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Hardy’s inequality and Hausdorff operators
on rearrangement-invariant Morrey spaces

By KWOK-PUN HO (Hong Kong)

Abstract. We generalize the Minkowski inequality, the Hardy–Littlewood–Pólya

inequalities and the Hardy inequalities to rearrangement-invariant Morrey spaces. We

obtain these results by extending the notion of Boyd’s indices to the rearrangement-

invariant Morrey spaces. Our method also applied to establish the boundedness of

Hausdorff operators on rearrangement-invariant Morrey spaces.

1. Introduction

The main theme of this paper is the extension of several classical and im-

portant inequalities to Morrey type spaces. More precisely, we generalize the

Minkowski inequalities, the Hardy–Littlewood–Pólya inequalities, the Hardy in-

equalities and the Hilbert inequalities to Morrey spaces built on rearrangement-

invariant Banach function spaces.

The Hardy inequality plays an important role in analysis. For instance, it

is related to the studies of partial differential equations, interpolation theory and

theory of function spaces. For a more complete account on the generalizations

and applications of Hardy inequalities, the reader is referred to [13], [18], [43].

In particular, the Hardy inequalities had been generalized to several function

spaces used in analysis such as the Lorentz–Karamata spaces [13], [43] which

include the Lorentz spaces, the Lorentz–Zygmund spaces and the generalized
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Lorentz–Zygmund spaces. Furthermore, for the study of the Hardy inequalities on

rearrangement-invariant Banach function spaces, the reader is referred to [9], [36].

In this paper, we aim to establish the Hardy inequalities on Morrey spaces

built on rearrangement-invariant Banach function spaces. The classical Morrey

spaces were introduced by Morrey [38] to study the solutions of quasi-linear el-

liptic partial differential equations. Since the introduction of the classical Morrey

space, it provides an important research direction on the theory of function spaces

and partial differential equations, see [12], [23], [25], [26], [28], [41], [44], [48].

For the classical Morrey space, it is built on Lebesgue spaces. Recently, the

classical Morrey spaces have been extended to Morrey spaces associated with non-

Lebesgue spaces. In [21], [42], [45], several important results in harmonic analysis

such as the boundedness of maximal operator, the singular integral operators and

the fractional integral operators had been generalized to Orlicz–Morrey spaces.

Similarly, we also have the Sobolev type embedding for the Morrey–Lorentz spaces

in [22]. For the studies of Morrey spaces built on general function spaces, the

reader is referred to [20], [24].

The Orlicz spaces and the Lorentz spaces are members of rearrangement-

invariant Banach function spaces (r.i.B.f.s.). Therefore, in this paper, we study

the Hardy inequalities on the Morrey spaces built on rearrangement-invariant

Banach function spaces. We call it rearrangement-invariant (r.-i.) Morrey spaces.

In fact, the r.-i. Morrey spaces were already studied in [19].

To establish the Hardy inequalities in r.-i. Morrey spaces, we follow the

approach given in [18]. We first extend the Hardy–Littlewood–Pólya inequalities

for integral operators to r.-i. Morrey spaces and, then, the Hardy inequalities and

the Hilbert inequalities are consequences of these inequalities.

Notice that we obtain our results by extending the notion of Boyd index to

r.-i. Morrey spaces. The notion of Boyd index was introduced by Boyd in [3], [4],

[5], [6] for the study of operators on r.i.B.f.s., see [2, Chapter 3, Theorems 5.16

and 5.18]. Roughly speaking, the Boyd index is used to measure the quantitative

behaviours of the dilation operators on r.i.B.f.s.

Even though the classical Boyd index was defined for r.i.B.f.s. only and r.-i.

Morrey spaces is not necessary a r.i.B.f.s., we can extend the notion of Boyd’s

index to Morrey type spaces by studying the operator norms of dilation operators.

Our method is not only applied to Hardy’s inequalities. We find that we can

also apply our method to study the Hausdorff operator on r.-i. Morrey spaces.

The study of Hausdorff operators recently provides several research direction

for the operator theory and the theory of function spaces. It is impossible to give
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a detail review here. the reader is referred to [1], [7], [8], [10], [15], [27], [29], [30],

[32], [33], [34], [40], [47] for the studies of Hausdorff operators.

