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Hilbert 2-class fields and 2-descent

By FRANZ LEMMERMEYER (Germany)

Abstract. We give a construction of unramified cyclic octic extensions of certain

complex quadratic number fields. The binary quadratic form used in this construction

also shows up in the theory of 2-descents on Pell conics and elliptic curves, as well as in

the explicit description of cyclic quartic extensions.

Introduction

In this article we discuss several apparently unrelated problems involving

integers of the form m = a2 + 4b2 ≡ 1 mod 4. A central role in the solution of

these problems is played by the family of binary quadratic forms Qb = (b, a,−b)
with discriminant m; here and below, Q = (A,B,C) denotes the binary quadratic

form Q(X,Y ) = AX2 +BXY + CY 2 with discriminant ∆ = B2 − 4AC.

The first problem concerns the solvability of the negative Pell equation

T 2 −mU2 = −4

and the computation of its fundamental solution. Results going back to Euler

[17] show that such a solution can be computed from an integral solution of the

equation Qb(r, s) = 1.

The second problem is the explicit construction of octic cyclic unramified

extensions L/k of the quadratic number field k = Q(
√
−m ). The construction of

its quartic subextension K = k(i,
√
a+ 2bi ) is almost trivial, and we will see that

explicit generators µ of the quadratic extension L = K(
√
µ ) can be written down

explicitly using nontrivial solutions of the diophantine equation Qb(r, s) = 2x2.
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Afterwards we will briefly explain why the forms Qb also play a role in per-

forming 2-descent on certain families of elliptic curves, such as those of the form

E : y2 = x(x2 + p), where p = a2 + 4b2 is prime; here the existence of rational

points on E is tied to the pair of equations r2 + s2 = X2 and Qb(r, s) = Y 2.

Finally we mention a few other problems in which these forms Qb have shown

up. It is clear that most of the problems discussed here may be generalized con-

siderably. In particular, studying Pell descent or Hilbert 2-class fields should

by no means be restricted to the special cases of the negative Pell equation or

discriminants of the form −4m.

This article is written in the language of quadratic forms (although ideals

show up occasionally). For understanding the results it is sufficient to know the

most elementary basics; for readers who would like to read more about reduction

and composition of forms, I strongly recommend the books by Flath [18] and

Cox [15], as well as the recent contributions by Bhargava [10]. The first section

of [32] gives a brief introduction to Bhargava’s ideas, and a detailed elementary

account can be found in Barker-Hoyt’s thesis [8].

1. The quadratic space of binary quadratic forms

I expect that most of the results presented in this article may be generalized

considerably. In this section I will therefore explain how the main actors in our

play show up in a more general setting.

Let R be a domain with characteristic 6= 2, and consider the set B = BR of

binary quadratic forms Q(X,Y ) = AX2 + BXY + CY 2, often abbreviated by

Q = (A,B,C), with A,B,C ∈ R. We define a bilinear map B × B −→ R via

〈Q1, Q2〉 = B1B2 − 2A1C2 − 2A2C1,

where Qj = (Aj , Bj , Cj)∈B. Clearly 〈Q1, Q2〉= 〈Q2, Q1〉, and 〈Q,Q〉 = disc(Q) =

B2 − 4AC is the discriminant of Q.

Matrices S = ( r st u ) ∈ SL2(R) act on B via Q|S = Q′, where

Q′(x, y) = Q
(
(x, y)S′

)
= Q(rx+ sy, tx+ uy), (1)

(here S′ denotes the transpose of S). It is an easy exercise to show that

〈Q1|S , Q2〉 = 〈Q1, Q2|S′〉 (2)

for S ∈ SL2(Q). This identity is the essential content of the “Cantor diagrams”

in [35, Theorem 2], [11, Proposition 3.3], and [12, Theorem 2].
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From now on assume that R = Z. If the form Q1 = (1, 0,−m) represents

−1, say r2 −ms2 = −1, then Q2 = (ms, 2r, s) is a form with discriminant −4.

Therefore Q2 is equivalent to (1, 0, 1), say Q2 = (1, 0, 1)|S for some S ∈ SL2(Z).

Write Q1|S′ = (a, 2B, c) for integers a, B, c; then equation (2) shows that a+ c= 0,

i.e., Q1|S′ = (a, 2B,−a). Since Q1 and Q1|S′ both have discriminant 4m, we must

have m = a2 +B2. Observe that we have shown that if (1, 0,−m) represents −1,

then m = a2 +B2 is a sum of two squares.

Replacing the principal form (1, 0,−a) with discriminant 4a by the principal

form Q0 =
(
1, 1, 1−a4

)
with discriminant ∆ = a2 + 4b2 ≡ 1 mod 4 results in

replacing (a, 2B,−a) by Qb = (b, a,−b). This is the form that will play a central

role in the problems described below: performing a second descent on Pell conics

and elliptic curves, constructing Hilbert class fields of quadratic number fields

with discriminant−4m, or in Hasse’s description of the arithmetic of cyclic quartic

number fields.

The pair of orthogonal forms Q1 = (1, 0, 1) and Q2 = (b, a,−b) will occur

explicitly in our description of the second 2-descent on the elliptic curve y2 =

x(x2 − 4p) for primes p = a2 + 4b2. In fact we will see that finding a rational

point on E is equivalent to finding a simultaneous representation Q1(r, s) = X2

and Q2(r, s) = Y 2 of squares by these forms.

This problem can be reformulated as follows. Let Q = (A,B,C) ∈ BR be a

binary quadratic form over a domain R as above, and let F be the quotient field

of R. We can evaluate Q on P1F as follows: for each point P = [x : y] ∈ P1F

we set P = Q(x, y) with values in F×/F× 2. Given a pair (Q1, Q2) of orthogonal

forms, the pair of simultaneous equations Q1(r, s) = X2 and Q2(r, s) = Y 2 is now

equivalent to the existence of a point P ∈ P1Q with Q1(P ) = Q2(P ) = 1.

2. 2-descent on Pell conics

Let m = 4n+ 1 be a squarefree integer, and consider the Pell equation

Q0(T,U) = T 2 − TU − nU2 = 1, (3)

where Q0(X,Y ) = X2 −XY − nY 2 is the principal binary quadratic form with

discriminant 4n+ 1 = m.

Multiplying through by 4 and completing the square shows that this equation

can also be written in the more familiar way

(2T − U)2 −mU2 = 4.
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2.1. First 2-descent. In this section we will present methods for finding a non-

trivial integral solution of (3) as well as criteria for the solvability of the negative

Pell equation

Q0(T,U) = −1. (4)

To this end we write the Pell equation (2T − U)2 − mU2 = 4 in the form

mU2 = (2T − U)2 − 4 = (2T − U − 2)(2T − U + 2).

