Publ. Math. Debrecen 88/1-2 (2016), 93–117 DOI: 10.5486/PMD.2016.7264

On the 2-groups whose abelianizations are of type (2, 4) and applications

By ABDELMALEK AZIZI (Oujda), MOHAMMED TAOUS (Errachidia) and ABDELKADER ZEKHNINI (Oujda)

Abstract. Let *G* be a metabelian 2-group satisfying the condition $G/G' \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. In this paper, we give necessary and sufficient conditions for *G* to be metacyclic. We then apply these results to algebraic number fields **k** to study the capitulation of their 2-ideal classes of type (2, 4). Particular examples are given to illustrate how these results can be applied to real quadratic and imaginary biquadratic number fields.

1. Introduction

Let G be a group. The *commutator* of two elements x and y in G is the element $[x, y] = x^{-1}y^{-1}xy = x^{-1}x^y$, where $x^y = y^{-1}xy$. The following two properties are easily checked, for all x, y and $z \in G$:

$$[xy, z] = [x, z]^{y}[y, z].$$
(1)

$$[x, yz] = [x, z][x, y]^z.$$
(2)

Let X and Y be two subsets of G, we denote by [X, Y] the subgroup of G generated by the commutators [x, y], where $x \in X$ and $y \in Y$. Let G' = [G, G] denote the *derived group* of G, that is the subgroup of G generated by the commutators, and let $\gamma_i(G)$ be the i-th term of the lower central series of G defined inductively by $\gamma_1(G) = G$ and $\gamma_{i+1}(G) = [\gamma_i(G), G]$. The group G is said to be *nilpotent* if there exists a positive integer c such that $\gamma_{c+1}(G) = 1$; the smallest integer c

Mathematics Subject Classification: 11R11, 11R29, 11R32, 11R37, 20F05.

Key words and phrases: 2-group, metacyclic 2-group, metabelian 2-group, capitulation, Hilbert class field.

satisfying this equality is called the nilpotency class of G. We call exponent of an abelian group the greatest order of its elements. Recall that a group G is said to be metabelian if its derived group G' is abelian and is said to be metacyclic if there exists a normal cyclic subgroup H such that the quotient group G/H is cyclic. Denote by d(G) the rank of G i.e. the smallest cardinality of a generating set for G. Finally, a maximal subgroup H of a group G is a proper subgroup, such that no proper subgroup K contains H strictly.

Let G be a metabelian 2-group satisfying the condition $G/G' \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. In this paper, we give necessary and sufficient conditions for G to be metacyclic or not. We then apply these new results to study the capitulation problem of the 2-class groups of type (2, 4). The structure of this paper is the following. In § 2, we summarize preliminary results on p-groups with abelianizations are of type (p^n, p^m) , where p is a prime and n, m are positive integers. In § 3, the concept of the maximal subgroup of a group G, satisfying the condition $G/G' \simeq (2, 4)$, plays an essential role in proving the main results, and thus to determine the structure of G and in which cases is or not metacyclic. In § 4, we study the capitulation of the 2-ideal classes of a number field **k** in its unramified quadratic and biquadratic extensions according to the structure of the Galois group $G = Gal(\mathbf{k}_2^{(2)}/\mathbf{k})$ of the second Hilbert 2-class field $\mathbf{k}_2^{(2)}$ of **k**, where **k** is a number field whose 2-class group is of type (2, 4). In § 5, we illustrate some of our results by two examples: the first one is about a real quadratic number field whereas the second is about an imaginary bicyclic biquadratic number field.

Theorems 7 and 9 (below) imply the main result of this paper.

Theorem. Let G be a 2-group such that G/G' has type (2,4), and let M be the maximal subgroup of G such that M/G' is of type (2,2). Then M/M' is of type (2,2,2) or (2,2^m). More precisely, the following assertions are equivalent:

- 1. G is metacyclic,
- 2. M/M' is of type $(2, 2^m)$, with $m \ge 1$,
- 3. d(M) = 2.

94

2. Preliminaries

Recall first the following definitions. The *Frattini subgroup*, $\Phi(G)$, of a group G is the intersection of all its maximal subgroups, and it is known that if G is a 2-group, then $\Phi(G) = G^2$ (see [6]). A modular group, M_{2^n} , is a group of order

 2^n , where n > 3, with the following presentation:

$$\langle a, b : a^{2^{n-1}} = b^2 = 1, [a, b] = a^{2^{n-2}} \rangle.$$

The group M_{2^n} is metacyclic and $\gamma_2(M_{2^n}) = \langle a^{2^{n-2}} \rangle$ is of order 2; thus $M_{2^n}/\gamma_2(M_{2^n}) \simeq (2, 2^{n-2})$.

Let G be a 2-group satisfying $\gamma_1(G)/\gamma_2(G) \simeq (2,4)$ and $|G| = 2^n$, with $n \ge 1$, then G admits three subgroups of index 4 denote them by N_i , $i \in \{1, 2, 3\}$, and three subgroups of index 2 denote them by H, M and K. These subgroups are visualized in Figure 1.

Figure 1. Subgroups of G/G'

In what follows, we will prove some new results for such group G. But first recall some results for the case where G' is cyclic not trivial. Let c be the nilpotency class of G, so

$$|G| = [G:G'] \prod_{i=2}^{c} [\gamma_i(G):\gamma_{i+1}(G)].$$
(3)

Thus Theorem 1 (see below) yields that $[\gamma_i(G) : \gamma_{i+1}(G)] = 2$, for $2 \leq i \leq c$, this in turn implies that c = n - 2 (the group G is said, in this case, a group of almost maximal class). On the other hand, C. BAGINSKI and A. KONOVALOV have shown, in [7], some results which gave the complete list of these groups according to their generators and to certain relations. Among them, we find a

theorem which describe all groups G that are metacyclic. The number of the metacyclic groups G of order 2^n , where $n \ge 5$ and $G/G' \simeq (2,4)$ is equal to:

$$\begin{cases} 3, & \text{if } n = 5; \\ 4, & \text{if } n > 5. \end{cases}$$

These groups have the following representation:

$$G_m = \langle a, b : a^{2^{n-2}} = 1, b^4 = z_1, a^b = a^{-1} z_2 \rangle,$$

where $1 \le m \le 4$ and the values of z_1 , z_2 are given by the Table 1. (for G_4 , we have n > 5).

	G_1	G_2	G_3	G_4
z_1	1	1	$a^{2^{n-3}}$	1
z_2	1	$a^{2^{n-3}}$	1	$a^{2^{n-4}}$

Table 1. The z_i values, i = 1, 2.

For the proof of this result see [25, Theorem 5.3, p. 352]. Finally, recall that if G is a metacyclic 2-group of order 16 such that $G/G' \simeq (2, 4)$, then G is equal to

$$M_{16} = \langle a, b : a^8 = b^2 = 1, a^b = a^5 \rangle \text{ or } G_1 = \langle a, b : a^4 = b^4 = 1, a^b = a^{-1} \rangle.$$

We continue with some results on the *p*-groups whose abelianizations are of type (p^n, p^m) , where *n* and *m* are positive integers and *p* is a prime. These groups are generated by two elements *a* and *b* such that $a^{p^n} \equiv b^{p^m} \equiv 1 \mod \gamma_2(G)$ (Burnside Basis Theorem).

Theorem 1 ([20]). Let G be a p-group. If $G/G' \simeq (p^n, p^m)$, with $n \leq m$, then

- 1. $\gamma_2(G)/\gamma_3(G)$ is cyclic of order less than or equal to p^n ;
- 2. The exponent of $\gamma_{i+1}(G)/\gamma_{i+2}(G)$ divides that of $\gamma_i(G)/\gamma_{i+1}(G)$.

The following results are due to BLACKBURN [21, p. 334 and 335].

Theorem 2. A p-group G is metacyclic if and only if $G/\Phi(G')\gamma_3(G)$ is metacyclic.

Lemma 3. If G is a nonabelian p-group generated by two elements, then $\Phi(G')\gamma_3(G)$ is the unique maximal subgroup of G' normal in G.

96

Lemma 4. If G is a nonmetacyclic p-group such that G/G' is of type (p^n, p^m) , then G is generated by two elements a, b, and $G/\Phi(G')\gamma_3(G)$ is also generated by a and b modulo $\Phi(G')\gamma_3(G)$ such that

$$[a,b] = c, a^{p^n} \equiv b^{p^m} \equiv c^p \equiv [a,c] \equiv [b,c] \equiv 1 \mod \Phi(G')\gamma_3(G)$$

Corollary 1. Let G be a 2-group such that G/G' is of type (2,4). Then

- 1. G is generated by two elements a and b satisfying $a^2 \equiv b^4 \equiv 1 \mod \gamma_2(G)$,
- 2. $\Phi(G')\gamma_3(G) = \gamma_3(G),$
- 3. G is metacyclic if and only if $G/\gamma_3(G)$ is metacyclic,
- 4. If G is nonmetacyclic, then $a^2 \equiv b^4 \equiv c^2 \equiv [a, c] \equiv [b, c] \equiv 1 \mod \gamma_3(G)$, where c = [a, b].