In this paper, our method to establish the Hardy inequality for r.-i. Morrey

spaces can also apply to the boundedness of the Hausdorff operator on r.-i. Morrey

spaces. We find that the boundedness of the Hausdorff operator is related to the

mapping properties of the dilation operator on r.-i. Morrey spaces. That is, it is

related to the Boyd index.

This paper is organized as follows. In Section 2, we introduce the r.-i. Mor-

rey spaces and study the mapping properties of the dilation operator on r.-i.

Morrey spaces. In Section 3, we establish the Minkowski inequalities, the Hardy–

Littlewood–Pólya inequalities, the Hardy inequalities and the Hilbert inequalities

to r.-i. Morrey spaces. At the end of this paper, we apply our method to gener-

alize the boundedness result of the Hausdorff operator to r.-i. Morrey spaces in

Section 4.

2. Definitions and preliminaries

In this section, we first recall the definition of rearrangement-invariant Ba-

nach function spaces. Then, we introduce the r.-i. Morrey spaces and study the

mapping properties of the dilation operator on r.-i. Morrey spaces.

For any x ∈ Rn and r > 0, let B(x, r) = {y ∈ Rn : |x − y| < r} and

B = {B(x, r) : x ∈ Rn, r > 0}.
For any t ∈ (0,∞) and r > 0, let I(t, r) = {s ∈ (0,∞) : |t − s| < r} and

I = {I(t, r) : t ∈ (0,∞), r > 0}.
LetM(Rn) and Lloc(Rn) denote the space of Lebesgue measurable functions

and the space of locally integrable functions on Rn, respectively.

For any f ∈M(Rn), let

µf (λ) = |{t ∈ (0,∞) : |f(t)| > λ}|, λ ≥ 0

denote the distribution function of f . Two functions f, g ∈M(Rn) are said to be

equimeasurable if

µf (λ) = µg(λ), ∀λ ≥ 0.

We recall the definition of rearrangement-invariant Banach function space

(r.i.B.f.s.) from [2, Chapter 1, Defintions 1.1 and 1.3].

Definition 2.1. A Banach space X ⊂M(Rn) is said to be a rearrangement-

invariant Banach function space on Rn if it satisfies
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(1) ‖f‖X = 0 ⇐⇒ f = 0 a.e.,

(2) |g| ≤ |f | a.e. =⇒ ‖g‖X ≤ ‖f‖X ,

(3) 0 ≤ fn ↑ f a.e. =⇒ ‖fn‖X ↑ ‖f‖X ,

(4) χE ∈M(Rn) and |E| <∞ =⇒ χE ∈ X,

(5) χE ∈ M(Rn) and |E| < ∞ =⇒
∫
E
|f(t)|dx < CE‖f‖X , ∀f ∈ X for some

CE > 0.

(6) If f and g are equimeasurable, then ‖f‖X = ‖g‖X .

We recall the definition of associate space from [2, Chapter 1, Definitions 2.1

and 2.3].

Definition 2.2. Let X be a r.i.B.f.s. The associate space of X, X ′, consists

of all Lebesgue measurable function f such that

‖f‖X′ = sup

{∣∣∣ ∫ f(t)g(t)dt
∣∣∣ : g ∈ X, ‖g‖X ≤ 1

}
<∞.

We use the dilation operator Ds with s < 0 for the study of the Hausdorff

operators, therefore, we slightly modify the definition given in [35, Volume II,

Definition 2.b.1].

Definition 2.3. For each s ∈ R\{0} and for any Lebesgue measurable function

f on Rn, let Ds be the dilation operator defined by

(Dsf)(x) = f(x/s), x ∈ Rn.

The Boyd indices of a r.-i.B.f.s. X on Rn are the numbers defined by

pX = sup
s>1

n log |s|
log ‖Ds‖

, qX = inf
0<s<1

n log |s|
log ‖Ds‖

where ‖Ds‖ is the operator norm of the linear operator, Ds : X → X.

We have
1

pX
+

1

qX′
= 1 and

1

pX′
+

1

qX
= 1. (2.1)

The Lorentz–Luxemburg theorem [2, Chapter 1, Theorem 2.6] and [2, Chap-

ter 1, Lemma 2.8] yield the following lemma.

