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Functional equations in the spectral
theory of random fields II.

By K. LAJKÓ (Debrecen)

1. Introduction

Let S∞ denote the unit sphere in l2, that is, S∞ = {t | t ∈ l2; t =
(t1, . . . , tn, . . . );

∑∞
k=1 t2k = 1}. A random field X(t) on S∞ is called

isotropic in the wide sence if MX2(t) < +∞, or MX(t) is independent
of t, and if MX(t) X(s) = B(cos Θ) depends on cos Θ =

∑∞
k=1 tk sk (t =

(tk), s = (sk)).
Next let us consider Markov random fields. Let L(t01) be the set of

vectors from S∞, whose first component equals t01. A random field X(t) on
S∞ is called Markov if for any −1 ≤ t01 ≤ 1 and any t′, t′′, t′1 > t01 > t′′1 , the
random variables X(t′), X(t′′) are conditionally independent given X(t)
on L(t01).

The following theorem is known.

Theorem (see [3]). The correlation function of a Gaussian isotropic
random field of the Markov type on S∞ is given by

B(cosΘ) = (cos Θ)m,

where m is an integer.

The proof based on the fact that, in this case, the correlation function
B satisfies the functional equation

(1) B(cosΘ′′)B(cos2 Θ) = B(cos Θ′′ cosΘ) B(cosΘ),

Θ′′ > Θ; Θ′′, Θ ∈ [0, π],

and differentiable in (0, 1).
The general solution of this functional equation is presented here.
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2. The non zero solutions of (1)

Let R be the set of real numbers and let R0 = R\{0}.
Lemma 1. If the function B : [−1, 1] → R satisfies the functional

equation (1) then B satisfies the functional equation

(2) B(t2)B(s) = B(ts) B(t); t > s; t, s ∈ [−1, 1].

Proof. By the transformation

(3) s = cosΘ′′, t = cos Θ (Θ′′ > Θ; Θ′′,Θ ∈ [0, π]),

it follows immediately from (1) that the functional equation (3) is valid on
the (t, s) domain of transformation (3), i.e., for all (t, s) ∈ T = {(t, s) | t >
s; t, s ∈ [−1, 1]}.

Before stating the main theorem of this section, we will prove the
following lemma.

Lemma 2. If the function B : (0, 1) → R0 satisfies the functional
equation

(2′) B(t2) B(s) = B(ts)B(t); t > s, t, s ∈ (0, 1),

then there exists an additive function A : R→ R such that

(4) B(t) = C exp[A(ln t)], t ∈ (0, 1),

where C ∈ R0 is an arbitrary constant.

Proof. By the transformation

(5) t = e−
u
2 , s = e−v (t > s, t, s ∈ (0, 1)),

we obtain from (2′) that the function

(6) f : R+ → R0, f(u) = B(exp(−u)),

satisfies the functional equation

(7) f(u) f(v) = f
(u

2
+ v

)
f

(u

2

) (
v >

u

2
> 0

)
.

Using Lemma 3 in [2], it follows that the function

(8) h : (−1,∞) → R, h(x) = ln
f(x + 1)

f(1)
,

satisfies the functional equation

(9) h(x + y) = h(x) + h(y) (x ∈ (0, 1), y > x− 1),
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i.e., h is additive on the open connected domain {(x, y) | x ∈ (0, 1), y >
x− 1}.

Applying now Lemma 4 in [2] we get that there exists an additive
function Ā : R→ R such that

(10) h(x) = Ā(x), x ∈ (−1,∞).

From (6), (8) and (10) we obtain the form

(11) B(t) = f(1) exp[Ā(−1)] exp[Ā(− ln t)], t ∈ (0, 1),

for the function B, where f(1), Ā(−1) are arbitrary real constants. Finally
we get from (11) the form (4) for B, where C = f(1) exp[Ā(−1)] ∈ R0

is arbitrary constant and the additive function A is defined by A(x) =
Ā(−x) (x ∈ R).

