξ). (15)

From (5), (8) and (10), we have

ξm;j =
∂ξm

∂uj
+
∂Gm

∂yj
◦ ξ = (ξm)v(j) ◦ ξ. (16)

From (15) and (16), it follows that

(γkl)
v
(j) ◦ ξ = 2(Cklm ◦ ξ)ξm;j − 2(Aklj|h ◦ ξ)(lh ◦ ξ),

so

((γkl)
v
(j) ◦ ξ)ξ

l = 0. (17)

By the similar calculation of (15), we can obtain

[((γkl)
v
(i) ◦ ξ)(ξ

k)v(ξl)v](j) ◦ ξ − ((γkl)
v
(i)(ξ

k)v(ξl)v)(j) ◦ ξ

=

[
∂((γkl)

v
(i)(ξ

k)v(ξl)v)

∂ym
◦ ξ

]
ξm;j . (18)
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From (17) and (18), we have

γij([γkl(i)ξ
kξl])v(j) ◦ ξ = 2γijγml(G

m
kih ◦ ξ)ξh;jξkξl.

Since Gmhi is homogeneous of degree 0, we have (Gmkih ◦ ξ)ξk =
(∂Gmhi
∂yk

yk
)
◦ ξ = 0.

The above calculation gives the formula

1

2
4ξ|ξ|2 = gij(ξ)gkl(ξ)ξ

k
;iξ
l
;j + gij(ξ)gkl(ξ)(ξ

k)v(i)(j)(ξ)ξ
l on Mξ.

In the following, we discuss Killing vector fields on Finsler manifold (M,F ). A

vector field ξ on M is called a Killing vector field on (M,F ) if its one-parameter

group (ϕt)t∈R consists of Finslerian isometries, i.e.,

F ◦ (ϕt)∗ = F for all t ∈ R,

where (ϕt)∗ : TM −→ TM is the derivative of a smooth mapping M −→ M .

Since M is compact, the vector field ξ is complete. It can be easily seen that ξ is

a Killing vector field on (M,F ) if and only if ξcF = 0, where ξc is a complete lift

of ξ.

Let ξ be a Killing vector field on an n-dimensional Finsler manifold M , it

must satisfy the Killing equations [25]

gih(ξh)v(j) + gjh(ξh)v(i) + gij(k)(ξ
k)v + 2Cijh(ξh)v(r)y

r = 0,

or

gih(ξh)v|j + gjh(ξh)v|i + 2Cijh(ξh)v|ry
r = 0.

However, we recall that a motion carries a geodesic into a geodesic. We have the

equations [18]

(ξi)v(j)(k) +Hi
jkhξ

h +Gijkh(ξh)v(r)y
r = 0.

Thus the greatest number of linearly independent motions which may be admitted

by a Finsler manifold M of dimensional n is 1
2n(n+ 1) [18].

On the subset U ∩Mξ, we have

gij(ξ)gkl(ξ)(ξ
k)v(i)(j)(ξ)ξ

l = −gij(ξ)Hiljh(ξ)ξhξl + φξ(ξ),

where

φξ = −gijgklGkijh(ξh)v(r)y
ryl on M̃,

and

φξ(ξ) = −(gij ◦ ξ)(gkl ◦ ξ)(Gkijh ◦ ξ)((ξh)v(r) ◦ ξ)ξ
rξl. (19)
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Note that ([25])

Hiljky
i = −Hlijky

i = Riljky
i = R̃iljky

i,

and

Hiljk = −Hilkj ,

we have

gij(ξ)Hiljh(ξ)ξhξl = (Hj
lhjy

lyh) ◦ ξ = (Hlhy
lyh) ◦ ξ = Ric ◦ξ = Ric(ξ) on Mξ.

Therefore, we have the following Weitzenböck type formula.

Theorem 3.2. Let M be a compact Finsler manifold. Then for any Killing

vector field ξ on M , we have the Weitzenböck type formula

1

2
4ξ|ξ|2 = gij(ξ)gkl(ξ)ξ

k
;iξ
l
;j − Ric(ξ) + φξ(ξ) on Mξ,

where φξ(ξ) is defined by (19).

On the subset Mξ of M , we know that

gij(ξ)gkl(ξ)ξ
k
;iξ
l
;j

is a positive definite form in ξl;j . Therefore, if ξ satisfies

Ric(ξ) ≤ 0 on Mξ,

and

φξ(ξ) ≥ 0 on Mξ,

then we have

1

2
4ξ|ξ|2 = gij(ξ)gkl(ξ)ξ

k
;iξ
l
;j − Ric(ξ) + φξ(ξ) ≥ 0 on Mξ.

Consequently, from Theorem 3.1, we get

gij(ξ)gkl(ξ)ξ
k
;iξ
l
;j − Ric(ξ) + φξ(ξ) = 0,

or

ξl;j = 0, Ric(ξ) = 0.

