On a result of Shallit and Pethő

By JAROSŁAW GRYTCZUK (Zielona Góra)

In this paper, by using matrix methods we give a general form of some results given by Shallit [2], [3] and Ретнő [1].

1. Introduction

Let $B(u, \infty)=\sum_{u=0}^{\infty} \frac{1}{u^{2^{k}}}, u \geq 3, u \in \mathbb{Z}$ then it is well-known that $B(u, \infty)$ is a transcendental number (see [5], p. 35). In 1979 Shallit [2] proved that if $B(u, v)=\sum_{u=0}^{v} \frac{1}{u^{2^{k}}}, u \geq 3, u \in \mathbb{Z}$ then $B(u, 0)=[0 ; u]$, $B(u, 1)=[0 ; u-1, u+1]$ and if $B[u, v]=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]=p_{n} / q_{n}$ then $B[u, v+1)=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}+1, a_{n}-1, a_{n-1}, \ldots, a_{1}\right]$ for $v \geq 2$.

Moreover in 1982 he examined [3] the numbers of the form: $S(u, \infty)=$ $\sum_{k=0}^{\infty} u^{-c(k)}$, where $\{c(k)\}_{k=0}^{\infty}$ is a sequence of positive integers such that $c(v+1) \geq 2 c(v)$ for all $v \geq v^{\prime}$, where v^{\prime} is a non-negative integer. From this result follows some continued fraction expansion for the Liouville transcendental numbers $L(m)=\sum_{k=0}^{\infty} m^{-(k+1)!}, m \geq 2, m \in \mathbb{Z}$.

In 1982 РетнŐ [1] considered the series: $\sum_{i=1}^{\infty} \frac{d_{i}}{Q_{i}}$, where $d_{1}=1, d_{i}= \pm 1$ for $i=1,2,3, \ldots$, and $Q_{i}=a_{i-1} Q_{i-1}^{k}, k \geq 2$ for $i=2,3, \ldots$ and $a_{1} \geq 2$, $Q_{1}=1$. For $C_{k}(a, u)=\sum_{i=0}^{u} \frac{d_{i}}{Q_{i}}$ he proved a general theorem (see [1], Thm p. 235) concerning continued fraction expansion. From this theorem follows in the case $k=2$ a result of Kmošek reported by Schinzel in 1979 at the Oberwolfach meeting: "Diophantische Approximationen". In 1986

Trung Wu [4] applying matrix methods gave new proofs of the results given by Shallit.

In the present paper by application of matrix methods we give a general form of the results given by Shallit and Pethő. Namely we prove the following

Theorem. Let $S(\infty)=\sum_{i=0}^{\infty} \frac{m_{i}}{n_{i}}<\infty$, where $\left\langle m_{i}, n_{i}\right\rangle \in \mathbb{Z}^{2}$ and let $S(u)=\sum_{i=0}^{u} \frac{m_{i}}{n_{i}}=\frac{M_{u}}{N_{u}}$. If $S(u)=\left[A_{0} ; A_{1}, \ldots A_{n}\right]=p_{n} / q_{n}$ and $M_{u}=p_{n}$, $N_{u}=q_{n}=n_{u}, n_{u+1}=s n_{u}^{2}, m_{u+1}=(-1)^{u}$ for some $s \geq 1$, then

$$
\begin{align*}
\text { (1) } \quad S(u+1)= & {\left[A_{0}, A_{1}, \ldots, A_{n}, s-1, A_{n-1}+1, A_{n-1}, \ldots, A_{1}\right], } \\
& \text { if } A_{n}=1, s \neq 1, \\
(2) \quad S(u+1)= & {\left[A_{0}, A_{1}, \ldots, A_{n}+1, \ldots, A_{1}\right], } \\
& \text { if } A_{n}=1, s=1, \\
(3) \quad S(u+1)= & {\left[A_{0}, A_{1}, \ldots, A_{n-2}, A_{n-1} A_{n-1}+2, A_{n-2}, \ldots, A_{1}\right], } \tag{2}\\
& \text { if } A_{n}=s=1, \\
(4) \quad S(u+1)= & {\left[A_{0}, A_{1}, \ldots, A_{n}, s-1,1, A_{n-1}, \ldots, A_{1}\right], } \tag{3}\\
& \text { if } A_{n} \neq 1, s \neq 1 .
\end{align*}
$$