Now

gcd(2T − U − 2, 2T − U + 2) =

{
4 if U is even,

1 if U is odd;

in both cases we find that there exist integers c, d, r, s with cd = m and 2T −
U + 2 = cr2 and 2T − U − 2 = ds2, and so cr2 − ds2 = 4.

The fact that r ≡ s mod 2 allows us to make the substitution s = S and

r = 2R− S, which transforms the equation cr2 − ds2 = 4 into

cR2 − cRS +
c− d

4
S2 = 1. (5)

Observe that the quadratic form cx2 − dy2 has discriminant 4cd = 4m, whereas

the form on the left hand side of (5) has discriminant c2 − c(c− d) = cd = m.

Thus each integral solution of the Pell equation comes from a solution of one

of the equations (5) for some factorization cd = m (see [31] for details). In fact,

Legendre claimed and Dirichlet proved that exactly four among these equations1

have solutions in integers:

Proposition 1. First 2-descent on Pell conics: If m = a2 + 4b2 = p1 · · · pt is

a product of t disctinct primes pj ≡ 1 mod 4, then among the 2t+1 descendants

(5) with cd = m there are exactly four that have solutions in integers.

In particular, apart from the trivial descendants 1 = x2 − my2 and 1 =

−mx2 + y2 there is a unique nontrivial pair (c, d) with cd = m such that 1 =

cx2 − dy2 and 1 = −dx2 + cy2 have integral solutions.

Special cases. If m = p is prime, all four factorizations of m must lead to

solvable equations. In particular, T 2 − pU2 = −1 is solvable in integers. This

result is due to Legendre.

1If m = 5, for example, the solvable equations correspond to the factorizations (c, d) = (1, 5),

(5, 1), (−1,−5), and (−5,−1). If m = 34, on the other hand, the solvable equations come from

(c, d) = (1, 34), (−34,−1), (2, 17) and (−17,−2).
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If m = pq for primes p ≡ q ≡ 1 mod 4, we have the following essentially

different descendants, written using forms with discriminant 4pq:

x2 − pqy2 = 4, pqx2 − y2 = 4, px2 − qy2 = 4, qx2 − py2 = 4.

If
(
p
q

)
= −1, it is immediately clear that the last two equations do not have

rational (let alone integral) solutions; this implies

Corollary 2. If p ≡ q ≡ 1 mod 4 are primes with
(
p
q

)
= −1, the negative

Pell equation (4) is solvable in integers.

If
(
p
q

)
= 1, on the other hand, further descents are necessary for deciding

which of the equations (5) are solvable.

2.2. Second 2-descent. Let us show how to do such a second descent. We start

with the equation T 2 −mU2 = −4 and assume that it has an integral solution.

Then mU2 = T 2 + 4 = (T + 2i)(T − 2i).

Now T is easily seen to be either odd or divisible by 4. Thus gcd(T + 2i, T −
2i) = 1 in the first and gcd(T + 2i, T − 2i) = 2i = (1 + i)2 in the second case.

This shows that we must have µρ2 = j(T + 2i) for some unit j = ik and some

µ, ρ ∈ Z[i] with µµ = m and ρρ = u. Subsuming j into µ then gives µρ2 = T +2i.

A simple calculation shows that µ ≡ 1 mod 2; writing µ = a+2bi (recall that

m = µµ = a2 + 4b2) and ρ = x+ yi, and comparing real and imaginary parts we

find that

T = ax2 − 4bxy − ay2, 1 = bx2 + axy − by2.

Conversely, if x and y are integers with bx2+axy−by2 = 1, then T = ax2−4bxy−
ay2 and U = x2 + y2 is an integral solution of the equation T 2 −mU2 = −4. We

have proved the following

Proposition 3. Let m be an odd squarefree natural number. The negative

Pell equation (4) has an integral solution if and only if there exist integers a, b ∈ N
with m = a2 + 4b2 such that the diophantine equation

Qb(x, y) = bx2 + axy − by2 = 1 (6)

has an integral solution. In this case,

T = ax2 − 4bxy − ay2, U = x2 + y2

is a solution of the original equation Q0(T,U) = −1.
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Example 1. Let m = 41 = 52 + 4 · 22; for checking the solvability of T 2 −
TU −10U2 = −1 we have to consider Q(x, y) = 2x2 + 5xy−2y2 = 1. We find the

solution x = 3, y = −1, hence T = 5·32+8·3−5 = 64 and U = 32+12 = 10. Thus

(T,U) = (64, 10) is the fundamental solution of the negative Pell equation, and in

fact we have 642−41·102 = −4, or 322−41·52 = −1 and 372−37·10−10·102 = −1.

Example 2. Let m = 221 = 13 · 17. Then m = 52 + 4 · 72 = 112 + 4 · 52, so

we have to solve the equations

7x2 + 5xy − 7y2 = 1 or 5x2 + 11xy − 5y2 = 1.

These equations can be written in the form

(14x+ 5y)2 −my2 = 28 and (10x+ 11y)2 −my2 = 44.

Neither of these equations has a solution since
(

7
13

)
=
(
11
13

)
= −1; thus the

negative Pell equation T 2 − 221U2 = −4 is not solvable.

Example 3. If m = 4777 = 17 · 281 = 592 + 4 · 182 = 692 + 4 · 22, then we

have to check the solvability of the equations

18x2 + 59xy − 18y2 = 1, and 2x2 + 69xy − 2y2 = 1.

For solving the first equation, observe that ξ = x
y is approximately equal to one of

the roots of the equation 18ξ2 + 59ξ − 18 = 0, that is, to ξ ≈ 3.56 or to ξ ≈ 0.28.

Using these approximations it is easy to solve the first equation by a brute force

computation: we find (x, y) = (587, 2089), hence T = 1
2 (−59x2 + 72xy + 59y2) =

162715632 and U = 1
2 (x2 + y2) = 2354245.

The second form Q = (2, 69,−2) is not equivalent to the principal form and

generates a class of order 2. In fact, we have Q(587,−17) = 9, so Q ∼ Q2
1 for

some form Q1 = (3, ∗, ∗), which is not contained in the principal genus, hence

cannot be equivalent to the principal form.

Rational solvability. A necessary condition for the solvability of a diophantine

equation in integers is its solvability in rational numbers. Applied to the negative

Pell equation (4), this gives us the classical observation that
(−1
p

)
= +1 for all

primes p | m, which is equivalent to m being a sum of two squares.