Thus, if Ric < 0 on M̃ , then ξ = 0. So we have

Theorem 3.3. Let M be a compact Finsler manifold, if Ric ≤ 0 on M̃ and

φξ(ξ) ≥ 0 on Mξ for any smooth vector field ξ, then every Killing vector field ξ

must be parallel, i.e., D̃ξ = 0, and then Ric(ξ) = 0.

Thus if Ric < 0 on M̃ and φξ(ξ) ≥ 0 on Mξ for any smooth vector field ξ,

then there exists no Killing vector field other than zero vector.
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Theorem 3.4. Let M be a compact Finsler manifold, if Ric is negative

on M̃ , then there is no Killing vector field ξ satisfied

ξl;j = 0

other than zero vector.

Proof. Note that if a vector satisfies ξl;j = 0, then φξ(ξ) = 0. From Theo-

rem 3.3, we can conclude Theorem 3.4. �

Remark 3.1. If the Ricci tensor defined by

Ricij :=
∂2
[
1
2 Ric

]
∂yi∂yj

is negative definite, then Ric < 0 on M̃ . And if M is a Riemannian manifold,

then φξ ≡ 0, so Theorem 3.4 contains the similar theorem of Bochner [10].

Remark 3.2. In Theorem 3.3, the Killing vector fields ξ must be parallel

under certain extra condition, that is, ξl;j = 0. These equations are quasi-linear

equations, so the greatest number of linearly independent motions which may be

admitted by an n-dimensional Finsler manifold M under certain extra condition

is n.

4. Killing vector fields on some compact special Finsler manifolds

F is said to be a Berwald metric if Γijk is independent of y, or Gijk is in-

dependent of y, or Akij|hl
h = 0 [26], [25]. In a Berwald manifold, we have

(ξm;j)
v = (ξm)v(j).

Theorem 4.1. Let M be a compact Berwald manifold, if Ric ≤ 0 on M̃ ,

then for any Killing vector field ξ, we have

(ξl)v(j) = 0,

and Ric(ξ) = 0.

Thus if Ric < 0 on M̃ , then there exists no Killing vector field other than

zero vector.

Proof. If M is a Berwald manifold, note that Gijk is not depend on the fiber

y, that is, Gijkl = 0, so φξ ≡ 0 on M̃ and (ξm;j)
v = (ξm)v(j). From Theorem 3.3,

it follows that Theorem 4.1 is valid. �
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Let F be a Finsler metric on an n-dimensional manifold M . F is called an

Einstein metric with Einstein scalar σ if

Ric = (n− 1)σF 2,

where σ is a scalar function on M . In particular, F is said to be Ricci constant

(resp. Ricci flat) if σ = const. (resp. σ = 0).

Theorem 4.2. LetM be a compact Finsler manifold with a Finsler metric F .

Support that F is a Einstein metric with non-positive Einstein scalar σ and

φξ(ξ) ≥ 0 on Mξ for any vector field ξ .

(1) If F is not Ricci flat, then there exists no Killing vector field other than zero

vector.

(2) If F is Ricci flat, then every Killing vector field ξ must be parallel, i.e.,

D̃ξ = 0.

It was proved recently in [15] that a connected Berwald–Einstein manifold is

either Riemannian or Ricci flat, so we have the following Corollary 4.3.

Corollary 4.3. Suppose that M is a connected compact non-Riemannian

Berwald–Einstein manifold. Then for any Killing vector field ξ, we have

(ξl)v(j) = 0.

Corollary 4.4. Let M be a compact Finsler manifold, if the tensors Hi
jhk

and Gijhk vanish identically, then for the Killing vector field ξ

(ξl)v(j) = 0.

Remark 4.1. The Finsler manifold is Minkowskian if the tensors Hi
jhk and

Gijhk vanish identically([5]). Moreover, the tensors Rijhk = 0 iff Hi
jhk = 0, and

also Cihk|r = 0 iff Gijhk = 0.

Take an arbitrary plane P ⊂ TxM and y ∈ P , the flag curvature K(x, y, P )

is defined by

K(x, y, P ) =
Rijhky

iyhηjηk

[gihgjk − gijghk]yiyhηjηk
,

where η is an arbitrary vector in P such that P =span{y, η}.
In a Finsler manifoldM , F is said to be of scalar flag curvature ifK(x, y, P ) =

K is independent of P , F is said to be of constant flag curvature If K(x, y, P ) = σ,

where σ is constant.
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If M is the Finsler manifold of scalar flag curvature, we have

Rij = KF 2(δij − F−2gjkykyi),
and then

Ric = (n− 1)KF 2,

so we have

Theorem 4.5. Let M be a compact Finsler manifold of scalar flag curvature.

If K < 0 on M̃ , then there is no Killing vector field ξ satisfied

ξl;j = 0

other than zero vector. Furthermore, if K < 0 on M̃ and φξ(ξ) ≥ 0 on Mξ for

any vector field ξ, then there exists no Killing vector field other than zero vector.

If K = 0, then F is Ricci flat, it has been discussed in Theorem 4.2.