2. Basic lemmas

Lemma 1. Let $M_{2}(K)$ denote the set of all 2×2 matrices with elements in K. Then for $A_{i} \in M_{2}(K)$

$$
\begin{equation*}
\left(A_{1} \cdot A_{2} \cdot \ldots \cdot A_{r}\right)^{T}=A_{r}^{T} \cdot A_{r-1}^{T} \cdot \ldots \cdot A_{1}^{T} \tag{5}
\end{equation*}
$$

where A^{T} denotes the transpose to A.
Lemma 2. If $p_{n} / q_{n}=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$ then $\left[a_{n} ; a_{n-1}, \ldots, a_{1}\right]=q_{n} / q_{n-1}$.
Proof. We use the following well-known identity:

$$
\left[\begin{array}{ll}
p_{n} & p_{n-1} \tag{6}\\
q_{n} & q_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right] \cdot \ldots \cdot\left[\begin{array}{cc}
a_{n-1} & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right]
$$

where $p_{n} / q_{n}=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$. Since

$$
\begin{align*}
{\left[\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
0 & 1 \\
1 & -a_{0}
\end{array}\right] \tag{7}\\
{\left[\begin{array}{cc}
0 & 1 \\
1 & -a_{0}
\end{array}\right] \cdot\left[\begin{array}{cc}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right] } & =\left[\begin{array}{cc}
q_{n} & q_{n-1} \\
p_{n}-a_{0} q_{n} & p_{n-1}-a_{0} q_{n-1}
\end{array}\right],
\end{align*}
$$

by (6), (7) and (8) we obtain

$$
\left[\begin{array}{cc}
q_{n} & q_{n-1} \tag{9}\\
p_{n}-a_{0} q_{n} & p_{n-1}-a_{0} q_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right] \cdot \ldots \cdot\left[\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right] .
$$

From (9) and Lemma 1 we obtain

$$
\left[\begin{array}{cc}
q_{n} & p_{n}-a_{0} q_{n} \tag{10}\\
q_{n-1} & p_{n-1}-a_{0} q_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right]^{T} \cdot \ldots \cdot\left[\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right]^{T}
$$

Since $\left[\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right]^{T}=\left[\begin{array}{cc}a & 1 \\ 1 & 0\end{array}\right]$, by (10) it follows that $q_{n} / q_{n-1}=\left[a_{n} ; a_{n-1}, \ldots, a_{1}\right]$ and the proof is finished.

Lemma 3. Let $p_{n} / q_{n}=\left[a_{0} ; a_{1}, \ldots a_{n}\right]$ and $r_{m} / s_{m}=\left[b_{0} ; b_{1}, \ldots, b_{m}\right]$, then

$$
\frac{p_{n-1} \cdot s_{m}+p_{n} \cdot r_{m}}{q_{n-1} \cdot s_{m}+q_{n} \cdot r_{m}}=\left[a_{0} ; a_{1}, \ldots, a_{n}, b_{0}, b_{1}, \ldots, b_{m}\right] .
$$

Proof. From the assumptions we have

$$
\left[\begin{array}{cc}
p_{n} & p_{n-1} \tag{11}\\
q_{n} & q_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right] \cdot \ldots \cdot\left[\begin{array}{cc}
a_{n-1} & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
r_{m} & r_{m-1} \tag{12}\\
s_{m} & s_{m-1}
\end{array}\right]=\left[\begin{array}{cc}
b_{0} & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
b_{1} & 1 \\
1 & 0
\end{array}\right] \cdot \ldots \cdot\left[\begin{array}{cc}
b_{m-1} & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
b_{m} & 1 \\
1 & 0
\end{array}\right] .
$$