Lemma 2.1. Let X be a r.-i.B.f.s. Then the norms ‖f‖X and

‖f‖X′′ = sup

{∣∣∣ ∫ f(t)g(t)dt
∣∣∣ : g ∈ X ′, ‖g‖X′ ≤ 1

}
are mutually equivalent.
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We are now ready to introduce the rearrangement-invariant (r.-i.) Morrey

space.

Definition 2.4. Let X ⊂ M(Rn) be a r.i.B.f.s. on Rn and u(y, r) : Rn ×
(0,∞)→ (0,∞) be a Lebesgue measurable function. The rearrangement-invariant

Morrey space Mu
X(Rn) is the collection of all f ∈M(Rn) satisfying

‖f‖Mu
X(Rn) = sup

y∈Rn, r>0

1

u(y, r)
‖χB(y,r)f‖X <∞. (2.2)

Similarly, we also define the rearrangement-invariant Morrey spaces on the inter-

val (0,∞), Mu
X(0,∞), with the set of balls B replaced by the set of intervals I

on (2.2).

When 1 ≤ q ≤ p < ∞, X = Lq(Rn) and u(x, r) = |B(x, r)|
1
q−

1
p , Mu

X(Rn) is

the classical Morrey space Mp
q (Rn).

Notice that Mu
X(Rn) is not necessarily rearrangement-invariant. That is,

whenever f and g are equimeasurable, ‖f‖Mu
X(Rn) is not necessarily equal to

‖g‖Mu
X(Rn). On the other hand, for simplicity, we use the abused terminology

“rearrangement-invariant Morrey space” to name Mu
X(Rn).

Lemma 2.2. Let X be a r.i.B.f.s. on Rn and u(y, r) : Rn× (0,∞)→ (0,∞)

be a Lebesgue measurable function. Suppose that there exist αu, βu ∈ R such

that u satisfies

u(y/s, r/s) ≤ C0s
−nαuu(y, r), for all 1 < s <∞ (2.3)

u(y/s, r/s) ≤ C0s
−nβuu(y, r), for all 0 < s < 1 (2.4)

for some C0 > 0, then, for any p < pX and qX < q there exists C > 0 such that

‖Dtf‖Mu
X(Rn) ≤ C|t|

n
p−nαu‖f‖Mu

X(Rn), for all 1 < |t| <∞, (2.5)

‖Dtf‖Mu
X(Rn) ≤ C|t|

n
q−nβu‖f‖Mu

X(Rn), for all 0 < |t| ≤ 1. (2.6)

Proof. For any 1 < |t| <∞ and B(z,R) ∈ B, we have

‖χB(z,R)Dtf‖X = ‖Dt(χB(z/|t|,R/|t|)f)‖X .

According to Definition 2.3 and (2.3), we obtain

1

u(z,R)
‖χB(z,R)Dtf‖X =

u(z/|t|, R/|t|)
u(z,R)

1

u(z/|t|, R/|t|)
‖Dt(χB(z/|t|,R/|t|)f)‖X

≤ u(z/|t|, R/|t|)
u(z,R)

‖Dt‖‖f‖Mu
X(Rn) ≤ C|t|

n
p−nαu‖f‖Mu

X(Rn).



206 Kwok-Pun Ho

By taking supremum over B(z,R) ∈ B on the left hand side of the above inequal-

ity, we establish (2.5). The proof for (2.6) is similar, therefore, for simplicity, we

skip the details. �

We call 1
1
p−αu

and 1
1
q−βu

in (2.5) and (2.6) the Boyd indices of Mu
X(Rn).

These are generalizations of the notion of Boyd’s index to r.-i. Morrey spaces.

For instance, when X = Ls(Rn) and 1 ≤ s ≤ t < ∞ and u(x, r) =

|B(x, r)| 1s− 1
t , we have pX = qX = s and αu = βu = 1

s −
1
t . Moreover, the p

and q in (2.5) and (2.6) can be taken to be s. Therefore, both of the Boyd indices

of the classical Morrey space M t
s(Rn) are equal to t.

Furthermore, whenever s = t, M t
s(Rn) is the Lebesgue space Lt(Rn). Thus,

our Boyd indices reduce to the Boyd indices for Lebesgue spaces defined in [35,

Volume II, Definition 2.b.1].