Although the solvability of (4) in integers is equivalent to the solvability of

one of the equations (6) in integers, we get stronger conditions by applying the

above observation to (6). In fact, the solvability of (6) in rational numbers is easy

to check:
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Lemma 4. Equation (6) has a solution in rational numbers if and only if(
a
p

)
= +1 (or, equivalently,

(
b
p

)
= +1) for all primes p | m.

Proof. Multiplying (6) through by 4b and completing the square gives

(2bx + ay)2 − my2 = 4b. The fact that
(
a
p

)
=
(
b
p

)
follows immediately from

the congruence (a+ 2b)2 ≡ 4ab mod p.

We have to check solvability in all completions of Q. Solvability in the reals

being clear, we have to verify local solvability in Qp for all primes p. This is

equivalent to the triviality of the Hilbert symbol
(
b,m
p

)
= 1 for all primes p. By

the product formula
∏
p

(
b,m
p

)
= 1, it is enough to check solvability for all primes

except one. We will therefore show that the equation above has solutions in the

completions Qp for all odd primes p. By Hensel’s Lemma it is sufficient to check

solvability modulo p. Now we distinguish two cases:

p - m: Then X2 −mY 2 represents at least one nonsquare mod p, hence all

of them; thus X2−mY 2 ≡ 4b mod p is solvable, and since gcd(a, 2b) = 1, we can

write Y = y and X = 2bx+ ay.

p | m: Then (2bx+ ay)2 −my2 ≡ 4b mod p implies
(
b
p

)
= +1. If conversely(

b
p

)
= +1, we can show solvability modulo p and in Zp exactly as above. �

By Gauss’s genus theory, the conditions
(
b
p

)
= +1 for all primes p | m is

equivalent to Qb being in the principal genus. Such forms are known to represent 1

rationally. Solvability criteria for the negative Pell equation following from this

criterion are due to Dirichlet, Scholz, Epstein and others (see [31] for detailed

references).

Special cases. Assume that m = pq is the product of two primes p ≡ q ≡
1 mod 4. We have already seen that (4) is solvable in integers if

(
p
q

)
= −1.

Suppose therefore that
(
p
q

)
= −1, and write p = A2 + 4B2 and q = C2 + 4D2.

Then m = a2 + 4b2 for (a, b) = (AC − 4BD,AD + BC) and (a, b) = (AC +

4BD,AD −BC). By Burde’s reciprocity law (see [30]) we have(
AC ± 4BD

p

)
=

(
AC ± 4BD

q

)
=

(
p

q

)
4

(
q

p

)
4

.

Thus if
(
p
q

)
4

= −
(
q
p

)
4
, the second descendants Qb(x, y) = 1 are not solvable,

hence neither is the negative Pell equation (4).

If
(
p
q

)
4

=
(
q
p

)
4

= −1, on the other hand, the first descendants px2−qy2 = ±1

do not have solutions. In fact from px2 − qy2 = 1 we get
(
q
p

)
4

=
(
y
p

)(−1
p

)
4
, and

with y = 2ju for some j ≥ 1 we find
(
y
p

)
=
(
2
p

)j( p
u

)
=
(
2
p

)
=
(−1
p

)
4
. Thus the
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solvability of px2 − qy2 = 1 implies
(
q
p

)
4

= 1. Similarly, qx2 − py2 = 1 can only

be solvable if
(
p
q

)
4

= 1. Thus if
(
p
q

)
4

=
(
q
p

)
4

= −1, neither of the equations

px2− qy2 = ±1 is solvable; but then one of the equations Qb(x, y) = 1 must have

a solution. We have proved

Corollary 5. Let m = pq be a product of two primes p ≡ q ≡ 1 mod 4.

Then we have the following possibilities:

(1)
(
p
q

)
= −1: then (4) is solvable.

(2)
(
p
q

)
= +1: If

(
p
q

)
4

= −
(
q
p

)
4
, then (4) is not solvable.

If
(
p
q

)
4

=
(
q
p

)
4

= −1, then (4) is solvable.

These results go back to Dirichlet and Scholz. It is not very hard to produce

numerous similar results for products of three and more primes.

Classes represented by the forms Qb. The propositions above show that if

the negative Pell equation x2 −my2 = −1 is solvable, then one of the forms Qb
(where b runs through all integers with m = a2 + 4b2) represents 1, hence lies in

the principal class of the primitive binary quadratic forms with discriminant m.

Our next result tells us exactly how the remaining forms Qb are distributed among

the equivalence classes of order dividing 2, and that the form Qb representing 1

is unique:

Theorem 6. Let m = p1 · · · pt be a product of primes pj ≡ 1 mod 4, and

let m = a2j + 4b2j (1 ≤ j ≤ t, aj , bj > 0) be the different representations of m as

a sum of two squares. Then the binary quadratic forms Qj = (bj , aj ,−bj) have

discriminant m, and there are two cases:

(1) The negative Pell equation is solvable: then the forms Qb represent the 2t−1

classes of order dividing 2 in Cl(m), the class group of binary quadratic forms

with discriminant m. In particular, the form representing 1 is unique.

(2) The negative Pell equation is not solvable: then there exists a subgroup

C of index 2 in Cl(m)[2] such that each form Qb represents one class in

Cl(m)[2] \ C. Each such class is represented by exactly two forms.

Under the standard correspondence between classes of binary quadratic forms

and ideal classes, the class of the form Qb = (b, a,−b) with discriminant a2+4b2 =

m corresponds to the ideal class represented by the ideal
(a+√m

2 , b
)
.

If m = p1 · · · pt is the product of t prime factors pj ≡ 1 mod 4, then m =

a2j + 4b2j can be written in 2t−1 ways as a sum of two squares of positive integers.

To each such sum we attach an ideal

aj = (2bj +
√
m, aj),
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which has the properties

Naj = aj , a2j = (2b+
√
m ).

In [33] (see also [9] for additional results in this direction) we have proved

the following theorem, which is the ideal theoretic version of Theorem 6:

Theorem 7. Let K = Q(
√
m ) be a quadratic number field, where m =

p1 · · · pt is a product of primes pj ≡ 1 mod 4. Let ε denote the fundamental unit

of K.

• If Nε = −1, then the ideal classes [aj ] are pairwise distinct and represent

the 2t−1 classes of order dividing 2 in Cl(K). Each ideal aj is equivalent to

a unique ramified ideal be. In particular, exactly one of the aj is principal;

if aj = (α), then

η =
2bj +

√
m

α2

is a unit with norm −1 (equal to ε if α is chosen suitably).

• If Nε = +1, then there is a subgroup C with index 2 in the group Cl(K)[2]

of ideal classes of order dividing 2 such that each class in C is represented

by two ramified ideals be (thus C is the group of strongly ambiguous ideal

classes in K). Each class in Cl(K)[2] \ C is represented by two ideals aj .