Since

$$
\begin{align*}
& {\left[\begin{array}{ll}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right] \cdot\left[\begin{array}{cc}
r_{m} & r_{m-1} \\
s_{m} & s_{m-1}
\end{array}\right]=} \tag{13}\\
& \quad=\left[\begin{array}{cc}
p_{n} r_{m}+p_{n-1} s_{m} & p_{n} r_{m-1}+p_{n-1} s_{m-1} \\
q_{n} r_{m}+q_{n-1} s_{m} & q_{n} r_{m-1}+q_{n-1} s_{m-1}
\end{array}\right],
\end{align*}
$$

by (11), (12) and (13) Lemma 3 follows.

Lemma 4. (see [1], Lemma, p. 234). Let $s \geq 1$ be an integer and $p_{n} / q_{n}=\left[b_{0} ; b_{1}, \ldots, b_{n}\right]$, then
(14) $\left[b_{0} ; b_{1}, \ldots, b_{n}, s-1,1, b_{n}-1, b_{n-1}, \ldots, b_{1}\right]=\frac{s p_{n} q_{n}+(-1)^{n}}{s \cdot q_{n}^{2}}$.

Proof. Let $r_{m} / s_{m}=\left[b_{0} ; b_{1}, \ldots, b_{n}, s-1,1, b_{n}-1, b_{n-1}, \ldots, b_{1}\right]$ then we have

$$
\begin{align*}
{\left[\begin{array}{ll}
r_{m} & r_{m-1} \\
s_{m} & s_{m-1}
\end{array}\right]=\left[\begin{array}{cc}
b_{0} & 1 \\
1 & 0
\end{array}\right] } & \ldots \cdot\left[\begin{array}{cc}
b_{n} & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
s-1 & 1 \\
1 & 0
\end{array}\right] \tag{15}\\
& \cdot\left[\begin{array}{ll}
s & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
b_{n}-1 & 1 \\
1 & 0
\end{array}\right] \cdot \ldots \cdot\left[\begin{array}{cc}
b_{1} & 1 \\
1 & 0
\end{array}\right]
\end{align*}
$$

Since $p_{n} / q_{n}=\left[b_{0} ; b_{1}, \ldots, b_{n}\right]$,

$$
\left[\begin{array}{cc}
p_{n} & p_{n-1} \tag{16}\\
q_{n} & q_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
b_{0} & 1 \\
1 & 0
\end{array}\right] \cdot \ldots \cdot\left[\begin{array}{cc}
b_{n} & 1 \\
1 & 0
\end{array}\right]
$$

From (15) and (16) we get

$$
\begin{gather*}
{\left[\begin{array}{ll}
r_{m} & r_{m-1} \\
s_{m} & s_{m-1}
\end{array}\right]=\left[\begin{array}{ll}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right]\left[\begin{array}{cc}
s-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]} \tag{17}\\
\cdot \cdot\left[\begin{array}{cc}
b_{n}-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
b_{n-1} & 1 \\
1 & 0
\end{array}\right] \cdots\left[\begin{array}{cc}
b_{1} & 1 \\
1 & 0
\end{array}\right]
\end{gather*}
$$

Since

$$
\left[\begin{array}{ll}
1 & 1 \tag{18}\\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
b_{n}-1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
b_{n} & 1 \\
b_{n-1} & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
b_{n} & 1 \\
1 & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
b_{n} & 1 \tag{19}\\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
b_{n}-1 & 1 \\
1 & 0
\end{array}\right] \cdots\left[\begin{array}{cc}
b_{1} & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
q_{n} & p_{n}-b_{0} q_{n} \\
q_{n-1} & p_{n-1}-b_{0} q_{n-1}
\end{array}\right]
$$

by (17), (18) and (19) we obtain

$$
\begin{align*}
{\left[\begin{array}{ll}
r_{m} & r_{m-1} \\
s_{m} & s_{m-1}
\end{array}\right]=\left[\begin{array}{ll}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right] } & {\left[\begin{array}{cc}
s-1 & 1 \\
1 & 0
\end{array}\right] . } \tag{20}\\
& \cdot\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
q_{n} & p_{n}-b_{0} q_{n} \\
q_{n-1} & p_{n-1}-b_{0} q_{n-1}
\end{array}\right]
\end{align*}
$$