PROOF. 1. The first assertion is an immediate consequence of the Burnside Basis Theorem.

2. The result is obvious if G is abelian. Assume G is not abelian, then Theorem 1 implies that $[G': \gamma_3(G)] = 2$, hence $\gamma_3(G)$ is the maximal subgroup of G' normal in G; thus Lemma 3 yields that $\Phi(G')\gamma_3(G) = \gamma_3(G)$.

3. and 4. are obvious.

E. BENJAMIN and C. SNYDER showed, in [8], a lemma that gives information about the structure of a 2-group G, satisfying the condition G/G' is of type $(2, 2^m)$, where m > 1. Put $G^{(2,2)} = \Phi(G)^2[G, \Phi(G)]$, then the lemma is as follows:

Lemma 5. Let G be a 2-group such that G/G' is of type $(2, 2^m)$, where m > 1. Then

- i) If G is abelian, then $G/G^{(2,2)}$ is of type (2,4),
- ii) If G is modular, then $G/G^{(2,2)}$ is of type (2,4),
- iii) If G is metacyclic-nonmodular, then $G/G^{(2,2)}$ is the unique metacyclic-nonmodular group of order 16 whose abelianization is of type (2,4),
- iv) If G is nonmetacyclic, then $G/G^{(2,2)}$ is the unique nonmetacyclic group of order 16 whose abelianization is of type (2,4).

If G is a 2-group such that G/G' is of type (2,4), then Lemma 5 is almost the same as the Corollary 1. The following remark shows this.

Remark 1. Let G be a 2-group such that G/G' is of type (2, 4), then $G^{(2,2)} = \gamma_3(G)$.

PROOF. Let $G = \langle x, y \rangle$ such that $x^2 \equiv y^4 \equiv 1 \mod \gamma_2(G)$. Note that $G^{(2,2)} = (G^2)^2[G, G^2]$. According to [19, Corollary 2.3, p. 104] we have $G^{(2,2)} = G^4 \gamma_2^2(G) \gamma_3(G)$, as $\gamma_2(G)/\gamma_3(G)$ is of order 2, so $\gamma_2^2(G) \subseteq \gamma_3(G)$, thus $G^{(2,2)} = G^4 \gamma_3(G)$.

If G is a metacyclic metabelian group of order 16, then $G^4 = 1$, thus the remark is obvious. Assume G is metacyclic of order > 16. One can easily show that $\gamma_2(G) = \langle x^2 \rangle$ (see Lemma 8 below), hence we get $\gamma_3(G) = \langle x^4 \rangle$, which implies that $\gamma_3(G) \subseteq G^4$ and $G^{(2,2)} = G^4$. Moreover, as $\gamma_2(G)/\gamma_3(G)$ is of order 2 and $\gamma_3(G) \subseteq G^{(2,2)} \subseteq \gamma_2(G)$, so $G^{(2,2)} = \gamma_2(G)$ or $G^{(2,2)} = \gamma_3(G)$. The first case can not occur, for if $G^{(2,2)} = \gamma_2(G)$, then $G^4 = \gamma_2(G)$. Which is absurd, since $x^4 \in G^4$ and x^4 does not generate $\gamma_2(G)$.

If G is not metacyclic, then $x^2 \equiv y^4 \equiv 1 \mod \gamma_3(G)$ (Corollary 1). Thus $G^4 \subseteq \gamma_3(G)$, and hence $G^{(2,2)} = \gamma_3(G)$.

3. Proof of the main result

The idea of these results is a consequence of the study that we have made for a particular case, where G is the Galois group of some number field extension (see [2]). To generalize these observations to any 2-group, we have based on the works of E. BENJAMIN, F. LEMMERMEYER and C. SNYDER, in particular the article [11].

Keep the notations used in [9, Lemma 1]. Let $G = \langle a, b \rangle$ be a metabeliannonmetacyclic 2-group such that $a^2 \equiv b^4 \equiv 1 \mod \gamma_2(G)$. The terms c_i are defined as follows: $[a, b] = c = c_2$ and $c_{j+1} = [b, c_j]$. Thus $G' = \langle c_2, c_3, \ldots \rangle$, $\gamma_3(G) = \langle c_2^2, c_3, \ldots \rangle$ and $\gamma_4(G) = \langle c_2^4, c_3^2, c_4, \ldots \rangle$ (see [9, Lemma 2]). As M is the maximal subgroup of G satisfying $M/G' \simeq (2, 2)$, so $M = \langle a, b^2, G' \rangle$. By a simple calculation based on [9, Lemma 2], we check that $M'\gamma_4(G) = \gamma_3(G)$. On the other hand, from [23, Theorem 2.49ii], we get $M' = \gamma_3(G)$. This allows us to cite the following lemma:

Lemma 6. Let G be a metabelian-nonmetacyclic 2-group, satisfying G/G' is of type (2, 4), and let M be the maximal subgroup of G such that M/G' is of type (2, 2). Then $M' = \gamma_3(G)$.

Corollary 2. Let G be a nonmetacyclic 2-group of order 16 satisfying the condition G/G' is of type (2,4), and let M be the maximal subgroup of G such that M/G' is of type (2,2). Then M/M' is of type (2,2,2).

98

PROOF. As G is the unique nonmetacyclic 2-group of order 16, satisfying G/G' is of type (2, 4), and as M is the maximal subgroup of G such that M/G' is of type (2, 2). So

$$G = \langle a, b : c = [a, b], a^2 = b^4 = c^2 = 1, [a, c] = [b, c] = 1 \rangle.$$

Since $G' = \langle c \rangle$, then G is metabelian and

$$M = \langle a, b^2, c \rangle$$
 and $M' = \langle [a, c], [a, b^2], [b^2, c] \rangle$.

The Properties (1) and (2) yield that

$$[a, b^{2}] = [a, b] \cdot [a, b]^{b} = c \cdot c^{b} = c^{2}[c, b] = 1$$
$$[b^{2}, c] = [b, c]^{b} \cdot [b, c] = 1.$$

Hence M is an abelian group of order 8; but since $a^2 = b^4 = c^2 = 1$, so M/M' is of type (2, 2, 2).

The following theorem generalizes this result to any nonmetacyclic 2-group.

Theorem 7. Let G be a metabelian 2-group such that G/G' has type (2, 4), and let M be the maximal subgroup of G such that M/G' is of type (2, 2). Then the following assertions are equivalent:

- 1. G is nonmetacyclic,
- 2. M/M' is of type (2, 2, 2),
- 3. d(M) = 3.

PROOF. According to our hypotheses, we have $G = \langle a, b \rangle$ with $a^2 \equiv b^4 \equiv 1 \mod \gamma_2(G)$. Put $M = \langle a, b^2, \gamma_2(G) \rangle$, then by Schreier inequality we get $d(M) - 1 \leq [G : M](d(G) - 1)$. Thus $d(M) \in \{1, 2, 3\}$; but M can not be cyclic, since M admits three maximal subgroups $(N_1, N_2 \text{ and } N_3 \text{ see Figure 1})$. From this, we conclude that $d(M) \in \{2, 3\}$.

1. \Longrightarrow 2. Assume that G is not metacyclic, then Lemma 6 implies that $M' = \gamma_3(G)$. As G/G' is of type (2,4), so by Theorem 1 we get $\gamma_2(G)/\gamma_3(G)$ is of order 2. Therefore Corollary 1 yields that $a^2 \equiv b^4 \equiv c^2 \equiv 1 \mod \gamma_3(G)$, with [a,b] = c. This shows that the exponent of M/M' is 2. Finally, as $[M:M'] = [M:\gamma_3(G)] = [M:\gamma_2(G)] \cdot [\gamma_2(G):\gamma_3(G)] = 4 \cdot 2 = 8$, so M/M' is of type (2,2,2).

 $2.\Longrightarrow 3.$ This implication is guaranteed by Burnside Basis Theorem.

3. \Longrightarrow 1. If d(M) = 3, then G can not be metacyclic, for if G is metacyclic, then any subgroup M of a metacyclic p-group will satisfy $d(M) \le 2$. Which is a contradiction.