The unique pair (a, b) for which Qb(x, y) = 1 is solvable in integers can be

recovered as follows: the extension Q
(√
±ε
√
m
)
, with ε > 1 the fundamental unit

of Q(
√
m ) and the sign chosen as (−1)(m−1)/4 =

(
2
m

)
, is a cyclic quartic extension

with discriminant m3, hence equal to one of the extensions Q
(√

m+ 2b
√
m
)

for

m = a2 + 4b2, which we have studied in [33].

Remarks. First traces of Proposition 3 can be found in Euler’s work. In

[17, Prob. 2] he proved that if ap2 − 1 = q2, then there exist integers b, c, f , g

such that

a = f2 + g2, p2 = b2 + c2, q = bf + cg and ± 1 = bg − cf,

and we have ax2 + 1 = y2 for x = 2pq and y = 2q2 + 1.

Euler’s observation is related to our results as follows: since (b, c, p) is a Py-

thagorean triple, there exist integers (switch b and c if necessary to make c even)

m,n such that p = m2 + n2, b = m2 − n2 and c = 2mn; then ±1 = bg − cf =

gm2−2mnf−gn2, i.e. ±1 is represented by the binary quadratic form (g, 2f,−g).
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Euler’s results were rediscovered and complemented by Hart [23], A.Gérar-

din [19], Sansone [40], [41], Epstein [16] (see also Rédei [37, Satz 3]), K. Hardy

and K. Williams [22] (they first proved the uniqueness of the pair (a, b)),

Arteha [2]. The connection with Pythagorean triples was also observed by

Grytczuk, Luca, and Wojtowicz [20].

Generalizations to other Pell equations are due to Sylvester [43], Günther

[21], and Bapoungué [3], [4], [5], [6], [7]. For details, see [31, Part II].

3. Hilbert class fields

Every number field K has a maximal unramified abelian extension L/K; the

field L is called the Hilbert class field of K. Class field theory predicts that the

Galois group Gal(L/K) of this extension is isomorphic to the class group Cl(K).

The maximal 2-extension contained in L/K is called the Hilbert 2-class field, and

is isomorphic to the 2-class group Cl2(K), the 2-Sylow subgroup of Cl(K).

In this section we will present a very simple construction of unramified cyclic

octic extensions of complex quadratic number fields. Such constructions are

known (see e.g. [13], [14], [27], as well as the classical presentations [36], [38],

[39]) for discriminants m = −4p for primes p ≡ 1 mod 8, but even in this case we

have managed to drastically simplify the construction.

Let m ≡ 1 mod 4 be a squarefree integer and a sum of two squares, say m =

a2 + 4b2. Let k = Q(
√
−m ) denote the quadratic number field with discriminant

∆ = −4m. The quadratic extension k2 = Q(i,
√
m ) is unramified and abelian

over Q, and is a subfield of the genus class field of k, which is given by kgen =

Q(i,
√
p1, . . . ,

√
pt ), where m = p1 · · · pt is the prime factorization of m.

The quadratic unramified extensions of k have the form K = Q(
√
c,
√
−d ),

where m = cd is a factorization of m with c ≡ −d ≡ 1 mod 4. These factorizations

already occurred in (5), where the factorizations m = cd with c ≡ 3 mod 4 lead

to equations that do not even have solutions modulo 4.

Unramified cyclic quartic extensions of k containing k(
√
d1 ) correspond bi-

jectively to factorizations ∆ = d1d2 into two discriminants d1, d2 with (d1/p2) =

(d2/p1) = +1 for all primes p1 | d1 and p2 | d2. Such factorizations are called

C4-decompositions of ∆ = −4m. In this article we deal with unramified cyclic

quartic extensions containing k2 = Q(i,
√
m ); such extensions exist if and only if

∆ = −4 ·m is a C4-decomposition, that is, if and only if the primes dividing m

are all ≡ 1 mod 8.

The ambiguous prime ideals 6= (
√
m ) all generate ideal classes of order 2;
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thus their inertia degree in the full Hilbert 2-class field is equal to 2. This means

that if K/k is an unramified abelian 2-extension, then K is the full Hilbert 2-class

field if and only if all primes dividing ∆ have inertia degree 2 in K/k.
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Figure 1. A piece of the 2-class field tower of Q(
√
−m ).

The construction of a cyclic unramified extension k4/k containing k(i) =

k(
√
m ) is classical (see [26]): we have to solve the equation

A2 +B2 −mC2 = 0. (7)

This equation has solutions with C = 1, namely A = a and B = 2b, where

m = a2 + 4b2. The extension k(
√
a+ 2bi )/k is a cyclic quartic extension un-

ramified outside of 2; this extension is unramified above 2 (and thus unramified

everywhere) if and only if b is even, which in turn is equivalent to m ≡ 1 mod 8.

The Galois group of k4/k is generated by the element σ, whose action on the
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generators of the extension k4/k is given by the following table:

α i
√
m

√
a+ 2bi

σ(α) −i −
√
m
√
m/
√
a+ 2bi

σ2(α) i
√
m −

√
a+ 2bi

We now will construct cyclic octic extensions k8/k containing k4. It follows

from elementary Galois theory (or see [38]) that, to this end, we have to solve the

diophantine equation

α2 − (a+ 2bi)β2 − (a− 2bi)γ2 = 0 (8)

in the ring Z[i] of Gaussian integers. A solution (α, β, γ) of this equation is called

primitive if gcd(α, β) = 1.

Theorem 8. Let m = a2 + 4b2 be a sum of two squares. Then
√
a+ 2bi

generates a cyclic quartic extension k4 of k = Q(
√
−m ), which is unramified if

and only if b is even.

Assume that b is even. Then the extension k4/k can be embedded in a

cyclic octic extension if and only if equation (8) is solvable. Let (α, β, γ) be a

primitive solution of (8); then the extension k8 = k
(√

α+ β
√
a+ 2bi

)
is a cyclic

octic extension of k = Q(
√
−m ) unramified outside of 2 and containing k4. The

extension k8/k is unramified everywhere if and only if a+ 2b ≡ ±1 mod 8.

The proof of Theorem 8 is done step by step.

1. The extension k8/k is cyclic of degree 8. For proving the cyclicity of k8/k we

use a classical result in Galois theory (see [34, Section 8.4∗]; each of the following

statements is completely elementary). Let K/k be a normal extension with Galois

group G, and let L = K(
√
µ ) be a quadratic extension.