On the other hand we have

$$
\left[\begin{array}{cc}
s-1 & 1 \tag{21}\\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
s & -1 \\
1 & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
p_{n} & p_{n-1} \tag{22}\\
q_{n} & q_{n-1}
\end{array}\right]\left[\begin{array}{cc}
s & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
s p_{n}+p_{n-1} & -p_{n} \\
s q_{n}+q_{n-1} & -q_{n}
\end{array}\right] .
$$

From (20, (21) and (22) we obtain

$$
\left[\begin{array}{cc}
r_{m} & r_{m-1} \tag{23}\\
s_{m} & s_{m-1}
\end{array}\right]=\left[\begin{array}{cc}
s p_{n}+p_{n-1} & -p_{n} \\
s q_{n}+q_{n-1} & -q_{n}
\end{array}\right]\left[\begin{array}{cc}
q_{n} & p_{n}-b_{0} q_{n} \\
q_{n-1} & p_{n-1}-b_{0} q_{n-1}
\end{array}\right] .
$$

From (23) we obtain $r_{m}=q_{n}\left(s p_{n}+p_{n-1}\right)-p_{n} q_{n-1}=s p_{n} q_{n}+p_{n-1} q_{n}-$ $p_{n} q_{n-1}$ and since $p_{n-1} q_{n}-p_{n} q_{n-1}=(-1)^{n}$, we have

$$
\begin{equation*}
r_{m}=s p_{n} q_{n}+(-1)^{n} \tag{24}
\end{equation*}
$$

Moreover, we have by (23)

$$
\begin{equation*}
s_{m}=q_{n}\left(s q_{n}+q_{n-1}\right)-q_{n} q_{n-1}=s q_{n}^{2} . \tag{25}
\end{equation*}
$$

By (24) and (25) it follows that $\frac{r_{m}}{s_{m}}=\frac{s p_{n} q_{n}+(-1)^{n}}{s \cdot q_{n}^{2}}$ and the proof of Lemma 4 is complete.

Remark 1. In a simple continued fraction 0 is not allowed to be a partial quotient except as q_{0}. In many cases, however, it is convenient to allow this. For such continued fractions the given properties are true and one can transform them using the following property:

$$
\begin{equation*}
\left[a_{0} ; a_{1}, \ldots, a_{i}, 0, a_{i+1}, \ldots, a_{n}\right]=\left[a_{0} ; a_{1}, \ldots, a_{i}+a_{i+1}, \ldots, a_{n}\right] \tag{*}
\end{equation*}
$$

This property $(*)$ we can deduce by the following matrix identity: Let $p_{n} / q_{n}=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$, then

$$
\left[\begin{array}{cc}
p_{n} & p_{n-1} \tag{26}\\
q_{n} & q_{n-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{a_{0}} \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{a_{1}} \cdot \ldots \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{a_{n}} \quad \text { if } n=2 \ell-1,
$$

and

$$
\left[\begin{array}{cc}
p_{n-1} & p_{n} \tag{27}\\
q_{n-1} & q_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{a_{0}} \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{a_{1}} \cdot \ldots \cdot\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{a_{n}} \quad \text { if } n=2 \ell
$$

Let i and n be odd. As $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{0}=I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, by (26) we obtain

$$
\begin{gathered}
{\left[\begin{array}{ll}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{a_{0}} \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{a_{1}} \cdot \ldots \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{a_{i}} \cdot} \\
\cdot\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{0} \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{a_{i+1}} \cdot \ldots \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{a_{n}}= \\
= \\
{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{a_{0}} \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{a_{1}} \cdot \ldots \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{a_{i}+a_{i+1}} \cdot \ldots \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{a_{n}}}
\end{gathered}
$$

and $(*)$ follows. In a similar way we obtain $(*)$ in the other cases.