Keep the previous notations. In the metacyclic case, we have the following lemma:

Lemma 8. Let G be a metacyclic 2-groupe of order 2^n , where $n \ge 4$ and G/G' is of type (2,4), and let M be the maximal subgroup of G satisfying the condition M/G' is of type (2,2). Then M' is of order ≤ 2 . Moreover

$$M' = \begin{cases} 1, & \text{if } G = G_1, G_2, G_3 \text{ or } M_{16}; \\ \langle a^{2^{n-3}} \rangle, & \text{if } G = G_4. \end{cases}$$

PROOF. There are two cases to distinguish:

1- Assume $n \ge 4$ and G not modular, then $G = G_m = \langle a, b : a^{2^{n-2}} = 1, b^4 = z_1, a^b = a^{-1}z_2 \rangle$, where $1 \le m \le 4$ and the values of z_1, z_2 are given by the Table 1 $(n = 4 \text{ only for } G = G_1, \text{ and for } G_4 \text{ we have } n > 5)$. As G is a metacyclic group, then G' is cyclic, which implies that $G' = \langle [a, b] \rangle$. Let us compute [a, b]:

$$[a,b] = a^{-1}a^{b} = a^{-2}z_{2} = \begin{cases} a^{-2}, & \text{if } G = G_{1} \text{ or } G_{3}; \\ a^{-2+2^{n-3}}, & \text{if } G = G_{2}; \\ a^{-2+2^{n-4}}, & \text{if } G = G_{4}. \end{cases}$$
$$= \begin{cases} a^{-2}, & \text{if } G = G_{1} \text{ or } G_{3}; \\ a^{-2(1-2^{n-4})}, & \text{if } G = G_{2}; \\ a^{-2(1-2^{n-5})}, & \text{if } G = G_{4}. \end{cases}$$
(4)

If $G = G_2$ and $n \ge 5$, then $1 - 2^{n-4}$ is odd. If $G = G_4$ and $n \ge 6$, then $1 - 2^{n-5}$ is odd. Therefore we deduce that:

$$G' = \langle [a, b] \rangle = \langle a^{-2} \rangle = \langle a^2 \rangle.$$

As $a^2 \equiv b^4 \equiv 1 \mod \gamma_2(G)$, so $M = \langle a, b^2 \rangle$ and $M' = \langle [a, b^2] \rangle$. The Property (2) yields that $[a, b^2] = [a, b][a, b]^b$. Compute $[a, b]^b$:

$$[a,b]^{b} = \begin{cases} (a^{-2})^{b}, & \text{if } G = G_{1} \text{ or } G_{3}; \\ (a^{-2+2^{n-3}})^{b}, & \text{if } G = G_{2}; \\ (a^{-2+2^{n-4}})^{b}, & \text{if } G = G_{4}. \end{cases}$$
$$= \begin{cases} a^{2}, & \text{if } G = G_{1} \text{ or } G_{3}; \\ a^{(-1+2^{n-3})(-2-2^{n-3})}, & \text{if } G = G_{2}; \\ a^{(-1+2^{n-4})(-2-2^{n-4})}, & \text{if } G = G_{4}. \end{cases}$$

$$= \begin{cases} a^2, & \text{if } G = G_1 \text{ or } G_3; \\ a^{2-2^{n-3}-2^{n-2}+2^{2n-6}}, & \text{if } G = G_2; \\ a^{2-2^{n-4}-2^{n-3}+2^{2n-8}}, & \text{if } G = G_4. \end{cases}$$

The Equalities (4) imply that

$$[a,b^{2}] = \begin{cases} 1, & \text{if } G = G_{1} \text{ or } G_{3}; \\ a^{-2^{n-2}+2^{2n-6}}, & \text{if } G = G_{2}; \\ a^{-2^{n-3}+2^{2n-8}}, & \text{if } G = G_{4}. \end{cases}$$
$$= \begin{cases} 1, & \text{if } G = G_{1} \text{ or } G_{3}; \\ a^{2^{n-2}(-1+2^{n-4})}, & \text{if } G = G_{2}; \\ a^{2^{n-3}(-1+2^{n-5})}, & \text{if } G = G_{4}. \end{cases}$$

Since $a^{2^{n-2}} = 1$, then M' is of order ≤ 2 . Moreover,

$$M' = \begin{cases} 1, & \text{if } G = G_1, G_2 \text{ or } G_3; \\ \langle a^{2^{n-3}} \rangle, & \text{if } G = G_4. \end{cases}$$

2- Assume now G modular, then $G = M_{16} = \langle a, b : b^2 = a^8 = 1, a^b = a^5 \rangle$. It is easy to show that $[a, b] = a^4$ and $[a, b]^a = a^4$, hence $M' = \langle [a^2, b] \rangle = \langle a^8 \rangle = 1$. This completes the proof.

Theorem 9. Let G be a nonabelian group satisfying the condition G/G' is of type (2,4), and let M be the maximal subgroup of G such that M/G' is of type (2,2). Then the following assertions are equivalent:

- 1. G is metacyclic,
- 2. M/M' is of type $(2, 2^m)$, with $m \ge 2$,
- 3. d(M) = 2.

PROOF. 1. \Longrightarrow 2. Suppose G is a metacyclic-nonmodular 2-group of order 2^n . If $n \ge 4$ and $G = G_1, G_2$ or G_3 , then, as $M = \langle x, y^2 \rangle$, Lemma 8 yields that M/M' is of type $(2, 2^{n-2})$. If $n \ge 6$ and $G = G_4$, then M/M' is of type $(2, 2^{n-3})$. If G is a modular 2-group, then $G = \langle x, y : x^2 = y^8 = 1, y^x = y^5 \rangle$. In Lemma 8, we reported that $M = \langle x, y^2 \rangle$ is an abelian group, this implies that M/M' is of type $(2, 2^2)$.

 $2. \Longrightarrow 3$. This implication holds according to Burnside Basis Theorem.

 $^{3. \}Longrightarrow 1.$ See Theorem 7.

From Theorems 7 and 9 we get:

– If the order of M/M' is > 8, then G is a metacyclic 2-group.

– If the order of M/M' is equal to 8, then G is a 2-group

modular or isomorphic to G_1 ,	if M/M' is of type $(2, 4)$,
nonmetacyclic,	if M/M' is of type $(2, 2, 2)$.

This allows us to cite the two following corollaries

Corollary 3. Let G be a 2-group satisfying the condition G/G' is of type (2, 4), and let M be the maximal subgroup of G such that M/G' is of type (2, 2) and M/M' is of type (2, 4). Then G is a modular group or

$$G = G_1 = \langle x, y : x^4 = y^4 = 1, y^x = y^{-1} \rangle.$$

Corollary 4. Let G be a 2-group satisfying G/G' is of type (2, 4), and let M be the maximal subgroup of G such that M/G' is of type (2, 2) and M/M' is of order > 8. Then G is metacyclic-nonabelian-nonmodular.

Theorem 10. Let G be a 2-group satisfying G/G' is of type (2,4), and let M (resp. H and K) be the maximal subgroup of G such that M/G' is of type (2,2) (resp. H/G' and K/G' are cyclic of order 4). Then the following assertions are equivalent:

- 1. G is abelian,
- 2. M/M' is of type (2, 2),
- 3. *H* is cyclic of order 4,
- 4. K is cyclic of order 4.

PROOF. 1. \iff 2. Theorems 7 and 9.

 $1 \implies 3$. and 4. obvious.

 $3 \Longrightarrow 1.$ (resp. $4 \Longrightarrow 1.$) as [H : G'] = 4 (resp. [K : G'] = 4) and the order of H (resp. K) is 4, then G' = 1, thus G is abelian.

4. Application: capitulation of the 2-ideal classes of type (2, 4)

Throughout all this section, **k** denotes a number field whose 2-class group is of type (2, 4). Let $C_{\mathbf{k},2}$ denote the 2-class group of **k**, that is the 2-Sylow subgroup of the ideal class group $C_{\mathbf{k}}$ of **k**, in the wide sens. Let $\mathbf{k}_{2}^{(1)}$ be the Hilbert 2-class field of **k** in the wide sens. Then the Hilbert 2-class field tower of **k** is defined

Figure 2. Subfields of $\mathbf{k}_2^{(1)}/\mathbf{k}$.

inductively by: $\mathbf{k}_2^{(0)} = \mathbf{k}$ and $\mathbf{k}_2^{(n+1)} = (\mathbf{k}_2^{(n)})^{(1)}$, where *n* is a positive integer. Let \mathbb{M} be an unramified abelian extension of \mathbf{k} and $\mathbb{C}_{\mathbb{M}}$ be the subgroup of $\mathbb{C}_{\mathbf{k}}$ associated to \mathbb{M} by the class field theory. Denote by $j_{\mathbf{k}\to\mathbb{M}}$: $\mathbb{C}_{\mathbf{k}} \longrightarrow \mathbb{C}_{\mathbb{M}}$ the homomorphism that associate to the class of an ideal \mathcal{A} of \mathbf{k} the class of the ideal generated by \mathcal{A} in \mathbb{M} , and by $\mathcal{N}_{\mathbb{M}/\mathbf{k}}$ the norm of the extension \mathbb{M}/\mathbf{k} .

According to class field theory G/G' is also of type (2, 4), where $G = \operatorname{Gal}(\mathbf{k}_{2}^{(2)}/\mathbf{k})$; hence $G = \langle a, b \rangle$ such that $a^{2} \equiv b^{4} \equiv 1 \mod G'$ and $C_{\mathbf{k},2} = \langle \mathfrak{c}, \mathfrak{d} \rangle \simeq \langle aG', bG' \rangle$, where $(\mathfrak{c}, \mathbf{k}_{2}^{(2)}/\mathbf{k}) = aG'$ and $(\mathfrak{d}, \mathbf{k}_{2}^{(2)}/\mathbf{k}) = bG'$, with $(., \mathbf{k}_{2}^{(2)}/\mathbf{k})$ denotes the Artin symbol in $\mathbf{k}_{2}^{(2)}/\mathbf{k}$. Accordingly, there are three normal subgroups of G of index 2; denote theme by: $H_{1,2}$, $H_{2,2}$ and $H_{3,2}$ such that $H_{1,2} = \langle b, G' \rangle$, $H_{2,2} = \langle ab, G' \rangle$ and $H_{3,2} = \langle a, b^{2}, G' \rangle$. There are also three normal subgroups of G of index 4; denote theme by: $H_{1,4}$, $H_{2,4}$ and $H_{3,4}$ such that $H_{1,4} = \langle a, G' \rangle$, $H_{2,4} = \langle ab^{2}, G' \rangle$ and $H_{3,4} = \langle b^{2}, G' \rangle$.