Theorem 1. If the function B : [−1, 1] → R satisfies the functional
equation (1) and B(t) 6= 0 (t ∈ (0, 1)), then either

(12) B(t) =





0 t = 0
c1 exp[A(ln t)] t ∈ (0, 1)
c2 t = 1
c3 exp[A(ln |t|)] t ∈ [−1, 0),

or

(13) B(t) =





c3 t ∈ [−1, 0]
c1 t ∈ (0, 1)
c2 t = 1,

where c1, c3 ∈ R0, c2 ∈ R are arbitrary constants and A : R → R is an
additive function on R2.

Proof. If the function B satisfies the functional equation (1) and
B 6= 0 on (0, 1), then B satisfies (2) and (2′) too. Thus, by Lemma 2,

(14) B(t) = c1 exp[A(ln(t)] t ∈ (0, 1),

where c1 ∈ R0 is an arbitrary constant and A : R → R is an additive
function on R2.

Substitute s = −1 in (2), then we get

(15) B(t2)B(−1) = B(−t) B(t), t ∈ (−1, 1].

Since B(t) 6= 0 for t ∈ (0, 1), we obtain from (15) that

(16) B(t) = B(−1)
B(t2)
B(−t)

, t ∈ (−1, 0).
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If t ∈ (−1, 0), then −t, t2 ∈ (0, 1) and (16) with (14) implies

(17) B(t) = B(−1) exp[A(ln |t|)], t ∈ (−1, 0).

Let us write in (2) t = 1, then we get the identity

B(1) B(s) = B(s)B(1), s ∈ [−1, 1).

On the other hand if t, s ∈ (−1, 1) then t2, ts ∈ (−1, 1). Thus the value of
B on [−1, 1) does not depend on B(1) and so

(18) B(1) = c2 (c2 ∈ R arbitrary),

Put in (2) t = 0, then we get

(19) B(0) B(s) = B2(0), s ∈ [−1, 0).

If B(0) = 0, then, according to (14), (17) and (18), we obtain the form
(12) for B, where c3 = B(−1) ∈ R0 is an arbitrary constant.

If c3 = B(0) 6= 0, then (19) implies that

(20) B(s) = c3, s ∈ [−1, 0].

But in this case (17) shows that A = 0 on (0, 1) and so

B(t) = c1, t ∈ (0, 1),

which together with (18) and (20) implies the form (13) for B.
It is easy to see that the functions (12) and (13) satisfy the functional

equation (1).

3. The not almost everywhere zero solutions of (1)

Lemma 3. If the function B : [−1, 1] → R satisfies the functional
equation (1) and there exists a subset E ⊂ (0, 1) of positive Lebesgue-
measure, such that B(t) 6= 0 for all t ∈ E, then B(t) 6= 0 for all t ∈ (0, 1).

Proof. Under the conditions of the Lemma we get that B satisfies
the functional equation (2′). Let us write in (2′)

√
t for t, then we get the

functional equation

(21) B(t)B(s) = B(s
√

t)B(
√

t),

(t, s) ∈ D = {(t, s) |
√

t > s; t, s ∈ (0, 1)}.
Suppose B(t) 6= 0 for t ∈ E, where E has positive measure, then there
exists a compact subset E1 ⊂ E of positive measure such that E1 ⊂
[α, β] ⊂ (0, 1) for some closed interval [α, β]. Further there exists a natural
number n such that 2n

√
α > β. It is obvious that one of the intervals
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(α,
√

α), . . . , ( 2n−2
√

α, 2n−1
√

α) ( 2n−1
√

α, β) contains a subset E2 ⊂ E1 of
positive measure with E2 × E2 ⊂ D and then B(t)B(s) 6= 0 for (t, s) ∈
E2 × E2.