3. Proof of the Theorem

Let $s \geq 1$. Then by Lemma 4 and the assumtion of the Theorem we have

$$
\left\{\begin{array}{l}
{\left[A_{0} ; A_{1}, \ldots, A_{n}, s-1, A_{n-1}+1, A_{n-2}, \ldots, A_{1}\right]=} \tag{28}\\
=\frac{s p_{n} q_{n}+(-1)^{n}}{s q_{n}^{2}}=\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{s q_{n}^{2}}=S(u)+\frac{m_{u+1}}{n_{u+1}}=S(u+1)
\end{array}\right.
$$

If $s \neq 1, A_{n} \neq 1$ then by (28) the assertion (4) follows. If $A_{n}=1$ and $s \neq 1$ then by (28) and ($*$) we obtain

$$
S(u+1)=\left[A_{0} ; A_{1}, \ldots, A_{n}, s-1, A_{n-1}+1, A_{n-2}, \ldots, A_{1}\right]
$$

and we get the assertion (1) of the Theorem. If $s=1$ and $A_{n} \neq 1$ then by (28) and (*) we obtain

$$
\begin{gathered}
S(u+1)=\left[A_{0} ; A_{1}, \ldots, A_{n}, 0,1, A_{n}-1, A_{n-1}, \ldots, A_{1}\right]= \\
=\left[A_{0} ; A_{1}, \ldots, A_{n}+1, A_{n}-1, A_{n-1}, \ldots, A_{1}\right]
\end{gathered}
$$

and (2) follows.
In a similar way in the case $s=A_{n}=1$ we obtain

$$
\begin{aligned}
S(u+1) & =\left[A_{0} ; A_{1}, \ldots, A_{n}, 0,1, A_{n}-1, A_{n-1}, \ldots, A_{1}\right]= \\
& =\left[A_{0} ; A_{1}, \ldots, A_{n}+1, A_{n}-1, A_{n-1}, \ldots, A_{1}\right]= \\
& =\left[A_{0} ; A_{1}, \ldots, A_{n}+1,0, A_{n-1}, \ldots, A_{1}\right]= \\
& =\left[A_{0} ; A_{1}, \ldots, A_{n-1}, A_{n-1}+2, A_{n-2}, \ldots, A_{1}\right]
\end{aligned}
$$

and statement (3) of the Theorem is proved.
The proof of the Theorem is complete.

Remark 2. For the case considered by Pethő, we have from the assumptions of the Theorem $s=a_{n} Q_{n}^{k-2}, k \geq 2$. In the Theorem given by Shallit we have $s=1$, if $B(u, v)=\sum_{k=0}^{v} \frac{1}{u^{2^{k}}}$ and $s=u^{d(v)}$, if $s(u, v)=$ $\sum_{k=0}^{v} u^{-c(k)}$, where $d(v)=c(v+1)-2 c(v) ; v \geq v^{\prime}$.

I would like to thank the referee for his suggestions for the improvement of the exposition.

References

[1] A. Ретно̋, Simple continued fractions for the Fredholm numbers, J. Number Theory 14 (1982), 232-236.
[2] J. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209-217.
[3] J. Shallit, Simple continued fractions for some irrational numbers, II, J. Number Thory 14 (1982), 228-231.
[4] T. Wu, On the proof of continued fraction expansions for irrationals, J. Number Theory 26 (1986), 55-59.
[5] T. Schneider, Einführung in die Transzendenten Zahlen, Springer-Verlag, 1957.

```
JAROS£AW GRYTCZUK
INSTITUTE OF MATHEMATICS
PEDAGOGICAL UNIVERSITY
PL. SŁOVIAŃSKI 9, 65-069 ZIELONA GÓRA
POLAND
```

(Received December 3, 1993; revised February 11, 1994)