It is well known that each subgroup $H_{i,j}$ of G is associated, by class field theory, to a unique unramified extension $\mathbf{K}_{i,j}$ in $\mathbf{k}_2^{(2)}$ such that $H_{i,j}/H'_{i,j} \simeq C_{\mathbf{K}_{i,j},2}$. The situation is represented by Figure 2.

Our goal is to study the capitulation problem of the 2-ideal classes of \mathbf{k} in its unramified quadratic extensions $\mathbf{K}_{1,2}$, $\mathbf{K}_{2,2}$ and $\mathbf{K}_{3,2}$, and in its unramified biquadratic extensions, if it is possible, $\mathbf{K}_{1,4}$, $\mathbf{K}_{2,4}$ and $\mathbf{K}_{3,4}$.

In what follows, we use the symbol (X_1, X_2, X_3) , where $X_i \in \{4, 2, 2A, 2B\}$,

 $i \in \{1, 2, 3\}$, with the following meanings. $X_i = 4$ or 2 means four or two ideal classes of **k** capitulate in $\mathbf{K}_{i,2}$, and $X_i = 2A$ (resp. 2B) means two ideal classes of **k** capitulate in $\mathbf{K}_{i,2}$ and the unramified quadratic extension $\mathbf{K}_{i,2}$ of **k** satisfies the TAUSSKY's condition (A) (resp. (B)) (see [22]).

We know, from [15], that if \mathbf{L} is a number field and $G = \operatorname{Gal}(\mathbf{L}_2^{(2)}/\mathbf{L})$ is a 2group satisfying the condition $G/G' \simeq (2, 2)$, then the structure of G is completely determined based on the number of the 2-ideal classes of \mathbf{L} that capitulate in its three unramified quadratic extensions, and specifying whether the unramified quadratic extensions of \mathbf{L} are or not of type (A) or (B). More precisely, G is abelian of type (2, 2), quaternion, dihedral or semi-dihedral. Hence G is always a metacyclic 2-group. Note that in the case where G/G' is of type $(2, 2^m)$, with m > 2, E. BENJAMIN and C. SNYDER proposed, in [8], a method to know whether G is or not metacyclic, this method is based on studying the same questions for $G/G^{(2,2)}$ as for G (see [8] p. 12). If we denote by \mathbf{L}_1 , \mathbf{L}_2 and \mathbf{L}_3 the unramified quadratic extensions of \mathbf{L} , where \mathbf{L}_3 corresponds to $\mathbf{K}_{3,2}$ the non-cyclic maximal subgroup over G', then we can summarize these results in the following table:

\mathbf{L}_1	\mathbf{L}_2	\mathbf{L}_3	G
4	4	4	abelian
2B	2B	2A	modular or nonmetacyclic
2A	2A	4	metacyclic nonmodular
2A	2A	2A	metacyclic nonmodular or nonmetacyclic

In the other cases G is nonmetacyclic. Then in the cases (2A, 2A, 2A) and (2B, 2B, 2A), one cannot conclude anything about the structure of G. In [16], there is a characterization of $G/G^{(2,2)}$, but only in the case where **L** is an imaginary quadratic number field. In our case, we have $G/G^{(2,2)} = G/\gamma_3(G)$ (see Corollary 1 and Remark 1). This shows that Koch's characterization coincides with that of N. Blackburn. In Section 2, we gave a new method to determine if G is metacyclic or not, based on the structure of the abelian group $H_{3,2}/H'_{3,2}$, which is the structure of the 2-class group of $\mathbf{K}_{3,2}$.

By class field theory, the kernel of $j_{\mathbf{k}\to\mathbb{M}}$, ker $j_{\mathbf{k}\to\mathbb{M}}$, is determined by the kernel of the transfer map $V_{G\to H}: G/G' \to H/H'$, where $G = \operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ and $H = \operatorname{Gal}(\mathbb{M}_2^{(2)}/\mathbb{M})$. To compute the kernel of the transfer map $V_{G\to H}$, we use the following formula (see [17]): for $g \in G$, put $f = [\langle g \rangle \cdot H : H]$ and let $\{x_1, x_2, \ldots, x_t\}$ be a set of representatives of $G/\langle g \rangle H$, then

$$V_{G \to H}(gG') = \prod_{i=1}^{t} x_i^{-1} g^f x_i . H'.$$
(5)

4.1. Modular case. In this subsection, we study the capitulation problem in the case where G is a modular 2-group. Then $G = \langle a, b : a^2 = b^8 = 1, b^a = b^5 \rangle$. As a result of Formula (5), we get the following lemma:

Lemma 11. Keep the previous notations. If G is a modular 2-group, then

1. $V_{G \to H_{i,2}}(xG') = \begin{cases} 1, & \text{if } x = a, \\ b^4, & \text{if } x = b^2. \end{cases}$ with i = 1, 2.2. $V_{G \to H_{3,2}}(xG') = \begin{cases} b^{-4}, & \text{if } x = a, \\ b^4, & \text{if } x = b^2. \end{cases}$

3.
$$V_{G \to H_{i,4}}(xG') = \begin{cases} 1, & \text{if } x = a, \\ b^4, & \text{if } x = b. \end{cases}$$
 with $i = 1, 2 \text{ or } 3.$

PROOF. As $G = \langle a, b : a^2 = b^8 = 1, b^a = b^5 \rangle$, so $[b, a] = b^{-1}b^a = b^4$, thus $G' = \langle b^4 \rangle$, $H_{1,2} = \langle b \rangle$, $H_{2,2} = \langle ab, b^4 \rangle$, $H_{3,2} = \langle a, b^2 \rangle$, $H_{1,4} = \langle a, b^4 \rangle$, $H_{2,4} = \langle ab^2, b^4 \rangle$ and $H_{3,4} = \langle b^2 \rangle$. Moreover, $ba = ab^5$, $b^8 = 1$ and $a^2 = 1$, hence

$$(ab)^4 = abababab = a^2 b^5 b a^2 b^5 b = b^{12} = b^4, \quad (ab^2)^2 = abbab^2 = abab^7 = a^2 b^{12} = b^4.$$

From which we deduce that $H_{2,2} = \langle ab \rangle$ and $H_{2,4} = \langle ab^2 \rangle$.

We will only show the first result (i.e. 1.); for the others, we proceed similarly. If i = 1 or 2, then the Formula (5) yields that

$$\mathbf{V}_{G \to H_{i,2}}(xG') = \begin{cases} a^2 H'_{i,2}, & \text{if } x = a, \\ b^4[b^2, a] H'_{i,2}, & \text{if } x = b^2. \end{cases}$$

since $a \notin H_{i,2}$ and $b^2 \in H_{i,2}$. As $[b^2, a] = [b, a]^b [b, a] = (b^4)^b b^4 = b^8 = 1$ and $H_{i,2}$ is a cyclic subgroup of G, which completes the prove of the result 1.

Theorem 12. Keep the previous notations. Then G is a modular group if and only if the 2-class group of $\mathbf{K}_{3,2}$ is of type (2,4) and only two ideal classes capitulate in $\mathbf{K}_{3,2}$. In this situation, we have:

- 1. ker $j_{\mathbf{k}\to\mathbf{K}_{i,2}} = \{1, \mathfrak{c}\}$ with i = 1, 2.
- 2. ker $j_{\mathbf{k}\to\mathbf{K}_{3,2}} = \{1,\mathfrak{cd}^2\}.$
- 3. ker $j_{\mathbf{k}\to\mathbf{K}_{i,4}} = \{1, \mathfrak{c}, \mathfrak{d}^2, \mathfrak{cd}^2\}$ with i = 1, 2 or 3.
- 4. The capitulation of the 2-ideal classes of \mathbf{k} is of type (2B, 2B, 2A).

PROOF. Suppose that the 2-class group of $\mathbf{K}_{3,2}$ is of type (2,4), then the quotient group $H_{3,2}/H'_{3,2}$ is of type (2,4). Hence, according to Corollary 3, G is a modular group or

$$G = G_1 = \langle a, b : a^4 = b^4 = 1, a^b = a^{-1} \rangle.$$

If $G = G_1$, then $[a, b] = a^{-1}a^b = a^{-2}$ and $H_{3,2} = \langle a, b^2 \rangle$. As G' is a cyclic group generated by a^2 , so $H'_{3,2}$ is also a cyclic group generated by

$$[b^2, a] = [b, a]^b [b, a] = (a^2)^b a^2 = (a^b)^2 a^2 = a^{-2} a^2 = 1,$$

this yields that $H'_{3,2} = 1$; from which we deduce that

$$\mathbf{V}_{G \to H_{3,2}}(xG') = \begin{cases} a^2[a,b] = 1, & \text{if } x = a, \\ b^4[b^2,b] = 1, & \text{if } x = b^2. \end{cases}$$

Therefore ker $V_{G \to H_{3,2}} = \{aG', b^2G', ab^2G', G'\}$ i.e. there are four classes capitulate in $\mathbf{K}_{3,2}$; which contradicts the fact that only two classes capitulate in $\mathbf{K}_{3,2}$. Thus G is a modular group.