(1) ([34, F8.9]) L/k is normal if and only if for every σ ∈ G there is an ασ ∈ K
such that µσ−1 = α2

σ.

(2) ([34, F8.10]) Let L/k be normal. Then we can define an element [β] in the

second cohomology group H2(G,µ2) with values in µ2 = {−1,+1} by setting

β(σ, τ) = ατσατα
−1
στ .

(3) ([34, F8.11]) If L/k is normal, then [β] is the element of the second cohomol-

ogy group attached to the group extension

1 −−−−→ µ2 −−−−→ Gal(L/k) −−−−→ Gal(K/k) −−−−→ 1.
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(4) ([34, Example 6, p. 142]) If K/k is cyclic of even degree, then L/k is cyclic

if and only if ανσ = −1, where σ generates G = Gal(K/k) and where ν =∑
τ∈G τ .

Set
√
a− 2bi =

√
m/
√
a+ 2bi, µ = α + β

√
a+ 2bi and ν = α + γ

√
a− 2bi.

We find

µσ+1 = αα′ + αβ′
√
a− 2bi+ α′β

√
a+ 2bi+ ββ′

√
m = µ2

σ

for

µσ =
α+ β

√
a+ 2bi+ iβ′

√
a− 2bi

1 + i
,

where we have used α = iα′ and γ = iβ′, as well as (a−2bi)γ2 = α2− (a+2bi)β2.

With ασ = µσ/µ and ν = (1 + σ)(1 + σ2) we now find

µ1+σ2

σ = −ββ′
√
m µ1+σ2

= (a− 2bi)γ2

µνσ = −(ββ′)2m µν = (γγ′)2m = −µνσ.

Thus ανσ = (µσ/µ)ν = −1, which proves the claim.

2. The extension k8/k is unramified outside of 2. This follows from a standard

argument (see e.g. [39, 29]): if

α2 − µβ2 − µ′γ2 = 0,

then

2(α+ β
√
µ )(α+ γ

√
µ′ ) =

(
α+ β

√
µ+ γ

√
µ′
)2
. (9)

This implies the claim because the ideal generated by α+ β
√
µ and its con-

jugate α+ γ
√
µ′ is not divisible by any prime ideal with odd norm.

Equation (9) is a special case of the following simple but useful observation:

Lemma 9. Assume that Ax2 −By2 − Cz2 = 0. Then

2(x
√
A+ y

√
B )(x

√
A+ z

√
C ) = (x

√
A+ y

√
B + z

√
C )2. (10)

Proof. This is a straightforward calculation. See also [33]. �

Corollary 10. Let m = a2+4b2. Then
√
a+ 2bi and

√
2a+ 2

√
m ) generate

the same quadratic extension over k2. If m = p is prime and t2− pu2 = −1, then

we also have k4 = k2(
√
ε ) for ε = t+ u

√
p.
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Proof. From t2 −mu2 = −1 we get 1 + t2 −mu2 = 0, so (10) holds with

A = 1, B = −1 and C = m. This shows that

2(a+ 2bi)(a+
√
m ) = (a+ 2bi+

√
m )2

and proves the first claim. Similarly, t2 −mu2 + 1 = 0 gives

2(t+ i)(t+ u
√
m ) = (t+ i+ u

√
m )2.

Next t2 − mu2 = −1 implies t2 + 1 = mu2 and t − i = −i(a + 2bi)ρ2 as

in Subsection 2.2. This shows that
√
i(t− i) and

√
a+ 2bi generate the same

quadratic extension of F = Q(i). Observe that since 2i = (1 + i)2 is a square, we

also have F (
√
i(t− i) ) = F (

√
2(t− i) ). �

3. The extension k8/k is unramified above (2) if
(

2
a+2b

)
= 1. We choose the sign

of a in such a way that a ≡ 1 mod 4; since b is even, we have a ≡ 1, 5 mod 8, and

the following congruences hold modulo 4:

a ≡ 1 mod 8a ≡ 5 mod 8(
i+
√
a+ 2bi

1 + i

)2

≡
√
a+ 2bi ≡ 2 + 2i+

√
a+ 2bi(

2 + i+
√
a+ 2bi

1 + i

)2

≡ 2 +
√
a+ 2bi ≡ 2i+

√
a+ 2bi.

In Corollary 13 below we will show that we can always choose a primitive

solution (α, β, γ) of (8) in such a way that (2 + 2i) | α, β ≡ 1 mod 2 and γ = iβ ≡
i mod 2.

x mod 2 α mod 4 β mod 4

0 0 ±1 + bi

1 2 + 2i ±1 + (b+ 2)i

Thus in the first case we have α+β
√
a+ 2bi ≡ ±(1+bi) mod 4, which is a square

modulo 4 if a ≡ 1 mod 8 and 4 | b, i.e., if a + 2b ≡ 1 mod 8; moreover we have

α + β
√
a+ 2bi ≡ 2 + 2i ± (1 + (b + 2)i) mod 4, which is a square modulo 4 if

a ≡ 5 mod 8 and b ≡ 2 mod 4, i.e., if a+ 2b ≡ 1 mod 8.

This completes the proof of Theorem 8.

A little surprisingly, the diophantine equation (8) in Z[i] can be reduced to

an equation in rational integers (see [28, p. 76]):

Proposition 11. Let m = a2 + 4b2 for integers a ≡ 1 mod 2 and b. Then

the following statements are equivalent:
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1) Equation (8) is solvable.

2)
[
a+2bi
π

]
= 1 for all π | (a− 2bi);

3) The primes p | m have inertia degree 1 in Q(i,
√
a+ 2bi )

4)
(
2b
p

)
= +1 for all primes p | m.

5) The equation

Q(r, s) = br2 + ars− bs2 = 2x2. (11)

is solvable.

Proof. For proving that 1) =⇒ 2), recall that ternary quadratic equations

such as (8) are solvable globally if and only if they are everywhere locally solvable.

Since we may disregard one place because of the product formula, all we need to

check is solvability at the primes dividing a±2bi since we are allowed to omit the

prime 1+ i above 2. This proves the equivalence of 1) and 2); the third statement

is a translation of 2) using the decomposition law in quadratic extensions.

For showing that 2) and 4) are equivalent we prove that
[
a+2bi
π

]
=
(
2b
p

)
for

every prime π | (a − 2bi) with norm p. In fact, observe that 2bi ≡ a mod π; this

shows that
[
a+2bi
π

]
=
[
4bi
π

]
=
[
2b
π

]
=
(
2b
p

)
, where we have used simple properties

of residue symbols (see [30, Chapter 4]) and the fact that 2i = (1+ i)2 is a square.