We have the analogue of Lemma 2.2 for Mu
X(0,∞).

In the next section, we apply the above result to extend those classical in-

equalities such as the Minkowski inequalities and the Hardy inequalities to r.-i.

Morrey spaces.

3. Minkowski’s inequality and Hardy’s inequality

In this section, we extend the Minkowski inequalities, the Hardy–Littlewood–

Pólya inequalities and the Hardy inequalities to r.-i. Morrey spaces. Roughly

speaking, the Hardy–Littlewood–Pólya inequalities and the Hardy inequalities

are consequences of the Minkowski inequalities and Lemma 2.2. Furthermore,

as another application of the Minkowski inequalities, we also obtain a mapping

properties for the Mellin convolution on r.-i. Morrey spaces.

We first establish the Minkowski inequalities on r.-i. Morrey spaces.

Theorem 3.1 (Minkowski’s inequality). Let µ be a signed σ-finite Borel

measure on R. Let f(x, s) be a Lebesgue measurable function on Rn ×R. Let X

be a r.i.B.f.s. on Rn and u(t, r) : Rn× (0,∞)→ (0,∞) be a Lebesgue measurable

function. We have∥∥∥∫
R
f(·, s)dµ

∥∥∥
Mu

X(Rn)
≤
∫
R
‖f(·, s)‖Mu

X(Rn)d|µ|. (3.1)

Proof. For any B(z,R) ∈ B, write

h(x) = χB(z,R)(x)

∫
R
f(x, s)dµ.
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Let g ∈ X ′ with ‖g‖X′ ≤ 1. Fubini’s theorem yields∫
Rn

|g(x)h(x)|dx ≤
∫
Rn

∫
R
χB(z,R)(x)|g(x)||f(x, s)|d|µ|dx

≤ C
∫
R
‖χB(z,R)(·)f(·, s)‖Xd|µ|.

By taking supremum over those g ∈ X ′ with ‖g‖X′ ≤ 1, Lemma 2.1 gives∥∥∥χB(z,R)(·)
∫
R
f(·, s)dµ

∥∥∥
X
≤ C

∫
R
‖χB(z,R)(·)f(·, s)‖Xd|µ|.

Consequently,

1

u(z,R)

∥∥∥χB(z,R)(·)
∫
R
f(·, s)dµ

∥∥∥
X
≤ C

∫
R

1

u(z,R)
‖χB(z,R)(·)f(·, s)‖Xd|µ|

≤ C
∫
R
‖f(·, s)‖Mu

X(Rn)d|µ|

for some C > 0 independent of z ∈ Rn and R > 0. Therefore, by taking supreme

over B(z,R) ∈ B on the left hand side of the above inequality, we obtain (3.1). �

Particularly, the Minkowski inequality is also valid on Mu
X(0,∞). In the rest

of this section, we apply the Minkowski inequality on Mu
X(0,∞) to extend some

classical inequalities in analysis to Mu
X(0,∞).

For any Lebesgue measurable functions f , g, the Mellin convolution of f

and g is defined by

(f
M∗ g)(t) =

∫ ∞
0

f(t/s)g(s)
ds

s
.

As an application of Minkowski’s inequality on Mu
X(0,∞), the following

presents a property of Mellin convolution on Mu
X(0,∞).

Theorem 3.2. Let X be a r.i.B.f.s. and u(t, r) : (0,∞) × (0,∞) → (0,∞)

be a Lebesgue measurable function satisfying (2.3) and (2.4). If g is a Lebesgue

measurable function satisfying∫ ∞
1

s
1
p−αu−1|g(s)|ds+

∫ 1

0

s
1
q−βu−1|g(s)|ds <∞

for some p < pX and qX < q, then,

‖f M∗ g‖Mu
X(0,∞) ≤ C‖f‖Mu

X(0,∞)

for some C > 0.
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Proof. By the Minkowski’s inequality, we have

‖f M∗ g‖Mu
X(0,∞) =

∥∥∥∥∫ ∞
0

f(·/s)g(s)
ds

s

∥∥∥∥
Mu

X(0,∞)

≤
∫ ∞
0

‖Dsf‖Mu
X(0,∞)|g(s)|ds

s
.