Conversely, if G is a modular group, then according to the proof of Theorem 9, we have $H_{3,2}/H'_{3,2}$ is of type (2, 4), from which we deduce that the 2-class group of $\mathbf{K}_{3,2}$ is of type (2, 4). Moreover, Lemma 11 yields that ker $V_{G \to H_{3,2}} = \{ab^2, 1\}$ i.e. two classes capitulate in $\mathbf{K}_{3,2}$, precisely, ker $j_{\mathbf{k} \to \mathbf{K}_{3,2}} = \{1, \mathfrak{c}\mathfrak{d}^2\}$.

To prove the assertions 1. and 3., it suffices to compute the kernel of $V_{G \to H_{i,j}}$ using Lemma 11. For the assertion 4., it is a consequence of the Formula (5). \Box

4.2. Nonmodular metacyclic case. In this subsection, we study the capitulation problem in the case where G is a metacyclic-nonmodular 2-group of order 2^n and $G/G' \simeq (2,4)$, with $n \ge 4$. We begin by the following lemma that will allows us to compute the derived group of $H_{i,j}$; after this, we calculate the images of aG', bG' and b^2G' by $V_{G \to H_{i,j}}$.

Lemma 13. Keep the previous notations. If $G = G_m$, then

(i)
$$[a,b] = \begin{cases} a^{-2}, & \text{if } G = G_1 \text{ or } G_3; \\ a^{-2(1-2^{n-4})}, & \text{if } G = G_2; \\ a^{-2(1-2^{n-5})}, & \text{if } G = G_4. \end{cases}$$

(ii) $[a,b^2] = \begin{cases} 1, & \text{if } G = G_1, G_2 \text{ or } G_3; \\ a^{2^{n-3}(-1+2^{n-5})}, & \text{if } G = G_4. \end{cases}$

(iii)
$$[a^2, b] = \begin{cases} a^{-4}, & \text{if } G = G_1, G_2 \text{ or } G_3; \\ a^{-4+2^{n-3}}, & \text{if } G = G_4. \end{cases}$$

(iv) $[a^2, b^2] = 1$.

PROOF. (i) and (ii). See the proof of Lemma 8.

(iii) It suffices to use the equalities $[a^2, b] = [a, b]^a [a, b]$ and $[a, b] = a^{-2} z_2$.

(iv) We have

$$[a^2, b^2] = [a, b^2]^a [a, b^2] = \begin{cases} a^{2^{n-2}(-1+2^{n-5})}, & \text{if } G = G_4, \\ 1, & \text{if not,} \end{cases}$$
 since $a^{2^{n-2}} = 1.$

The result is then obvious.

Corollary 5. Keep the previous notations. If $G = G_m$, then

(i) $G' = \langle a^2 \rangle;$

(ii)
$$H'_{2,2} = H'_{1,2} = \langle a^4 \rangle$$
 and $H'_{3,2} = \begin{cases} 1, & \text{if } G = G_1, G_2 \text{ or } G_3; \\ \langle a^{2^{n-3}} \rangle, & \text{if } G = G_4. \end{cases}$

 ${\rm (iii)} \ \ H_{1,4}'=H_{2,4}'=H_{3,4}'=1.$

PROOF. (i) As $G = \langle a, b \rangle$ is a metacyclic group, then the derived group G' is cyclic generated by [a, b]. If $G = G_4$ and $n \ge 6$, then $1 - 2^{n-5}$ is odd. Therefore $G' = \langle [a, b] \rangle = \langle a^{-2} \rangle = \langle a^2 \rangle$.

(ii) The result in (i) allows us to conclude that $H_{1,2} = \langle b, a^2 \rangle$, $H_{2,2} = \langle ab, a^2 \rangle$, $H_{3,2} = \langle a, b^2 \rangle$, $H_{1,4} = \langle a \rangle$, $H_{2,4} = \langle ab^2, a^2 \rangle$, and $H_{3,4} = \langle a^2, b^2 \rangle$. On the other hand, by using Properties (1) and (2), we get

$$[ab^2, a^2] = [a, a^2]^{b^2}[b^2, a^2] = [b^2, a^2]$$
 et $[ab, a^2] = [a, a^2]^b[b, a^2] = [b, a^2].$

Our corollary is then an immediate consequence of the Lemma 13.

Theorem 14. Keep the previous notations and assume that G is of order > 16, then the following properties are equivalent:

- 1. G is metacyclic,
- 2. The 2-class group of $\mathbf{K}_{3,2}$ is of type $(2, 2^m)$, with $m \geq 3$,
- 3. The 2-class number of $\mathbf{K}_{3,2}$ is > 8,
- 4. The 2-class group of $\mathbf{K}_{1,4}$ is cyclic of order > 2.

PROOF. The equivalences $1. \iff 2. \iff 3$. are direct consequences of Theorem 9 and Corollary 4.

 $1 \Longrightarrow 4$. From the Corollary 5, we get $H_{1,4} = \langle a \rangle$ and the order of a is > 2, hence $H'_{1,4} = 1$. Given the fact that $\langle a \rangle = H_{1,4}/H'_{1,4} \simeq C_{2,K_{1,4}}$, we get the result.

4. \Longrightarrow 1. As $H_{1,4}/H'_{1,4} \simeq C_{2,K_{1,4}}$ and $C_{2,K_{1,4}}$ is a cyclic group, so the Burnside Basis Theorem implies that $H_{1,4}$ is a normal cyclic subgroup of G of index 4. Note that $G/H_{1,4}$ is a cyclic group, then G is metacyclic.

Corollary 6. Keep the previous notations. If $G = \text{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ is a metacyclicnonabelian group, then the Hilbert 2-class field tower of \mathbf{k} stops at $\mathbf{k}_2^{(2)}$.

PROOF. Put $\mathcal{H} = \operatorname{Gal}(\mathbf{k}_2^{(3)}/\mathbf{k}_2^{(1)})$, then, by class field theory, the derived group \mathcal{H}' of \mathcal{H} is equal to $\operatorname{Gal}(\mathbf{k}_2^{(3)}/\mathbf{k}_2^{(2)})$. Thus the quotient group \mathcal{H}/\mathcal{H}' is isomorphic to G'. By the Corollary 5, the group G' is cyclic, hence the Burnside Basis Theorem implies that \mathcal{H} is a cyclic group; this in turn yields that $\mathcal{H}' = 1$. Therefore $\mathbf{k}_2^{(3)} = \mathbf{k}_2^{(2)}$.

Lemma 15. Keep the previous notations. If G is a metacyclic-nonabelian 2-group, then

$$1. \ V_{G \to H_{i,2}}(xG') = \begin{cases} a^2 H'_{i,2}, & \text{if } x = a, \\ H'_{i,2}, & \text{if } x = b^2. \end{cases} \text{ with } i = 1, 2.$$

$$2. \ V_{G \to H_{3,2}}(xG') = \begin{cases} H'_{3,2}, & \text{if } x = a \text{ and } G = G_1 \text{ or } G_3, \\ a^{2^{n-3}} H'_{3,2}, & \text{if } x = a \text{ and } G = G_2, \\ a^{2^{n-4}} H'_{3,2}, & \text{if } x = a \text{ and } G = G_4, \\ a^{2^{n-3}} H'_{3,2}, & \text{if } x = b^2 \text{ and } G = G_3, \\ H'_{3,2}, & \text{if } x = b^2 \text{ and } G = G_1, G_2 \text{ or } G_4. \end{cases}$$

$$3. \ V_{G \to H_{i,4}}(xG') = \begin{cases} a^{2^{n-3}} H'_{i,4}, & \text{if } x = a \text{ and } G = G_4, \\ H'_{i,4}, & \text{if } x = a \text{ and } G = G_4, \\ H'_{i,4}, & \text{if } x = a \text{ and } G = G_4, \\ H'_{i,4}, & \text{if } x = b \text{ and } G = G_3 \text{ with } i \neq 3, \\ a^{2^{n-3}} H'_{i,4}, & \text{if } x = b \text{ and } G = G_3 \text{ with } i \neq 3, \\ H'_{3,4}, & \text{if } x = b \text{ and } G = G_1, G_2, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_3, \\ a^{2^{n-3}} H'_{3,4}, & \text{if } x = b \text{ and } G = G_4; \\ \end{array}$$

PROOF. Show only the first result, the others are proved similarly.