Finally we prove that 4) and 5) are equivalent. To this end we observe that

(11) is solvable in the rationals if and only if it is solvable everywhere locally. We

may omit proving solvability in Q2 by the product formula. Now br2+ars−bs2 =

2x2 can be written in the form (2br + as)2 −ms2 = 8bx2; this norm equation is

solvable if and only if
(
2b
p

)
= +1 for all p | m. �

The fact that (8) and (11) are simultaneously solvable suggests that there

may exist an algebraic relation between its solutions. Such a relation does indeed

exist:

Lemma 12. Let Q = Qb = (b, a,−b) be a quadratic form with discriminant

m = a2 + 4b2. If (11) has a solution in nonzero integers, then

α = 2x(1 + i), β = r + si, γ = s+ ri (12)

satisfy Equation (8). Moreover, gcd(r, s) | gcd(α, β).

Proof. We find

α2 = 8x2i,

(a+ 2bi)β2 = (a+ 2bi)(r2 − s2 + 2rsi) = a(r2 − s2)− 4brs+Q(r, s) · bi

= a(r2 − s2)− 4brs+ 4x2i,
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(a− 2bi)γ2 = −a(r2 − s2) + 4brs+ 4x2i,

which immediately implies the first claim.

Clearly the square of gcd(r, s) divides 2x2, hence gcd(r, s) | x. This implies

gcd(r, s) | gcd(α, β, γ) via (12). �

Observe that we do not claim that every solution of (8) comes from a solution

of (11) via the formulas (12).

Corollary 13. Replacing b by −b if necessary we can always find a solution

(α, β, γ) of (8) such that (2 + 2i) | α, β ≡ 1 mod 2 and γ ≡ i mod 2. In this case,

we have α ≡ (2 + 2i)x mod 4 and β ≡ ±1 + (b+ 2x)i mod 4.

Proof. Assume that br2 +ars− bs2 = 2x2 has a solution, which we assume

to be primitive (gcd(r, s) = 1); since b is even and a is odd, we must have 2 | rs.
If r is even, replacing b by −b and (r, s) by (s,−r) we get a primitive solution in

which s is even.

Thus we may assume that r is odd and s is even. Reducing br2 +ars− bs2 =

2x2 modulo 4 shows that 2x2 ≡ b + s mod 4, which implies s ≡ b + 2x mod 4 as

claimed. The other claims follow from Lemma 12. �

We now give some explicit examples.

The case m = p for primes p ≡ 1 mod 8. If m = p is prime, then
[
a+2bi
a−2bi

]
=(

2a
p

)
= 1 if and only if p ≡ 1 mod 8. Here are a few examples:

p h a+ 2bi α β γ µ

17 4 1 + 4i 2 + 2i 1 i 2 + 2i+
√

1 + 4i

41 8 5 + 4i 2 + 2i 1 i 2 + 2i+
√

5 + 4i

73 4 −3 + 8i 6− 6i 1 + 2i 2− i 6− 6i+ (1 + 2i)
√
−3 + 8i

89 12 5 + 8i 10 + 10i 3 + 2i 2 + 3i 10 + 10i+ (3 + 2i)
√

5 + 8i

97 4 9 + 4i 2 + 2i 1 i 2 + 2i+
√

9 + 4i

The extension k8 = k4(
√
µ ) is unramified outside 2, and unramified every-

where if and only if h ≡ 0 mod 8 (or, equivalently, if a + 2b ≡ ±1 mod 8). The

first few examples of unramified extensions are

p h a+ 2bi α β γ µ

41 8 5 + 4i 2 + 2i 1 i 2 + 2i+
√

5 + 4i

113 8 −7 + 8i 2 + 2i 1 + 2i 2 + i 2 + 2i+ (1 + 2i)
√
−7 + 8i

137 8 −11 + 4i 2 + 2i 1 i 2 + 2i+
√
−11 + 4i

257 16 1 + 16i 4 + 4i 1 i 4 + 4i+
√

1 + 16i
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The case m = pq for primes p ≡ q ≡ 1 mod 8. In this case, the class of (2, 2, n)

with n = 1−pq
2 is a square. Since the forms (p, 0, q) are not equivalent to (2, 2, n),

the class group contains a subgroup of type (2, 4). It contains (4, 4) if and only if

the class of (p, 0, q) is a square, which happens if and only if
(
p
q

)
= 1.

Case A:
(
p
q

)
= −1. In this case, the 2-class group has type (4, 2), the square

class being generated by (2, 2, n). Since 2 splits in the three quadratic extension

k(i), k(
√
p ) and k(

√
q ), one of them can be embedded into an unramified C4-

extension. By Rédei–Reichardt, this C4-extension is generated by the square root

of a+ 2bi, where m = a2 + 4b2.

Writing m = c2 + 4d2 as a sum of squares in an essentially different way does

not produce anything new because of

k2(
√
a+ 2bi ) = k2(

√
p(a+ 2bi) ) = k2(

√
c+ 2di ).

Since
(
p
q

)
= −1, this implies that exactly one among the two equations of type

(6) has a solution.

The unramified extension k2(
√
p,
√
a+ 2bi ) of type (2, 4) over k is the full

Hilbert 2-class field if and only if
(

2
a+2b

)
= −1. Observe that

(
2

a+2b

)
=
(

2
c+2d

)
since 2 splits in both or in neither of the two quartic extensions.

p q Cl(−4pq) generators (b, a,−b)
(

2
a+2b ) (r, s, x)

17 41 (4, 2) (19, 10, 38) (8, 21,−8) −1 (1, 0, 2)

(29, 24, 29) (12, 11,−12) −1 −
17 73 (16, 2) (3, 2, 414) (2, 35,−2) +1 (1, 0, 1)

(17, 0, 73) (10, 29,−10) +1 −
17 97 (24, 2) (3, 2, 550) (16, 25,−16) +1 (1, 2, 1)

(17, 0, 97) (20, 7,−20) +1 −
17 113 (20, 2) (35,−4, 55) (18, 25,−18) −1 (5,−2, 8)

(17, 0, 113) (10, 39,−10) −1 −
41 89 (20, 2) (31, 6, 118) (10, 57,−10) −1 (6,−1, 2)

(65, 48, 65) (30, 7,−30) −1 −
41 97 (28, 2) (3, 2, 1326) (8, 61,−8) −1 (1, 0, 2)

(41, 0, 97) (28, 29,−28) −1 −

Case B:
(
p
q

)
= +1. Let m = pq = a2 + 4b2. Writing π = a1 + 2b1i and

ρ = a2 +2b2i we find πρ = a1a2−4b1b2 +2(a1b2 +a2b1)i and πρ = a1a2 +4b1b2 +

2(a1b2 − a2b1)i. Since
[
π
π

]
= 1 etc., we find

[
πρ
π

]
=
[
ρ
π

]
=
[
ρ
π

]
=
(
p
q

)
4

(
q
p

)
4
. This

shows that the solvability conditions
[
a+2bi
π

]
= +1 are equivalent to

(
p
q

)
4

(
q
p

)
4

= 1.