In the Finsler manifold with constant flag curvature K = σ, we have

Hik = (n− 1)σgik, (20)

and if σ < 0, then (Hik) is negative definite, so

Theorem 4.6. Let M be a compact Finsler manifold with negative constant

flag curvature, if φξ(ξ) ≥ 0 onMξ for any vector field ξ, then there exists no Killing

vector field other than zero vector.

If the compact manifold with constant flag curvature σ = 0 and φξ(ξ) ≥ 0

on Mξ for any vector field ξ, then for every Killing vector field ξ must be parallel,

i.e., D̃ξ = 0.

And if a compact manifold with constant flag curvature σ < 0, then there is

no Killing vector field ξ satisfied

ξl;j = 0

other than zero vector.

Theorem 4.7. Let M be a compact Berwald Finsler manifold with constant

flag curvature K = σ.

(1) If σ 6= 0, then M is Riemannian. So if σ < 0, there is no Killing vector field

other than zero vector.

(2) If σ = 0, then for any Killing vector field ξ, we have

(ξl)v(j) = 0.
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Proof. If M is a Berwald manifold, then Hij is independent of u. If the con-

stant flag curvature K = σ 6= 0, then it follows from (20) that M is Riemannian.

The other part of the theorem is the direct corollary of Theorem 4.1. �

In Finsler geometry, (α, β)-metrics are important classes of Finsler metrics.

Let α =
√
aij(x)yiyj and a 1-form β = biy

i on an n-dimensional manifold M .

An (α, β) metric F is defined by

F = αφ(s), s =
β

α
,

where φ(s) is a C∞ positive function on (−b0, b0). φ satisfies

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, (|s| 6 b = ‖β‖α < b0).

When n > 0 and under certain extra condition, B. Li and Z. Shen [20]

have proved that if α is projectively flat and β is parallel with respect to α,

then F = αφ(s) is a projectively flat Berwald metric with constant flag curvature

K = σ. From Theorem 4.7, if the metric F is non-Riemannian, then σ = 0. So

Theorem 4.8. Let M be a compact manifold with a non-Riemannian (α, β)-

metric F = αφ(s), and α is projectively flat and β is parallel with respect to α,

then for the Killing vector field ξ respect to F , we have

(ξl)v(j) = 0.

Remark 4.2. For a Riemannian metric, Beltrami Theorem tells us a Rie-

mannian metric is projectively flat iff it is of constant sectional curvature. But

the same theorem is not true for a Finsler metric. Therefore, in the projectively

flat manifold [12], the conditions of Theorem 3.3 are difficult to simplify, but in

Riemannian manifold it is easy [10].

There exist some (α, β)-metrics. The Randers metric is an (α, β)-metric,

where φ(s) = 1 + s, i.e., F = α + β. The Kropina metric is an (α, β)-metric,

where φ(s) = 1
s , i.e., F = α2

β . The Matsumoto metric is an (α, β)-metric, where

φ(s) = 1
1−s , i.e., F = α2

α−β .

Lemma 4.9 (see e.g. [3]). Suppose that M is a connected compact bound-

aryless Einstein Randers manifold with Ricci constant σ.

(1) If σ < 0, then M is Riemannian.

(2) If σ = 0, then M is Berwald.
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So we have the following corollaries.

Corollary 4.10. If M is a connected compact boundaryless non-Riemannian

Einstein Randers manifold with Ricci constant σ, then σ = 0, and for any Killing

vector field ξ, we have

(ξl)v(j) = 0.

In [27], X. L. Zhang and Y. B. Shen have proved that for a non-Riemannian

Kropina metric F = α2

β , if F is Ricci flat, then F is Berwald. So

Corollary 4.11. Suppose that M is a compact non-Riemannian Kropina

manifold with Ricci flat metric F , then for any Killing vector field ξ, we have

(ξl)v(j) = 0.

Corollary 4.12. Suppose that M is a compact manifold with a conformal

flat Einstein Randers metric (or Kropina metric) F , then for any Killing vector

field ξ, we have

(ξl)v(j) = 0.

Proof. In [27], every conformal flat Einstein Randers metric (or Kropina

metric) F must be Minkowskian. Thus it follows from Corollary 4.4 that Corol-

lary 4.12 is valid. �

Corollary 4.13. Let F = α2

α−β be a non-Riemannian Einstein Matsumoto

metric on an n-dimensional compact manifold M , n ≥ 3.

(1) Suppose that the length of β with respect to α is constant, then for any

Killing vector field ξ, we have

(ξl)v(j) = 0.

(2) Suppose that S-curvature vanishes, then for any Killing vector field ξ, we

have

(ξl)v(j) = 0.

Proof. In [28], X. L. Zhang and Y. B. Shen have proved that α is Ricci

flat and β is parallel with respect to α in the two cases. So F is a Ricci flat

Berwald metric. From Corollary 4.3, we can get Corollary 4.13. �

Remark 4.3. In the above discussion, we obtain that for any Killing vector

field ξ on some special Finsler spaces M such as compact Ricci flat Berwald space

and Minkowskian space, we have (ξl)v(j) = 0. So the greatest number of linearly

independent motions in the n-dimensional Minkowskian space is n.
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