We know that $H_{1,2} = \langle b, a^2 \rangle$ and $H_{2,2} = \langle ab, a^2 \rangle$, hence $a \notin H_{i,2}$, where i = 1, 2. Which implies that $V_{G \to H_{i,2}}(aG') = a^2 H'_{i,2}$. As $b^2 \in H_{i,2}$, for $i \in \{1, 2\}$, and $G/H_{i,2} = \langle aH'_{i,2} \rangle$, so

$$V_{G \to H_{i,2}}(b^2 G') = b^4[b^2, a] H'_{i,2} = \begin{cases} H'_{i,2}, & \text{if } G = G_1, G_2; \\ a^{-2^{n-3}} H'_{i,2} & \text{if } G = G_3; \\ a^{-2^{n-3}(-1+2^{n-5})} H'_{i,2}, & \text{if } G = G_4. \end{cases}$$

If $G = G_3$ or G_4 , then $n \ge 5$ and $H'_{i,2} = \langle a^4 \rangle$. From what we conclude that $a^{-2^{n-3}}$ and $a^{-2^{n-3}(-1+2^{n-5})}$ are in $H'_{i,2}$. Finally, we get

$$\mathbf{V}_{G \to H_{i,2}}(b^2 G') = H'_{i,2}.$$

Theorem 16. Keep the previous notations. If G is metacyclic, nonmodular and nonabelian, then

$$1. \ \ker j_{\mathbf{k}\to\mathbf{K}_{i,2}} = \{1, \mathfrak{d}^2\}, \ for \ i = 1 \ or \ 2.$$

$$2. \ \ker j_{\mathbf{k}\to\mathbf{K}_{3,2}} = \begin{cases} \{1, \mathfrak{c}^2\}, \ if \ G = G_1, \\ \{1, \mathfrak{d}^2\}, \ if \ G = G_2 \ or \ G_4, \\ \{1, \mathfrak{c}\}, \ if \ G = G_3. \end{cases}$$

$$3. \ \ker j_{\mathbf{k}\to\mathbf{K}_{i,4}} = \begin{cases} C_{\mathbf{k},2}, \ if \ G = G_3, \\ \{1, \mathfrak{c}, \mathfrak{d}^2, \mathfrak{c}\mathfrak{d}^2\}, \ if \ G = G_3, \\ \{1, \mathfrak{d}, \mathfrak{d}^2, \mathfrak{d}^3\}, \ if \ G = G_4, \end{cases}$$

$$4. \ \ker j_{\mathbf{k}\to\mathbf{K}_{3,4}} = \begin{cases} C_{\mathbf{k},2}, \ if \ G = G_1 \ or \ G_2, \\ \{1, \mathfrak{d}, \mathfrak{d}^2, \mathfrak{d}^3\}, \ if \ G = G_4, \end{cases}$$

$$4. \ \ker j_{\mathbf{k}\to\mathbf{K}_{3,4}} = \begin{cases} C_{\mathbf{k},2}, \ if \ G = G_1 \ or \ G_2, \\ \{1, \mathfrak{c}, \mathfrak{d}^2, \mathfrak{c}\mathfrak{d}^2\}, \ if \ G = G_3 \ or \ G = G_4. \end{cases}$$

5. The capitulation of the 2-ideal classes of \mathbf{k} is of type (2A, 2A, 2A) or (2A, 2A, 4).

PROOF. We prove assertion 2; for assertions 1, 3, and 4 we proceed similarly. According to the Lemma 15 we have

$$V_{G \to H_{3,2}}(xG') = \begin{cases} H'_{3,2}, & \text{if } x = a \text{ and } G = G_1 \text{ or } G_3, \\ a^{2^{n-3}}H'_{3,2}, & \text{if } x = a \text{ and } G = G_2, \\ a^{2^{n-4}}H'_{3,2}, & \text{if } x = a \text{ and } G = G_4, \\ a^{2^{n-3}}H'_{3,2}, & \text{if } x = b^2 \text{ and } G = G_3, \\ H'_{3,2}, & \text{if } x = b^2 \text{ and } G = G_1, G_2 \text{ or } G_4 \end{cases}$$

on the other hand, the Corollary 5 yields that $H'_{3,2} = 1$ for G_1, G_2 , and G_3 , hence

$$V_{G \to H_{3,2}}(xG') = \begin{cases} 1, & \text{if } x = a \text{ and } G = G_1 \text{ or } G_3, \\ a^{2^{n-3}}, & \text{if } x = a \text{ and } G = G_2, \\ a^{2^{n-4}}, & \text{if } x = a \text{ and } G = G_4, \\ a^{2^{n-3}}, & \text{if } x = b^2 \text{ and } G = G_3, \\ 1, & \text{if } x = b^2 \text{ and } G = G_1, G_2 \text{ or } G_4 \end{cases}$$

The definitions of G_2 , G_3 and G_4 require that $n \ge 5$, thus $a^{2^{n-3}}$ and $a^{2^{n-4}}$ are different from 1. This allows us to conclude that

$$\ker \mathcal{V}_{G \to H_{3,2}} = \begin{cases} \{G', aG', b^2G', ab^2G'\}, & \text{if } G = G_1, \\ \{G', b^2G'\}, & \text{if } G = G_2 \text{ or } G_4, \\ \{G', aG'\}, & \text{if } G = G_3. \end{cases}$$

By the Artin's reciprocity law, we get the assertion 2.

5. The results 1. and 2. of Lemma 15 imply that: if i = 1 or 2, then ker $V_{G \to H_{i,2}} \cap H_{i,2}/G' = \{G', b^2G'\} \cap \langle bG' \rangle = \{G', b^2G'\} \text{ or } \{G', b^2G'\} \cap \langle ab, G' \rangle$, and

$$\ker \mathcal{V}_{G \to H_{3,2}} \cap H_{3,2}/G' = \begin{cases} \langle aG', b^2G' \rangle \cap \langle aG', b^2G' \rangle = \langle aG', b^2G' \rangle, & \text{if } G = G_1, \\ \{G', aG'\} \cap \langle aG', b^2G' \rangle = \{G', aG'\}, & \text{if } G = G_3, \\ \{G', b^2G'\} \cap \langle aG', b^2G' \rangle = \{G', b^2G'\}, & \text{if not.} \end{cases}$$

By the Artin's reciprocity law, we get

 $|\ker j_{\mathbf{k}\to K_{i,2}}\cap \mathcal{N}_{K_{i,2}/\mathbf{k}}(C_{K_{i,2}})|>1,$

where i = 1, 2 and 3. The results 1. and 2. of this theorem yield that the capitulation of the 2-ideal classes of **k** is of type (2A, 2A, 2A) or (2A, 2A, 4).

Corollary 7. Keep the previous notations. If G is a metacyclic-nonmodularnonabelian group and only \mathfrak{d}^2 and its square capitulate in $\mathbf{K}_{3,2}$, then the following assertions are equivalent:

- 1. $G = G_2$,
- 2. The Hilbert 2-class field tower of $\mathbf{K}_{3,2}$ stops at the first stage,
- 3. $h(\mathbf{K}_{i,4}) = \frac{h(\mathbf{K}_{3,2})}{2}$, where i = 1, 2 or 3.

PROOF. 2. \iff 3. As G is a metacyclic-nonmodular-nonabelian group and only \mathfrak{d}^2 and its square capitulate in $\mathbf{K}_{3,2}$, then the order of G is > 16 and the rank of the 2-class group of $\mathbf{K}_{3,2}$ is 2 (Theorem 14). Thus according to [10, Proposition 7], we have the Hilbert 2-class field tower of $\mathbf{K}_{3,2}$ stops at the first stage if and only if $h(\mathbf{K}_{i,4}) = \frac{h(\mathbf{K}_{3,2})}{2}$, where i = 1, 2 or 3.

1. \iff 3. Since only the class of \mathfrak{d}^2 and its square capitulate in $\mathbf{K}_{3,2}$, so $G = G_2$ or $G = G_4$. If the order of G is 2^n , then we have on the first hand (see p. 101),

$$H_{3,2}/H'_{3,2} \simeq \begin{cases} \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}, & \text{if } G = G_2, \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-3}\mathbb{Z}, & \text{if } G = G_4. \end{cases}$$

This implies that

$$\frac{h(\mathbf{K}_{3,2})}{2} = \begin{cases} 2^{n-2}, & \text{if } G = G_2, \\ 2^{n-3}, & \text{if } G = G_4. \end{cases}$$

On the other hand and for i = 1, 2, 3, we have

$$h(\mathbf{K}_{i,4}) = [H_{i,4} : H'_{i,4}] = |H_{i,4}| = 2^{n-2},$$

since $H'_{i,4} = 1$ (see Corollary 5). Finally, $G = G_2$ if and only if $h(\mathbf{K}_{i,4}) = \frac{h(\mathbf{K}_{3,2})}{2}$ with i = 1, 2 or 3.

4.3. Nonmetacyclic case. In this subsection, we study the capitulation problem in the case where G is a nonmetacyclic 2-group.

Theorem 17. Keep the previous notations. Then the following assertions are equivalent:

- 1. G is nonmetacyclic,
- 2. The 2-class group of $\mathbf{K}_{3,2}$ is of type (2,2,2),
- 3. The rank of the 2-class group of $\mathbf{K}_{3,2}$ is equal to 3.

PROOF. Direct consequence of Theorem 7 p. 99.