Note that
(

2
a+2b

)
=
[

1+i
a+2bi

]
=
(

2
pq

)
4

(
pq
2

)
4
, where

(
m
2

)
4

= (−1)(m−1)/8 for

integers m ≡ 1 mod 8.
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Theorem 14. Assume that m = pq = a2 + 4b2 is the product of two primes

p ≡ q ≡ 1 mod 8 with
(
p
q

)
= 1. Then the quartic extension k(

√
a+ 2bi )/k can be

embedded into an unramified cyclic octic extension if and only if
(

2
pq

)
4

(
pq
2

)
4

=(
p
q

)
4

(
q
p

)
4

= 1. More precisely, the following statements are true:

(1) The primes above 2 split in the quartic extension k(
√
a+ 2bi )/k if and only

if
(

2
pq

)
4

(
pq
2

)
4

= 1.

(2) Equation (8) is solvable if and only if
(
p
q

)
4

(
q
p

)
4

= 1.

(3) The equation Q(r, s) = 2x2, where Q = (b, a,−b), is solvable in integers if

and only if
(
p
q

)
4

(
q
p

)
4

= 1.

(4) The cyclic octic extension k8/k constructed from a solution of (8) is unram-

ified above the primes dividing (2) if and only if
(

2
pq

)
4

(
pq
2

)
4

= 1.

Proof. The condition
(
b
p

)
= 1 is equivalent to

(
a1b2+a2b1

p

)
= 1, which by

Burde’s rational reciprocity law is equivalent to
(
p
q

)
4

(
q
p

)
4

= 1. �

In the table below, ε denotes the values of
(
p
q

)
4

and
(
q
p

)
4
, respectively.

p q Cl(−4pq) generators (b, a,−b)
(

2
a+2b

)
ε (r, s, x)

17 89 (4, 4) (11, 8, 139) (14, 27,−14) +1 −1 −
(19, 16, 83) (6, 37,−6) +1 +1 −

17 137 (8, 4) (5, 2, 466) (24, 5,−24) −1 −1 −
(35,−8, 67) (20, 27,−20) −1 +1 −

41 73 (12, 4) (3, 2, 998) (26, 17,−26) −1 +1 −
(29,−18, 106) (14, 47,−14) −1 −1 −

41 113 (8, 4) (7, 2, 662) (34, 3,−34) +1 −1 −
(23,−12, 203) (6, 67,−6) +1 +1 −

73 89 (8, 8) (19, 2, 342) (32, 49,−32) +1 +1 (1, 0, 4)

(26,−18, 253) (8, 79,−8) +1 +1 (1, 0, 2)

The cyclic quartic extensions of Q(
√
−17 · 137 ) are generated by

√
5 + 48i,

√
−51 + 4

√
17,

√
−3699 + 316

√
137

Since (1 + i) is inert in Q(
√

5 + 48i )/Q(i), this extension cannot be embedded

into a cyclic quartic unramified extension by Theorem 14.(1). Similarly, 1 + 4i is

inert in this extension since
[
11+4i
1+4i

]
=
(
10
17

)
= −1.

Let us now make a few simple remarks on special cases where the equation

br2 + ars− bs2 = 2x2 (13)

is solvable.
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(1) b = 2d2: then (r, s, x) = (b, a, bd) is a solution. Note that p = a2 + 4b2 =

a2 + (2d)4 in this case.

(2) b = d2: then (r, s, x) = (2b, a+ e, f) is a solution, where p = e2 + 2f2.

4. 2-descent on elliptic curves

In this section we will give an exposition of Apéry’s lecture [1]. The forms

Qb also show up in several other investigations of elliptic curves with primes

p = a2 + 4b2 as parameters (see e.g. [42]), and we have selected Apéry’s article

mainly because his presentation was the least polished. Apéry starts by recalling

a conjecture made by Mordell in Debrecen 1968: for each prime p ≡ 5 mod 8, the

curve

y2 = px4 + 1 (14)

has a nontrivial (i.e., (x, y) 6= (0,±1)) rational point (this is also predicted by the

more general parity conjecture). Since (14) is a curve of genus 1 with a rational

point, it is an elliptic curve. The conjecture that (14) has nontrivial rational

points is equivalent to the conjecture that the elliptic curve has Mordell-Weil

rank 1 (the fact that the rank cannot be larger follows from the computation of

the Selmer groups).

Consider more generally an elliptic curve

E : y2 = x(x2 +Ax+B)

defined over Q with a rational torsion point (0, 0) of order 2. Each rational affine

point on E has the form (x, y) with

x = b1
m

e2
, y = b1

mn

e3
,

and comes from a rational point on one of the torsors

T : n2 = b1m
4 + am2e2 + b2e

4

with b1b2 = B and b1 squarefree.

The curve

E′ : y2 = x(x2 +A′x+B′), with A′ = −2Ax and B′ = A2 − 4B,

is 2-isogenous to E.
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Specializing to A = 0 and B = p we find that the elliptic curves

E : y2 = x(x2 + p) and E′ : y2 = x(x2 − 4p) (15)

have the torsors

n2 = pm4 + e4 and n2 = m4 − 4pe4, n2 = pm4 − 4e4.

By the theory of 2-descent on elliptic curves, (15) has rank r ≤ 1, with equality

if and only if the torsor n2 = pm4 − 4e4 has a nontrivial rational point.

Now consider the torsor

Z2 = pX4 − 4Y 4

(we are using Apéry’s notation) and write p = a2 + 4b2. From

pX4 = Z2 + 4Y 4 = (Z + 2iY 2)(Z − 2iY 2)

we get, using unique factorization in Z[i],

Z + 2iY 2 = (a+ 2bi)(ξ + iη)4,

where X = ξ2 + η2. Comparing real and imaginary parts yields

Y 2 = b(ξ4 − 6ξ2η2 + η4) + 2aξη(ξ2 − η2). (16)

Setting r = ξ2 − η2 and s = 2ξη, we find

X2 = r2 + s2, Y 2 = br2 + ars− bs2. (17)

Given the last pair of equations we parametrize the Pythagoren equation X2 =

r2 + s2 via r = ξ2− η2, s = 2ξη and X = ξ2 + η2, plug the results into the second

equation and retrieve (16).