In view of (2.5) and (2.6), we have

‖f M∗ g‖Mu
X(0,∞) ≤ C‖f‖Mu

X(0,∞)

(∫ ∞
1

s
1
p−αu−1|g(s)|ds+

∫ 1

0

s
1
q−βu−1|g(s)|ds

)
≤ C‖f‖Mu

X(0,∞)

for some C > 0. �

By using the idea of the proof from Theorem 3.2, we can also generalize

the Hardy–Littlewood–Pólya inequalities. These inequalities offer the mapping

properties of some integral operators on Mu
X(0,∞) [18, Theorem 319].

Theorem 3.3. Let X be a r.i.B.f.s. with 1 < pX ≤ qX < ∞ and u(t, r) :

(0,∞) × (0,∞) → (0,∞) be a Lebesgue measurable function satisfying (2.3)

and (2.4).

Let K(·, ·) be a Lebesgue measurable function on (0,∞) × (0,∞). If K

satisfies

(1) K(λs, λt) = λ−1K(s, t),

(2)
∫∞
1
|K(v, 1)|v−

1
q+βudv +

∫ 1

0
|K(v, 1)|v−

1
p+αudv < ∞ for some p < pX and

qX < q,

then, the linear operator

Tf(t) =

∫ ∞
0

K(s, t)f(s)ds

is bounded on Mu
X(0,∞).

Proof. Let v = s/t. We have

|Tf(t)| ≤
∫ ∞
0

|K(vt, t)||(D1/vf)(t)|tdv =

∫ ∞
0

|K(v, 1)||(D1/vf)(t)|dv.

Applying the norm ‖·‖Mu
X(0,∞) on both sides of the above inequality, Theorem 3.1

yields

‖Tf‖Mu
X(0,∞) ≤

∫ ∞
0

|K(v, 1)|‖(D1/vf)‖Mu
X(0,∞)dv.
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For the p and q given by Item (2), (2.5) and (2.6) guarantee that

‖Tf‖Mu
X(0,∞) ≤ C‖f‖Mu

X(0,∞)

(∫ ∞
1

|K(v, 1)|v−
1
q+βudv+

∫ 1

0

|K(v, 1)|v−
1
p+αudv

)
≤ C‖f‖Mu

X(0,∞)

for some C > 0. Hence, T is bounded on Mu
X(0,∞). �

We now apply the Hardy–Littlewood–Pólya inequalities to extend the Hardy

inequalities to Mu
X(0,∞).

Theorem 3.4 (Hardy’s Inequality). Let X be a r.i.B.f.s. with 1 < pX ≤
qX <∞ and u(t, r) : (0,∞)×(0,∞)→ (0,∞) be a Lebesgue measurable function

satisfying (2.3) and (2.4).

(1) If

1 + αu >
1

pX
, (3.2)

then

Tf(t) =
1

t

∫ t

0

f(s)ds

is bounded on Mu
X(0,∞).

(2) If
1

qX
> βu, (3.3)

then

Sf(t) =

∫ ∞
t

f(s)

s
ds

is bounded on Mu
X(0,∞).

Proof. Let K(s, t) = t−1χE(s, t) where E = {(s, t) : s < t}. It satisfies

Item (1) of Theorem 3.3.

Since 1 < pX and 1 + αu > 1
pX

, there exists a 1 < p < pX such that

1 + αu >
1
p >

1
pX

. Hence, for any q > qX , we have

∫ ∞
1

|K(v, 1)|v−
1
q+βudv +

∫ 1

0

|K(v, 1)|v−
1
p+αudv =

∫ 1

0

v−
1
p+αudv

=
v−

1
p+αu+1

− 1
p + αu + 1

∣∣∣∣1
0

<∞.
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According to Theorem 3.3, we find that

‖Tf‖Mu
X(0,∞) ≤ C‖f‖Mu

X(0,∞).

To establish the boundedness of the operator S, let K(s, t) = s−1χE(s, t)

where E = {(s, t) : s > t}. It also satisfies Item (1) of Theorem 3.3. Similarly, we

have a q > qX such that βu <
1
q <

1
qX

. Hence, for any p > pX , we have∫ ∞
1

|K(v, 1)|v−
1
q+βudv +

∫ 1

0

|K(v, 1)|v−
1
p+αudv =

∫ ∞
1

v−
1
q+βu−1dv <∞.