Lemma 18. Keep the previous notations. If G is a nonmetacyclic 2-group, then

$$\mathcal{V}_{G \to H_{3,2}}(xG') = \begin{cases} [a,b]\gamma_3(G), & \text{if } x = a, \\ \gamma_3(G), & \text{if } x = b^2. \end{cases}$$

PROOF. According to Corollary 1, result 1, p. 97, we have: if G is non-metacyclic, then

$$a^2 \equiv b^4 \equiv c^2 \equiv [a, c] \equiv [b, c] \equiv 1 \mod \gamma_3(G)$$
, where $[a, b] = c$.

By applying Formula (5), we get

$$\mathbf{V}_{G \to H_{3,2}}(xG') = \begin{cases} a^2[a,b]H'_{3,2}, & \text{if } x = a, \\ H'_{3,2}, & \text{if } x = b^2, \end{cases}$$

since $a \in H_{3,2}$ and $b^2 \in H_{3,2}$. As $H'_{3,2} = \gamma_3(G)$ (Lemma 6, p. 98) and $a^2 \equiv 1 \mod \gamma_3(G)$, then

$$\mathbf{V}_{G \to H_{3,2}}(xG') = \begin{cases} [a,b]\gamma_3(G), & \text{if } x = a, \\ \gamma_3(G), & \text{if } x = b^2. \end{cases}$$

Corollary 8. Keep the previous notations. If G is a nonmetacyclic 2-group, then

- 1. ker $j_{\mathbf{k}\to\mathbf{K}_{3,2}} = \{1, \mathfrak{d}^2\},\$
- 2. The capitulation of the 2-ideal classes of \mathbf{k} in $\mathbf{K}_{3,2}$ is of type 2A.

PROOF. 1. Let $G = \langle a, b \rangle$ such that $a^2 \equiv b^4 \equiv 1 \mod \gamma_2(G)$. The terms c_i are defined as follows: $[a, b] = c = c_2$ and $c_{j+1} = [b, c_j]$. We have $G' = [c_2, c_3, \ldots]$, $\gamma_3(G) = [c_2^2, c_3, \ldots]$ see [9, Lemma 2]. This explains why $c = [a, b] \notin \gamma_3(G)$, then

$$\ker \mathcal{V}_{G \to H_{3,2}} = \{ G', b^2 G' \}.$$

By the Artin's reciprocity law, we get

$$\ker j_{\mathbf{k}\to\mathbf{K}_{3,2}} = \{1,\mathfrak{d}^2\}$$

2. It suffices to note that

$$\ker \mathcal{V}_{G \to H_{3,2}} \cap H_{3,2}/G' = \{G', b^2G'\} \cap \langle aG', b^2G', c^2G' \rangle.$$

By the Artin's reciprocity law, we have

$$|\ker j_{\mathbf{k}\to K_{3,2}}\cap \mathcal{N}_{K_{i,2}/\mathbf{k}}(C_{K_{3,2}})|>1.$$

This allows us to state that the capitulation of the 2-ideal classes of \mathbf{k} in $\mathbf{K}_{3,2}$ is of type 2A.

4.4. Abelian case. In this subsection, we prove two theorems about the capitulation problem in the case where G is an abelian 2-group.

Theorem 19. Keep the previous notations. Then the following assertions are equivalent:

- 1. G is abelian,
- 2. The 2-class group of $\mathbf{K}_{3,2}$ is of type (2,2),
- 3. The 2-class number of $\mathbf{K}_{3,2}$ is 4,
- 4. The 2-class group of $\mathbf{K}_{i,2}$ is cyclic of order 4, with i = 1 or 2,
- 5. The 2-number class of $\mathbf{K}_{i,2}$ is 4, with i = 1 or 2,
- 6. The Hilbert 2-class field tower of \mathbf{k} stops at $\mathbf{k}_2^{(1)}$,
- 7. The capitulation of the 2-ideal classes of \mathbf{k} is of type (4, 4, 4).

PROOF. By the Artin's reciprocity law and Theorem 10 p. 102, we get

 $1. \iff 2. \iff 3. \iff 4. \iff 5.$ $1. \iff 6. \text{ Obvious.}$ $6. \iff 7. \text{ See [12, Lemma 1 p. 105].}$

Corollary 9. Keep the previous notations. If G is abelian, then

- 1. ker $j_{\mathbf{k}\to\mathbf{K}_{i,2}} = \{1, \mathfrak{c}, \mathfrak{d}^2, \mathfrak{cd}^2\}$, with i = 1, 2 or 3;
- 2. ker $j_{\mathbf{k}\to\mathbf{K}_{i,4}} = C_{\mathbf{k},2}$, with i = 1, 2 or 3.

PROOF. As the Hilbert 2-class field tower of \mathbf{k} stops at $\mathbf{k}_2^{(1)}$, then it suffices to apply [14, Theorem p. 193 and Hilbert's Theorem 94].

5. Examples

In this section, we give two examples that illustrate some of our results: the first one is about a real quadratic number field and the second one is about an imaginary bicyclic biquadratic number field.

5.1. First example. Let $\mathbf{k} = \mathbb{Q}(\sqrt{p_1p_2p_3})$ be a real quadratic field, such that p_i are different primes congruent to 1 (mod 4) and the 2-class group of \mathbf{k} is of type (2, 4). Note that, in [13], E. BENJAMIN did not give clarification about the structure of the group $G = \text{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ if the capitulation is of type (2A, 2A, 2A) or (2B, 2B, 2A). In what follows, we give necessary and sufficient condition to have the group G nonmetacyclic. But let us first establish the following lemma:

Lemma 20. Let p, q and r be different primes, such that $p \equiv q \equiv r \equiv 1 \pmod{4}$ and $\left(\frac{p}{q}\right) = 1$, and let l be the rank of the 2-class group of $\mathbb{Q}(\sqrt{p}, \sqrt{qr})$. We have the following properties:

(1) If
$$\left(\frac{p}{r}\right) = 1$$
, then $l = \begin{cases} 3, & \text{if } \left(\frac{p}{q}\right)_4 = \left(\frac{q}{p}\right)_4 \text{ and } \left(\frac{p}{r}\right)_4 = \left(\frac{r}{p}\right)_4, \\ 2, & \text{if not.} \end{cases}$
(2) If $\left(\frac{p}{r}\right) = -1$, then $l = \begin{cases} 2, & \text{if } \left(\frac{p}{q}\right)_4 = \left(\frac{q}{p}\right)_4, \\ 1, & \text{if not.} \end{cases}$

PROOF. It is an immediate consequence of Theorem 2 of [1].

Theorem 21. Let p_1 , p_2 and p_3 be different primes such that $p_1 \equiv p_2 \equiv p_3 \equiv 1 \pmod{4}$. If the 2-class group of $\mathbf{k} = \mathbb{Q}(\sqrt{p_1p_2p_3})$ is of type (2,4), then the group $G = \text{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ is nonmetacyclic if and only if the following assertions hold:

(1)
$$\left(\frac{p_i}{p_j}\right) = \left(\frac{p_i}{p_k}\right) = 1,$$

(2) $\left(\frac{p_i}{p_j}\right)_4 = \left(\frac{p_j}{p_i}\right)_4$ and $\left(\frac{p_i}{p_k}\right)_4 = \left(\frac{p_k}{p_i}\right)_4.$

PROOF. As the 2-class group of $\mathbf{k} = \mathbb{Q}(\sqrt{p_1p_2p_3})$ is of type (2,4), then **k** admits a real unramified cyclic extension of degree 4. Hence by [18], [5] we conclude that

$$\left(\frac{p_i}{p_j}\right) = \left(\frac{p_i}{p_k}\right) = 1 \quad \text{and} \quad \left(\frac{p_i}{p_j p_k}\right)_4 = \left(\frac{p_j p_k}{p_i}\right)_4.$$
 (6)

In this situation $\mathbf{K}_{3,2} = \mathbb{Q}(\sqrt{p_i}, \sqrt{p_j p_k})$. Thus Theorem 17 yields that G is not metacyclic if and only if the rank of the 2-class group of $\mathbf{K}_{3,2}$ is equal to 3, and this is equivalent, by Lemma 20, to

$$\left(\frac{p_i}{p_j}\right)_4 = \left(\frac{p_j}{p_i}\right)_4 \quad \text{and} \quad \left(\frac{p_i}{p_k}\right)_4 = \left(\frac{p_k}{p_i}\right)_4.$$

Note that, if G is a metacyclic group, then the last equalities are not true. Hence the equalities (6) implies that

$$\left(\frac{p_i}{p_j}\right)_4 = -\left(\frac{p_j}{p_i}\right)_4 \quad \text{and} \quad \left(\frac{p_i}{p_k}\right)_4 = -\left(\frac{p_k}{p_i}\right)_4.$$
 (7)

Corollary 10. Let *i*, *j* and *k* be the positive integers in the equalities (6). Let ε be the fundamental unit of the field $\mathbf{k} = \mathbb{Q}(\sqrt{p_1p_2p_3})$. If the 2-class group of $\mathbf{k} = \mathbb{Q}(\sqrt{p_1p_2p_3})$ is of type (2, 4) and the group $G = \text{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ is metacyclic, then

- (a) G is abelian if and only if $\left(\frac{p_j}{p_k}\right) = -1$ and $N(\varepsilon) = -1$.
- (b) G is nonabelian-nonmodular if and only if $\left(\frac{p_j}{p_k}\right) = 1$.