Thus, by equation (21), B(s
√

t)B(
√

t) 6= 0 if t, s ∈ E2, which implies
that B(u) 6= 0, whenever u ∈ E2

√
E2.

Since E2 and
√

E2 have positive Lebesgue-measure, by a theorem of
Steinhaus (see [1]), the set E2

√
E2 contains an interval of positive length

[a, b] ⊂ (0, 1) and so B(u) 6= 0 (u ∈ [a, b]).
Substitute s = t in (21) (this is posibile because of

√
t > t for t ∈

(0, 1)), then we get

(22) B2(t) = B(t3/2) B(
√

t), t ∈ (0, 1),

which implies B(t3/2) 6= 0, B(
√

t) 6= 0 for all t ∈ [a, b]. Thus B(u) 6= 0 if
u ∈ [a3/2,

√
b]. It follows by induction that

(23) B(u) 6= 0, u ∈
[
a( 3

2 )n

, b( 1
2 )n

]
, n ∈ N,

where N is the set of natural numbers.
Since a( 3

2 )n → 0 and b( 1
2 )n → 1, we get from (23) that B(u) 6= 0 for

all u ∈ (0, 1).
This completes the proof of Lemma 3.

Now it is easy to prove our main result.

Theorem 2. If the function B : [−1, 1] → R satisfies the functional
equation (1) and there exists a subset E ⊂ (0, 1) of positive Lebesgue-
measure such that B(t) 6= 0 for all t ∈ E, then B has the form (12) or
(13), where c1, c3 ∈ R0, c2 ∈ R arbitrary constants and A : R→ R additive
function on R2.

Proof. By Lemma 3, B(t) 6= 0 for all t ∈ (0, 1). Then Theorem 1
implies the statement of our Theorem 2.

4. Remarks

Remark 1. It is not too difficult to determine the continuous solution
of (1). We have the following

Theorem 3. A function B : [−1, 1] → R is a continuous solution of
equation (1) if and only if either B is a constant function, or f has the
form

(24) B(t) =

{
c1 ta t ∈ [0, 1]
c3 ta t ∈ [−1, 0),
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where c1, c3 ∈ R0 and a ∈ R+ = {x | x ∈ R, x > 0} is an arbitrary
constants.

Proof. If B is continuous in [−1, 1] and there exists a value t0 ∈
(0, 1), such that B(t0) 6= 0, then there exists an internal I = [t0−r, t0+r] ⊂
(0, 1), such that B(t) 6= 0 for all t ∈ I and I × I ⊂ D.

Then, using the last part of the proof of Lemma 3, it follows that
B(t) 6= 0 for all t ∈ (0, 1).

Since B is continuous, functions f, h and A in Lemma 2 are continu-
ous, thus A(t) = at with some a ∈ R.

Then we get from (12) and (13) that either

(12′) B(t) =





0 t = 0
c1t

a t ∈ (0, 1)
c2 t = 1
c3|t|a t ∈ [−1, 0)

or

(13′) B(t) =





c3 t ∈ [−1, 0]
c1 t ∈ (0, 1)
c2 t = 1

respectively.
Using again the continuity of B, B = c results from (13′) and from

(12′) for a = 0.
If a < 0, then B given by (12′) satisfies limx→o+0 B(t) = ∞ and thus

B cannot be continuous at zero.
If a > 0, then (24) follows from (12′).

Remark 2. A similar calculation shows, that if B is continuous on the
set [−1, 1]\{0}, then either

B(t) =





0 t = 0
c1t

a t ∈ (0, 1]
c3|t|a t ∈ [−1, 0),

or

B(t) =

{
c3 t ∈ [−1, 0]
c1 t ∈ (0, 1],

where a ∈ R, c1, c3 ∈ R0 arbitrary constants.

Remark 3. For measurable solutions of (1) the situation is more com-
plicated. For example the function (12′) and (13′) are measurable, satisfy
equation (1) but usually are not continuous on the interval [−1, 1].
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