Thus, Theorem 3.3 concludes that

‖Sf‖Mu
X(0,∞) ≤ C‖f‖Mu

X(0,∞)

for some C > 0. �

For instance, when X = Lp(0,∞), 1 ≤ p ≤ ∞ and u ≡ 1, Mu
X(0,∞) reduces

to Lp(0,∞). We have pX = qX = p and αu = βu = 0. Therefore, the conditions

(3.2) and (3.3) become 1 < p ≤ ∞ and 1 ≤ p < ∞ which are the well known

conditions for the classical Hardy inequalities [14, Corollary 6.21].

As a special case of the previous theorem, we have the Hardy inequality for

the classical Morrey spaces Mp
q (0,∞).

Corollary 3.5. Let 1 ≤ q ≤ p <∞.

(1) If 1 < p ≤ ∞, then∥∥∥∥1

t

∫ t

0

f(s)ds

∥∥∥∥
Mp

q (0,∞)

≤ C‖f(t)‖Mp
q (0,∞). (3.4)

(2) If 1 ≤ p <∞, then∥∥∥∥∫ ∞
t

f(s)

s
ds

∥∥∥∥
Mp

q (0,∞)

≤ C‖f(t)‖Mp
q (0,∞). (3.5)

Proof. Let X = Lq(0,∞) and u(z,R) = |I(z,R)|
1
q−

1
p , we find that pX =

qX = q and αu = βu = 1
q −

1
p . Therefore, when 1 < p ≤ ∞, we have

1 + αu = 1 +
1

q
− 1

p
>

1

q
=

1

pX
.

We are allowed to apply Theorem 3.4 to obtain (3.4).

Similarly, when 1 ≤ p < ∞, we have 1
qX

= 1
q >

1
q −

1
p = βu. Thus, Theo-

rem 3.4 yields (3.5). �
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According to the above corollary, we see that even those the index q comes

from the Lebesgue space Lq(0,∞) which is used to built Mp
q (0,∞) but the validity

of the Hardy inequality does not rely on q. It relies on the other index p from

u(z,R) = |I(z,R)|
1
q−

1
p . For example, the inequality∥∥∥∥1

t

∫ t

0

f(s)ds

∥∥∥∥
Mp

1 (0,∞)

≤ C‖f(t)‖Mp
1 (0,∞), 1 < p ≤ ∞,

is invalid but we do not have the Hardy’s inequality on L1(0,∞).

Theorem 3.4 extends the results in [9, 36] to the r.-i. Morrey spaces. We also

have the generalization of Hilbert’s inequality on Mu
X(0,∞).

Theorem 3.6 (Hilbert’s inequality). Let X be a r.i.B.f.s. with 1 < pX ≤
qX <∞ and u(t, r) : (0,∞)×(0,∞)→ (0,∞) be a Lebesgue measurable function

satisfying (2.3) and (2.4). If

1 + αu >
1

pX
and βu <

1

qX
,

then

Tf(t) =

∫ ∞
0

f(s)

t+ s
ds

is bounded on Mu
X(0,∞).

Proof. Let K(s, t) = (s+t)−1. It obviously fulfills Item (1) of Theorem 3.3.

Moreover, there exist q > qX and p < pX such that

1 + αu >
1

p
>

1

pX
and βu <

1

q
<

1

qX
.

Therefore, we have∫ ∞
1

(1 + v)−1v−
1
q+βudv +

∫ 1

0

(1 + v)−1v−
1
p+αudv

≤
∫ ∞
1

v−
1
q+βu−1dv +

∫ 1

0

v−
1
p+αudv <∞.

Hence, Theorem 3.3 assures the boundedness of T on Mu
X(0,∞). �

In particular, we have the Hilbert inequality on the classical Morrey spaces

Mp
q (0,∞). If 1 < q ≤ p <∞, then∥∥∥∥∫ ∞

0

f(s)

t+ s
ds

∥∥∥∥
Mp

q (0,∞)

≤ C‖f(t)‖Mp
q (0,∞).
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4. Hausdorff operator

In this section, we study the boundedness of the Hausdorff operator on r.-i.