PROOF. Under our conditions; on one hand, P. KAPLAN in [24] states that $\left(\frac{p_j}{p_k}\right) = -1$ or $\left(\frac{p_j}{p_k}\right) = 1$. On the other hand, we have

$$\left(\frac{p_i}{p_j}\right) = \left(\frac{p_i}{p_k}\right) = 1, \quad \left(\frac{p_i}{p_j}\right)_4 = -\left(\frac{p_j}{p_i}\right)_4 \quad \text{and} \quad \left(\frac{p_i}{p_k}\right)_4 = -\left(\frac{p_k}{p_i}\right)_4.$$

(a) According to [10, Theorem 1], the Hilbert 2-class field tower of **k** stops at $\mathbf{k}_2^{(1)}$ if and only if $\left(\frac{p_j}{p_k}\right) = -1$ and $N(\varepsilon) = -1$. Thus G is abelian if and only if $\left(\frac{p_j}{p_k}\right) = -1$ and $N(\varepsilon) = -1$.

(b) If G is nonabelian-nonmodular, then the case $\left(\frac{p_j}{p_k}\right) = -1$ can not occur. For if $\left(\frac{p_j}{p_k}\right) = -1$, then by Lemma 20(2) $H_{1,2}$, the 2-class group of $K_{1,2} = \mathbb{Q}(\sqrt{p_i}, \sqrt{p_j p_k})$, is cyclic. As G is of type (2, 4), so by [4, Theorem 1.2] G is abelian or modular, which contradicts our hypotheses. Therefore $\left(\frac{p_j}{p_k}\right) = 1$.

Conversely, if $\left(\frac{p_j}{p_k}\right) = 1$, then the Equality (7) and Lemma 20 show that the ranks of the 2-class groups of $K_{1,2}$ and $K_{2,2}$ are equal to 2. Hence G does not admit a maximal cyclic subgroup, thus G is nonabelian-nonmodular.

5.2. Second example. Let now $\mathbf{k} = \mathbb{Q}(\sqrt{2p}, i)$ and assume its 2-class group is of type (2, 4). The following theorem is almost the main results in [2], and we cite it here as an example which illustrates some of our previous results.

Theorem 22. Let $\mathbf{k} = \mathbb{Q}(\sqrt{2p}, i)$, where p is a prime such that $p \equiv 1 \mod 8$ and $\left(\frac{2}{p}\right)_4 = \left(\frac{p}{2}\right)_4 = -1$. Denote by 2^n the 2-class number of $\mathbb{Q}(\sqrt{-p})$. Then $G = \operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ is metacyclic-nonmodular, moreover

$$G = \langle a, b : a^{2^n} = 1, b^4 = 1, a^b = a^{-1+2^{n-1}} \rangle.$$

PROOF. Note that the 2-class group of \mathbf{k} is of type (2, 4), since $p \equiv 1 \mod 8$ and $\left(\frac{2}{p}\right)_4 = \left(\frac{p}{2}\right)_4 = -1$ (see [3]). In [2], we have constructed an unramified cyclic extension of \mathbf{k} of order 4, which contains the field $\mathbf{k}(\sqrt{2})$. With the notations above, $\mathbf{k}(\sqrt{2})$ is the field $\mathbf{K}_{3,2}$. According to [2, Theorem 9], the rank of the 2class group of $\mathbf{K}_{3,2}$ is 2, then Theorem 14 yields that G is metacyclic-nonmodular of order 2^{n+2} , since the 2-class number of $\mathbf{K}_{3,2}$ is 2^{n+1} with $n \geq 3$. Thus the order of G is divisible by 32. Finally, Theorem 12 and Proposition 9 of [2], and the Corollary 7 imply that

$$G = \langle a, b : a^{2^n} = 1, b^4 = 1, a^b = a^{-1+2^{n-1}} \rangle.$$

ACKNOWLEDGEMENTS. We thank the referees for their time and comments.

References

- [1] A. AZIZI and A. MOUHIB, Sur le rang du 2-groupe de $\mathbb{Q}(\sqrt{m}, \sqrt{d})$ où m = 2 ou bien un premier $p \equiv 1 \pmod{4}$, Trans. Amer. Math. Soc. **353** (2001), 2741–2752.
- [2] A. AZIZI and M. TAOUS, Capitulation des 2-classes d'idéaux de $\mathbf{k} = \mathbb{Q}(\sqrt{2p}, i)$, Acta Arith. 131 (2008), 103–123.
- [3] A. AZIZI and M. TAOUS, Détermination des corps k = Q(√d, i) dont les 2-groupes de classes sont de type (2, 4) ou (2, 2, 2), Rend. Istit. Mat. Univ. Trieste. 40 (2008), 93–116.
- [4] Y. BERKOVICH, Groups of Prime Power Order, Vol. 1, Walter de Gruyter, Berlin, 2008.
- [5] A. SCHOLZ, Über die Löbarkeit der Gleichung $t^2 Du^2 = -4$, Math. Z. **39** (1934), 95–111.
- [6] B. HUPPERT, Endliche Gruppen I, Springer Verlag, 1990.
- [7] C. BAGINSKI and A. KONOVALOV, On 2-groups of almost maximal class, Publ. Math. Debrecen 65 (2004), 97–131.
- [8] E. BENJAMIN and C. SNYDER, Number Fields with 2-class Number Isomorphic to (2, 2^m), preprint, 1994.
- [9] E. BENJAMIN, F. LEMMERMEYER and C. SNYDER, Imaginary quadratic fields k with cyclic Cl₂(k¹), J. Number Theory. 67 (1997), 229–245.
- [10] E. BENJAMIN, F. LEMMERMEYER and C. SNYDER, Real quadratic fields with abelian 2-class field tower, J. Number Theory. 73 (1998), 182–194.
- [11] E. BENJAMIN, F. LEMMERMEYER and C. SNYDER, On the unit group of some multiquadratic number fields, Pac. J. Math. 230 (2007), 27–40.
- [12] E. BENJAMIN, On the 2-class field tower of some imaginary biquadratic number fields, *Ramanujan J.* 11 (2006), 103–110.

- 116 Abdelmalek Azizi, Mohammed Taous and Abdelkader Zekhnini
- [13] E. BENJAMIN, On the second Hilbert 2-class field of real quadratic number fields with 2-class groups isomorphic to (2, 2ⁿ), Rocky Mt. J. Math. 29 (1999), 763–787.
- [14] J. JANUSZ, Algebraic Number Fields, Academic Press, New York, 1973.
- [15] H. KISILEVSKY, Number fields with class number on gruent to 4 \mod 8 and Hilbert's therem 94, J. Number Theory 8 (1976), 271–279.
- [16] H. KOCH, Über den Bizyklischen 2-Klassenkörperturm eines quadratischen Zahlkörpers, J. Reine Angew. Math. 214/215 (1963), 201–206.
- [17] K. MIYAKE, Algebraic investigations of Hilbert's theorem 94, the principal ideal theorem and capitulation problem, *Expos. Math.* 7 (1989), 289–346.
- [18] L. RÉDEI and H. REICHARDT, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1934), 69–74.
- [19] N. BLACKBURN and L. EVENS, Schur multipliers of p-groups, J. Reine Angew. Math. 309 (1979), 100–113.
- [20] N. BLACKBURN, On a special class of p-groups, Acta Math. 100 (1958), 45–92.
- [21] N. BLACKBURN, On prime power groups with two generators, Proc. Cambridge Phil. Soc. 54 (1958), 327–337.
- [22] O. TAUSSKY, A remark concerning Hilbert's theorem 94, J. Reine Angew. Math. 239/240 (1970), 435–438.
- [23] P. HALL, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. 36 (1933), 29–95.
- [24] P. KAPLAN, Sur le 2-groupe de classes d'idéaux des corps quadratique, J. Reine Angew. Math. 283/284 (1976), 313–363.

[25] R. JAMES, 2-groups of almost maximal class, J. Austral. Math. Soc. Ser. A. 19 (1975), 343–357.

ABDELMALEK AZIZI DÉPARTEMENT DE MATHÉMATIQUES FACULTÉ DES SCIENCES UNIVERSITÉ MOHAMMED 1 OUJDA MOROCCO *E-mail:* abdelmalekazizi@yahoo.fr

ABDELKADER ZEKHNINI DÉPARTEMENT DE MATHÉMATIQUES FACULTÉ DES SCIENCES UNIVERSITÉ MOHAMMED 1 OUJDA MOROCCO *E-mail:* zekhal@yahoo.fr MOHAMMED TAOUS DÉPARTEMENT DE MATHÉMATIQUES FACULTÉ DES SCIENCES ET TECHNIQUES UNIVERSITÉ MOULAY ISMAIL ERRACHIDIA MOROCCO *E-mail:* taousm@hotmail.com

(Received January 17, 2015; revised April 15, 2015)