Thus finding a rational point on E boils down to finding a simultanous rep-

resentation of squares for the pair of forms Q = (1, 0, 1) and Qb(b, a,−b).

Example. For p = 797, we have a = 11 and b = 13. We find

ξ = 1462 η = 771

X = 2731885 Y = 1773371

x =
5948166935620325

3144844703641
y =

458544116976814482315845

5576976396940543811

since x = pX
2

Y 2 and y = pXZY 3 , where Z = 210600981540301.
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5. Cyclic quartic fields

In the late 1940s, Hasse was interested in the explicit arithmetic of abelian

extensions; in 1948 he presented a memoir [24] on the computation of unit groups

and class numbers of cyclic cubic and quartic fields, and in 1952 he published his

book [25] on the investigation of class numbers of abelian number fields.

The quadratic form Qb shows up in Hasse’s treatment of cyclic quartic num-

ber fields in [24]. Since this work has remained largely obscure we would like to

provide as much background as is necessary to begin to appreciate Hasse’s results.

Let K/Q be a cyclic quartic extension; let F denote its conductor, and H the

subgroup of the group D of nonzero ideals in Q coprime to F that corresponds

to this extension by class field theory. Thus D/H ' Gal(K/Q); let χ be the ray

class character on D/H, and T = −
∑
χ(t)−1e(t) the corresponding Gauss sum.

Let k denote the quadratic subfield of K; its conductor f divides F , hence

we can write F = fG for some integer G. Hasse proves that there exist integers

a, b such that f = a2 + 4b2 and

K = Q
(√

χ(−1)G
f + a

√
f

2

)
.

His first main result is a description of an integral basis of K in terms of

invariants of the field, that is, in terms of Gauss sums. If τ denotes the Gauss

sum attached to χ2, then the algebraic integers in k have the form 1
2 (x + yτ)

with x ≡ τy mod 2. Hasse succeded in determining the ring of integers in K in

a similar way. In fact, for elements x ∈ k and y ∈ Q(i) he observes that every

element of K can be represented in the form

[x, y] =
1

2

(
x+

y T + y T̃

2

)
,

where y denotes the complex conjugate of y and where T̃ = χ(−1)T .

The ring of integers in K consists of all elements [x, y] with x ∈ Ok and

y ∈ Z[i] such that

x ≡ F ·
Tr
(
1+i
2 y
)

+ Tr
(
1−i
2 y
)
τ

2
mod 2,

where Tr denotes the trace of Q(i)/Q.

Now Hasse observes that the product x(y T +y T̃ ) can be written in the form

x(y T + y T̃ ) = (x ◦ y)T + x ◦ y T̃ ,
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where

x ◦ y =
x0y + x1(a− 2bi)y

2
, with y ∈ Z[i],

and where x0 and x1 are determined by the equation x = 1
2 (x0 + x1τ). This

defines an action of k× on Q(i)× (which induces an action of Ok on Z[i]); in fact,

the operator product x ◦ y has the following formal properties:

Lemma 15. For all x ∈ k× and all y ∈ Q(i) we have

(1) 1 ◦ y = y.

(2) (x1x2) ◦ y = x1 ◦ (x2 ◦ y).

(3) x ◦ y is Q-bilinear: qx ◦ y = x ◦ qy = q(x ◦ y) for all q ∈ Q.

(4) x ◦ iy = i(x′ ◦ y), where x′ is the conjugate of x.

(5) x ◦ y = 0 if and only if x = 0 or y = 0.

Hasse uses this action for simplifying the numerical computation (he was

working with pencil and paper!) of products in the number field K. The compu-

tation of squares, for example, is facilitated by the observation that

[x, y]2 =

[
1

2

(
x2 + χ(−1)G

N(y)f + φ(y)τ

2

)
, x ◦ y

]
,

where N and S denote the trace in Q(i)/Q and where φ is the binary quadratic

form defined for y = r + si by

φ(y) =
1

2
S((a+ 2bi)y2) = ar2 − 4brs− as2.

In the expressions giving the action of the Galois group on [x, y], the form

φ̂(y) = −1

4
S(i(a+ 2bi)y2) = br2 + ars− bs2

shows up, for which Hasse observes the identity (see [24, (19)]

φ̂(α ◦ y) = N(α)φ̂(y)

for α ∈ Ok and y ∈ Z[i], where N denotes the norm.

Hasse’s goal was characterizing the unit groups of cyclic quartic extensions in

a way similar to the real quadratic case, where the fundamental unit is uniquely

determined by the minimal solution of the Pell equation T 2 −mU2 = 4.

In the real cyclic case K/Q, let k denote the quadratic subfield of K. The

unit group EK of K is described by the following invariants:
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(1) the unit group Ek of the quadratic subfield,

(2) the group EK/k of relative units satisfying NK/kη = ±1, and

(3) the unit index Q = (EK : EK/kEk).

These invariants are characterized as follows:

(1) The unit index Q is either 1 or 2;

(2) There is a unit η such that the group EK/k is generated by −1, η and its

conjugate η′.

This unit η can be chosen in an essentially unique way among its conjugates etc.,

and this unit is then called the relative fundamental unit of K. Hasse’s main

result is

Theorem 16. The relative fundamental unit η of K is the relative unit

ε 6= ±1 with the property that |SK/Q(ε2)| is minimal.

It seems that such geometric investigations of units quickly become too tech-

nical when cyclic quartic extensions are replaced by number fields of higher degree.

Acknowledgements. I thank the referee for the very careful reading of

the manuscript.
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p est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), 239–243.

[28] F. Lemmermeyer, Die Konstruktion von Klassenkörpern, Ph. D. thesis, Univ. Heidelberg,
1994.

[29] F. Lemmermeyer, Rational quartic reciprocity, Acta Arithmetica 67 (1994), 387–390.

[30] F. Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer-Verlag, 2000.

[31] F. Lemmermeyer, Higher descent on Pell conics, I. From Legendre to Selmer, arXiv:
0311309v1; II. Two centuries of missed opportunities, arXiv: 0311296v1; III. The first

2-descent, arXiv: 0311310v1.

[32] F. Lemmermeyer, Binary Quadratic Forms and Counterexamples to Hasse’s Local-Global

Principle, preprint 2010.

[33] F. Lemmermeyer, Relations in the 2-class group of quadratic number fields, J. Austr.
Math. Soc. 93 (2012), 115–120.

[34] F. Lorenz and F. Lemmermeyer, Algebra I, Elsevier/Springer-Verlag, 2007.

[35] G. Pall, Discriminantal divisors of binary quadratic forms, J. Number Theory 1 (1969),
525–532.



Hilbert 2-class fields and 2-descent 343
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