Morrey spaces on Rn. There are many results on the boundedness of Hausdorff

operators on several important function spaces arising in harmonic analysis. For

instance, we have the boundedness of the Hausdorff operator on Lebesgue spaces,

Hardy spaces and the spaces of bounded mean oscillation in [1], [7], [8], [10],

[15], [27], [29], [30], [32], [33], [34], [40], [47]. The Hausdorff operator is also an

extension of the study of the Cesáro operator [16], [39], [46].

We begin with the definition of Hausdorff operator associated with a signed σ-

finite Borel measure. For any signed σ-finite Borel measure µ on R, the Hausdorff

operator associated with µ is given by

Hµf(x) =

∫
R
f(tx)dµ(t), x ∈ Rn.

The adjoint operator of Hµ is defined as

H∗µf(x) =

∫
R
|t|−nf(x/t)dµ(t), x ∈ Rn.

We now ready to establish the mapping properties of the Hausdorff operator

and its adjoint operator on r.-i. Morrey spaces. We present a notation related

to the measure µ. Let a, b ∈ R. For any signed σ-finite Borel measure µ on Rn,

write

‖µ‖a,b =

∫
|t|≤1

|t|ad|µ|+
∫
|t|>1

|t|bd|µ|.

Theorem 4.1. Let X be a r.i.B.f.s. on Rn with 1 < pX ≤ qX < ∞ and

u(y, r) : Rn× (0,∞)→ (0,∞) be a Lebesgue measurable function satisfying (2.3)

and (2.4).

(1) If there exist p < pX ≤ qX < q such that

‖µ‖−n
p +nαu,−n

q +nβu <∞,
then

‖Hµf‖Mu
X(Rn) ≤ C‖µ‖−n

p +nαu,−n
q +nβu

‖f‖Mu
X(Rn)

for some C > 0 independent of µ and f .

(2) If there exist p < pX ≤ qX < q such that

‖µ‖n
q−nβu−n,np−nαu−n <∞,

then

‖H∗µf‖Mu
X(Rn) ≤ C‖µ‖n

q−nβu−n,np−nαu−n‖f‖Mu
X(Rn)

for some C > 0 independent of µ and f .
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Proof. In view of the Minkowski inequality for Mu
X(Rn), we find that

‖Hµf‖Mu
X(Rn) ≤

∫
R
‖D1/tf‖Mu

X(Rn)d|µ|(t)

≤ C
(∫
|t|≤1

|t|−
n
p +nαud|µ|(t) +

∫
|t|>1

|t|−
n
q +nβud|µ|(t)

)
‖f‖Mu

X(Rn)

≤ C‖µ‖−n
p +nαu,−n

q +nβu
‖f‖Mu

X(Rn)

for some C > 0 independent of µ and f .

Similarly, we have

‖H∗µf‖Mu
X(Rn) ≤

∫
R
‖Dtf‖Mu

X(Rn)|t|−nd|µ|(t)

≤ C
(∫
|t|≤1

|t|
n
q−nβu−nd|µ|(t) +

∫
|t|>1

|t|
n
p−nαu−nd|µ|(t)

)
‖f‖Mu

X(Rn)

≤ C‖µ‖n
q−nβu−n,np−nαu−n‖f‖Mu

X(Rn)

for some C > 0 independent of µ and f . �
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[33] E. Liflyand and F. Móricz, The multi-parameter Hausdorff operator is bounded on the

product Hardy space H11(R× R), Analysis (Munich) 21 (2001), 107–118.



Hardy’s inequality and Hausdorff operators on rearrangement-invariant. . . 215

[34] E. Liflyand and A. Miyachi, Boundedness of the Hausdorff operators in Hp spaces,
0 < p < 1, Studia Math. 194 (2009), 279–292.

[35] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I and II, Springer, New York,
1996.

[36] L. Maligranda, Generalized Hardy inequalities in rearrangement invariant spaces, J.

Math. Pures Appl. 59 (1980), 405–415.

[37] A. Mazzucato, Decomposition of Besov–Morrey spaces, Harmonic analysis at Mount

Holyoke (South Hadley, MA, 2001), Contemp. Math. Amer. Math. Soc. 320 (2003),

279–294.

[38] C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans.
Amer. Math. Soc. 43 (1938), 126–166.
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